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Abstract 

A random word is a finite sequence of symbols chosen independently at random 
from some finite alphabet. The probability distribution of the symbols may be con­
stant, or it may depend on the length of the word, analogo'Us to the way that edge 
probabilities of a random graph depend on the number of vertices of the graph. Two 
formal languages which express properties of words are considered: a first-order predi­
cate calculus, and a monadic second-order calc'ulus. It is shown that every sentence in 
the first-order language has probability that converges to a limiting value as the length 
of the word increases. This extends the known convergence r'es'ult for first-order sen­
tences about random words with constant probabilities. A weaker form of convergence 
law is proven for the monadic second-order language. The proofs rely on a combina­
torial game (the Ehrenfeucht game), and results on the asymptotic behavior of finite 
Markov chains with variable transition probabilities. 

1 Introduction 

A word is a finite sequence of symbols taken from some finite alphabet, which is 
assumed to be fixed. A property of words is a set of words. In this paper, we will 
give a characterization of properties that are expressible in certain formal languages. 
For simplicity, we shall assume the words are over the two symbol alphabet {O, I}. 
All of our results easily extend to words over any finite alphabet. Thus a word of 
length n is a sequence W = WI ... wn of O's and l's. vVe put Iwl for the length of w. 
Let p be some fixed function of the natural numbers whose range is in [0,1]. The 
random word of length n is W = WI .. . 1Un where for each :r 1, ... ,n independently, 
the probability that Wx = 0 is p(n). Given a property P of words, pr(P, n) is the 
probability that the random word of length n has property P. 

*This article is based on a lecture presented at the Eighteenth Australasian Conference on Com­
binatorial Mathematics and Combinatorial Computing. The research was supported by NSF Grant 
CCR-9006303. 
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One language \ve shall use to describe properties of words is a particular first­
order predicate calculus. It involves variables x, y, :; (with or without subscripts) that 
represent indices in a word. The variables y, Y1, Y2," '\ Z, Zl, :::2, ... , and unsubscripted 
.r are not necessary; they are only to improve the readability offormulas. The essential 
feature is that the language must have an infinite number of distinct variables. The 
building blocks of all formulas are the atomic formulas. In our language, we have 
;l' :::; y, .r < y. :r = y, and all similar formulas with other pairs of yariables. They have 
their usual meaning when :r and yare interpreted as indices in a word. The remaining 
atomic formulas are Z (.r) and all similar formulas with other variables. Z (x) meallS 
that IL'x = a \vhere /OJ' is the :rth symbol in the word w. 

Longer formulas are constructed from the atomic formulas by combining them 
\vith the boolean operators -, (not), V (or), 1\ (and), => (implies), and {:} (if and only 

and by binding variables to the quantifiers 'r/ (for all) and :3 (there exists). Again, 
we could dispense with many of these constructs; for example 1: = y is equivalent to 
:r :::; y 1\ Y :::; x. A thorough introduction to the syntax of first-order predicate calculi 
may be found in ~/Iendelson [21]. 

In general, the truth of a formula depends on the values assigned to its variables, 
e.g. :r :::; y obviously depends on the relationship between .7: and y. However, a 
formula in which all variables are bound to quantifiers is true or false for any given 
word. Such a formula is a sentence. \Ve will write w P= (J if the word w satisfies the 
sentence (J, i.e. (J is true for lo. For example, 

00011 P= :3x(-,Z(:r) 1\ 'r/y(Z(y) {:} Y < x)). 

That is, there exists x such that lOx = 1 and for all y, Wy = 0 if and only if y < 1;. 

The other language we will consider is a monadic second-order predicate calculus. 
In addition to all of the constructs of our first-order language, it has monadic second­
order variables X, Xl. X 2 , ... that represent sets of indices, and the atomic formulas 
:r i E Xj for all i, j = 1, 2, . . .. Also the quantifiers 'r/ and :3 may be applied to the 
second-order variables. The term monadic refers to the fact that the second-order 
variables are unary or one place. More general second-order languages have variables 
that represent relations of higher arity .. 

Given a class of structures or models and a language pertaining to the structures, 
a fundamental problem is to characterize those properties expressible in the language. 
A property is expressible if there is a sentence that is true for precisely those structures 
that have the property. Some simple examples of properties expressible in our first­
order language are the following: 

"All the symbols in 'Ware the same." 
('r/:r)(Z(:r)) V ('r/1:)(,Z(x)) 

"The first symbol in 'W is 1." 
(:3x)('r/y)(:r:::; y 1\ -,Z(:-r)) 

"The word w has a substring 00100." 
(Straightforward but tedious to write.) 
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On the other hand, there are many simple properties that cannot be expressed in 
this language, for example, ("w has an even number of 1 's." However, it is expressible 
in our monadic second-order language: 

::lX[ Vx('IIy(x':S; y) => (x EX {:} Z(x))) 
/\Vx'lly(y < x /\ 'IIz(y:S; z /\ z:S; x=> z = x V z y) 

=> (.T EX {:} (y E X /\ Z(x)) V E X /\ -,Z(:r:)))) 
/\'IIJ:(Vy(y:S; => x EX)] 

This sentence (J is true for a word w if and only if there exists a relation X C 
{I, ... , ItUI} such that for every index X, x E X if and only if the number of l's in 
Wl ... Wx is even, and Iwl EX. 

Yet there are still properties not expressible in our monadic second-order language, 
such as "w is a palindrome." We will not prove the inexpressibility of these properties 
here. There are several ways of doing this, one of which uses the Ehrenfeucht game 
that will be described in the next section. 

A major motivation for finding characterizations of expressible properties of words 
comes from computational complexity. The now well-developed theory of descriptive 
complexity has shown that many of the important complexity classes can be described 
as classes of properties expressible in various formal A complexity class 
C is a set of properties of words that are recognized by some class of automata. A 
formal language .( captures C if for every property PEe there is some (J E .( that 
expresses P. That is, P = {w : tv F= (J}. In addition, if for every sentence (J E L 
there is PEe such that (J expresses P, then P corresponds to L. 

One of the earliest examples of this kind of correspondence is due to Buchi [2] and 
Elgot [8]. It states that the class of properties recognizable by finite state automata 
(the class of regular languages) corresponds to our monadic second-order language. 
More recently, there have been characterizations of parallel complexity classes in 
terms of first-order languages. The class ACo of properties recognized by bounded­
depth parallel networks with a polynomial number of processors has been studied by 
Furst, Saxe, and Sipser [12], Ajtai [1] and many others. It corresponds to a first-order 
language like ours, but in addition to :S;, <, = it has other relational symbols with fixed 
interpretations. Likewise, the class of properties recognized in nondeterministic linear 
time is captured by a monadic second-order language with an additional relational 
symbol with a fixed interpretation (Lynch [19]). 1'-.lorc generally, the class 1V P of 
properties recognized in nondeterministic polynomial time corresponds to general 
monadic second-order languages (Fagin [9]). These and many other theorems of 
descriptive complexity theory are surveyed in Immerman [15]. A feature of virtually 
all of the languages that capture complexity classes is that they include the :s; relation. 
Thus, the languages in this paper are the common basis of the languages of descriptive 
complexity. 

One of the most widely studied characteristics of expressible properties is their 
asymptotic behavior, in particular whether they have a 0-1 law. The general form of 
a 0-1 law is as follows. There is a class of finite structures, a language pertinent to 
the structures, and for every natural number n, a probability measure defined on all 
structures of size n. For every sentence in the language, the asymptotic probability 
that the sentence is true for structures of size n approaches 0 or 1 as n gets large. The 
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first 0-llmvs \vere proven by Gaifman [13] for countable structures and independently 
by Glebskil et. al. [14] and Fagin [10] for random finite structures with uniform prob­
ability distributions. In random graph terminology, these would be random graphs 
with constant edge probabilities. Most of the 0-1 laws are relatively recent, however 
(see the survey by Compton [3]). A major motivation behind studying the asymptotic 
behaxior of expressible properties is the hope that the techniques being developed will 
illuminate or perhaps e\'en solve some of the important problems of computational 
complexity. So far, these problems, such as whether P is properly contained in .NP, 
hm'(' resisted solution by any means, but the area is still quite IW\V. At the conclusion 
of this paper, we \vill describe some other questions which may be easier but arc still 
important, and are potential applications of the tedmiques \ve \vill present, via the 
results of clpscriptive complexity. 

The class of \vords and our languages do not have a 0-1 law, even for constant 
p. In fact, the property that the first symbol in w is 1, which we saw was first-order 
expressible, has probability 1 - p. Hmvever, we will prove the following convergence 
law. The theorem covers the cases when p(n) converges to a value less than 1. For 
p( 11,) converging to 1, we replace p(n) by 1 - p( n) and use symmetry. 

Theorem 1.1 Let (J be a first-order sentence. Then there is a positive integer K 
depending on (J such that for any probability function p( n) that satisfies one of these 
conditions: 

(i) p(n) ~ n- 1 , 

(ii) n- l/k ~ p( n) ~ 11-1/ (1;:+1), 1 ~ k < K, 

(iii) n-1/ /\ «p(n) and limn-;oop(n) < 1, or 

(iv) p(n) rv en- 11k for some constant c and 1 ~ k ~ K, 

lim pr(w F (J, n) n--+oo 

exists. 

For our stronger monadic second-order language, we have a weaker convergence law. 

Theorem 1.2 Let (J be a monadic second-order sentence. Then there is a positive 
integer J( depending on (J such that for any probability function p( n) that satisfies 
one of the conditions listed in Theorem 1.1, there is a positive integer a such that for 
all natural n'umbers b < a, 

lim pr(w F (J, an + b) n->oo 

exists. 

That is, the sequence of natural numbers splits up into disjoint arithmetic subse­
quences, and the probability of (J converges on each subsequence. An immediate 
consequence of Theorem 1.2 is the following: 
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Corollary 1.3 Let (J be a monadic second-order sentence. Then there is a positive 
integer K depending on (J S'llch that for any probability function p( n) that satisfies 
one of the conditions listed in Theorem 1.1, the sequence {pr(w F (J,n)) is Cesaro­
summable, i. e. 

1 n-1 

lim - L pr(w F (J, n) 
n-->oo n i=Q 

ex'ists. 

Special cases of Theorem 1.1 have been proven in earlier publications. The case 
when p is constant was sketched in Lynch [18], although the key idea in the proof 
is due to A. Ehrenfeucht (personal communication). Note that this is an instance of 
Case (i) (when p = 0) or Case (iii) (when p > 0). Dolan [5] proved convergence (in 
fact 0-1 laws) for Case (i) and n- 1 ~ p(n) ~ 11,-1/2 (an instance of Case (ii)). Thus 
our Theorem 1.1 fills in the gaps between p that approach 0 very rapidly and p that 
are positive constants. Recently, using a different approach, Shelah and Spencer [22] 
have proven convergence laws for our first-order language when p(n) satisfies Case (i) 
or (ii), or 11, -€ ~ p( n) for any E > 0 (a su bcase of Case (iii)). They have also obtained 
0-1 laws for a closely related first-order language and the saIne cases of p( 11,). To our 
knowledge, Theorem 1.2 is completely new. 

We give some examples illustrating how the asymptotic probability of a sentence 
can be more complex than the simple convergence law for constant p and first-order 
sentences. The first example shows that the asymptotic probability of a first-order 
sentence can depend on the growth rate of p, and demonstrates the threshold phe­
nomenon typical of many graph theoretic properties. Let (J be 

3x3y(x < y 1\ 'v'z(:r ::; z 1\ z ::; y =} z = x V z = y) 1\ Z(x) 1\ Z(y)). 

That is, W F (J if and only if w has the substring 00. Then 

lim pr(w F (J, n) = 0 if p(n) ~ 11,-1/2, 
n-+oo 

lim pre W F (J, 11,) e- c2 if p( 11,) r.,,; cn -1/2 for some constant c, and 
n-+oo 

lim pr(w F (J, 71,) = 1 if p(n) » 11,-1/2. 
n-+oo 

Convergence on arithmetic subsequences is demonstrated by the monadic second­
order sentence 7 that holds if and only if the length of a word is even. This sentence 
is similar to our previous example of a sentence that holds if and only if the number 
of ones is even. Clearly pr( 7,211,) = 1 while pr( 7,211, + 1) O. 

The rest of the paper is organized as follows. In the next section, we describe 
a combinatorial game, a generalization of the well-known Ehrenfeucht game, that 
plays a central role in our proofs. We then prove the weak convergence law (Theorem 
1.2) for monadic second-order sentences. The proof also uses a generalization of 
Markov chains known as a Markov chain with variable transitions. Next we prove 
the convergence law (Theorem 1.1) for first-order sentences. vVe conclude with a 
summary of related results and problems for future study. 
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2 Ehrenfeucht Games 

The only structural feature of sentences that is used in our proofs is their depth. This 
is the maximum level of quantifier nesting. A more formal definition is as follows. A 
formula with no quantifiers has depth O. If 0:1 and 0:2 are formulas with depths d l and 
d2 respectively. then the depth of -'0:1 is dl. the depth of 0'1 V 02, 0l /\ 02, Cll =? 0.2, 

and 01 ¢} a2 is max(d11 d2), and the depth of 1 .3:ral, \1..:\01. and 3..:\0:[ is d l + l. 
Let k be fixed. \Ve define an equivalence relation = on the set of words. For an:y 

,vords l' and w. t' = U' if and only if they agree on all monadic second-order sentences 
of depth at most k, i.e. for any such selltence a, v F= a if and only if w F= a. Given 
an equivalence class C of =, we will put C F= a if w F= a for some w E C. 

There is a game-theoretic characterization of = due to Ehrenfeucht [7] that is 
particularly useful in proofs about expressibility It was originally formulated for 
first-order languages, but it extends without difficulty to second-order languages. \Ve 
,vill use hvo versions of the game that are tailored to the languages we are considering. 

Definition 2.1 Let v and w be two words. 

(i) The monadic second-order Ehrenfeucht game of k rounds on v and 'W is the 
following game of perfect information. In each round i = 1, ... , k Player I 
chooses either an index or a set of indices in one of the words, and Player II 
responds with the same kind of choice in the other word. That is, if Player 
I chooses an index in {I, ... , Ivl} (or {I, ... , Iw!}), then Player II chooses an 
index in {I, ... ,Iwl} (or {I, ... , Iv!}), and similarly if Player I chooses a set 
of indices. Let C i be the choice made (by either player) in {I, ... , Ivl}, and 
D i be the choice made (by the other player) in {I, ... 1 I wi}. Player II wins if 
Cil ... ,Ck and D I , ... , Dk ind'Llce the same substructures in v and 'I.e. That is, 
for 1 ::; i,j ::; k, 

• If Ci and Cj are indices, then Ci ::; Cj if and only if Di ::; Dj . 

• If Ci is an index, then v F= Z(Ci ) if and only 'if 'w F= Z(Dd· 

• If Ci is an index and Cj is a set of indices, then Ci E Cj if and only if 
Di E Dj . 

(ii) The first-order Ehrenfeucht game is the same, except that the choices made must 
always be indices. 

;,; ote that if Player I can win the first-order game, then he can win the monadic second­
order game a fortiori, or equivalently, if Player II can win the monadic second-order 
game, then he can win the fi!'st-order game. The fundamental fact about these games 
is the following theorem. 

Theorem 2.2 (Ehrenfeucht [7]) (i) Two words v and w agree on all monadic 
second-order sentences of depth at most k if and only if Player II can win the 
monadic second-order Ehrenfe'l.lcht game of k rounds. 

(i'i) Two words 11 and w agree on all first-order sentences of depth at most k if and 
only if Player II can win the first-order Ehrenfellcht game of k munds. 
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As mentioned above, the Ehrenfeucht game and Theorem 2.2 were originally stated 
only for first-order sentences. On the other hand, our versions are more restrictive 
because the game and Theorem apply to all types of models and first or second-order 
sentences. The proof of this theorem is not difficult. Interested readers may gain 
some insight into it by proving that Player II can win the Ehrenfeucht games of two 
rounds on 00011 and 000011 while Player I can "'lin the gaInes ofthree rounds. Thus, 
by the Theorem, there must be a first-order sentence of depth three that distinguishes 
the two words. One such example is 

3x[ 3y(y<:r/\Vz(y5:z)I\Vz(y5:z/\z5:x=;.z=xVz =y)) 
/\Vy(x < Y /\ Z(y) =;. Vz(x 5: z /\ z 5: y =;. z = x V z = y))] 

This sentence is true for v but false for tv. 

For the remainder of this section and all of the next, Ehrenfeucht game shall mean 
monadic second-order game. In Section 4, we will work with the first-order game. As 
before, k is fixed. Two easy consequences of Theorem 2.2 will play important roles 
in our proofs. 

Lemma~.3 There are only finitely many equivalence classes of =. 
Proof. Let v and tv be two words, i 5: k, GI , ... , Gi and D1 , ... , Di be the choices 
made in an Ehrenfeucht game of i rounds That Player II has won. Define an Ehrcn­
feucht game of k - i rounds numbered i + 1, ... , k played on (v, G 1, ... , C) and 
(w, D1 , . .. ,Di)' In each round j =i + 1, ... ,k, the players choose Cj in v and 

D j in tv. The rules are the same as before. We putJv, GI , ... , Gi ) i (w, D1,···, Di ) 

if Player II can win this game. By Theorem 2.2, 0= agrees with =. Thus we must 

show that there are only finitely many equivalence classes of 0=. In fact, we will show 
by decreasing induction on i that there are only finitely many equivalence classes of 

i. This is true for i = k because there are only finitely many isomorphism types on 
GI ,·· .,Gk . 

Assuming the result for i + 1 5: k, we show it for i. Given any choices GI ,··. ,Ci 

in v, the i class of (v, CI , ... , Gi ) is determined by the set of classes of 
( 'I), C 1, ... , Ci+ 1) where Ci+ I varies over all choices on v. If there are m equivalence 

classes of then 2m is an upper bound on the number of equivalence classes of i. 
o 

The second lemma shows that == is preserved by concatenation. 

Lemma 2.4 For any words v and'ID and s E {O, I}, if v == 'ID then vs == lUS. 

Proof. By Theorem 2.2, we need only show that the Ehrenfeucht game of k .rounds 
on vs and 'IDS is a win for Player II. Since v == 'ID, Player II can win the game on 11 

and tv, and this strategy gives a winning strategy for Player II on vs and tvs. For 
1 5: i5: k let Ci and Di be the choices made in the game on vs and tvS, and let 

Gi 

o 
Gin{l,···,lvl} 
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and similarly for D~. Using the notation of the previous lenlll1a, Player II should 
choose so that: 

• He can win the (7.: - i)-round game on (v, C~, ... ,CD and (lV, Di, ... ,DD. 

• Ci = Ivl + 1 if and only if Di = Iu'l + 1. 

• Il'l + 1 E C i if and only if Iwl + 1 E D i . 

That this can be done follows by an easy induction on I. After l.: rounds these 
conditions imply that Player II has ,yon the game on t'S andu)s. 0 

Although not needed for our proofs, a lllore general propositioll with essentially the 
same proof is: for any ,yords v, W, v', and w', if v == wand v' == w' then 'UP' == ww'. 

3 Proof of the Weak Convergence Law 

Since {w : U' 1= a} is the disjoint union of those equivalence classes C F= a, and there 
are finitely many of them (by Lemma 2.3), for every n, 

pr( w 1= a, n) = L pr(w E C, n). 
Cpu 

Thus our proof has been reduced to the following lemma. 

Lemma 3.1 There is a positive integer J( depending on k such that for any proba­
bility function p( n) that satisfies one of the conditions listed in Theorem 1.1 and any 
equivalence class C of ==, there is a positive integer a such that JOT all natural n'll1nbers 
b < a, 

lim pr(w E C, an + b) 
n~oo 

exists. 

Proof. First, let us consider constant p. \Ve construct a finite Nlarkov chain AI. Its 
states are the equivalence classes of ==. For any two states C1 and C2 and 'tV E C1 , if 
wO E C2 then there is a transition from C1 to C2 with probability p, and if wI E C2 

then there is such a transition with probability 1 - p. By Lemma 2.4, The transitions 
of AJ are well defined, i.e. they do not depend on the choice of 'w E C1. Note also 
that if k 2: 2, it cannot be that both wO and wI E C2 . 

j\1 is simply another way of describing the construction of a random word. Starting 
in the state which is the class containing the word of length 0, we successively choose 
symbols to add to the growing word. \I\'hen we stop, the word is in the equivalence 
class in which the chain has ended. 

Now when p{n) depends on n, the transitions of j\lJ are no longer constant, and 
we do not have a Markov chain in the usual sense; This is known as a Markov cha'in 
with variable transitions. More generally, let 2\,[(0) be a matrix of nonnegative real 
numbers whose row sums are 1, and E be a matrix of real nUDlbers whose row sums 
are O. Then for any real variable c, 

Pv1(c) = 2\J(0) + cE 
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is an instance of such a chain. The following theorem is a generalization of funda­
mental results about finite Markov chains (see for example Feller [11] or Kemeny and 
Snell [17]). 

Theorem 3.2 Let lVI(E) be a Markov chain with variable transitions. Then there is 
a positive integer 1< such that for any probability function p(n) that satisfies one of 
the conditions listed in Theorem 1.1, there is a stochastic matrix D and a pos'itive 
integer a s'l.lch that 

lim lVI(p(n))Un = D. 
n--+<Xl 

Further, D and a are the same for all functions p in any of the classes of types (i) -
(iii) . 

This theorem was proven by researchers in perturbation theory (see Kato [16]), using 
analytic and generating function techniques. A graph theoretic proof and algorithm 
for computing the limiting matrix D may be found in Lynch [20]. 

To finish the proof, for any b < a, limn--+oo M(p( n))b exists. Therefore 
limn --+ oo M(p(n) )un+b exists, and the Lemma follows. 0 

4 Proof of the Convergence Law 

Now we restrict attention to the first-order Ehrenfeucht galne, and v == w shall mean 
v and w agree on all first-order sentences of depth at most k. Let N(c) be the chain 
analogous to .L\I[(E), but whose states are the first-order equivalence classes. Lemmas 
2.3, 2.4, and 3.1 still apply, and the proof of Theorem 1.1 is finished if we show that 
a = 1 in Lemma 3.1. To do this, it suffices to show that from every state C, there is 
a state D such that with positive probability, D can be reached from C in some fixed 
number of steps, and D can reach itself in one step. Then every ergodic set contains a 
state that can be returned to in one step, and the chain N (E) is aperiodic, i.e. (l = 1. 
One more lemma will help prove this. 

Lemma 4.1 There is a positive integer m (depending on k) such that for any word 
W, w1m == w1m+l. 

Proof. We can take m = 2k - 1. Let Co Do = Iwl, C_1 Iwl + rn + 1, and 
D-l = Iwl +m+2. We will show by induction on i = 0, ... , k that Player II can play so 
that the following three conditions hold for (wI m, C_1, ... , C i ), (wlm+l, D-ll ... 1 D i ), 

and all h,j E {-I, ... , i}. 

(i) Ch ::; Cj if and only if Dh ::; Dj . 

(ii) If Ch ::; Iwl then Ch = Dh. 

(iii) If 0 ::; C j Ch < 2k
- i then Cj - Ch = Dj - Dh , and if 0 ::; Dj - Dh < 2k - i then 

Cj - Ch = D j - D h . 

These conditions obviously hold for i = 0. 
Assuming (i) - (iii) hold for i, we show how Player II can choose so that they 

hold for i + 1. If Player I chooses CHI (or Di+l) ::; Ilvl, then Player II simply 
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chooses so that C+l Di+l' Clearly (i) and (ii) hold. Also, (iii) holds because 
if 0 :s; Gj - C;+l < 2k- i - 1 and Cj > Ilul then 0 :s; Cj - Co < 2k- i - 1 < 2k-i, so 
Gj Co = D j - Do, implying Cj - Ci +1 = D j Di+l' 

If Player I chooses Ci +1 > Iwl (choosing D i+1 > Iwl is symmetric), let Ch :s; Ci +1 :s; 
Cj be the chosen indices closest to Ci +1. By (i) there is no chosen index between Dh 
and D j . If Cj - Ch < then Cj - Ch = D j D j , and (i) - (iii) hold if Player II 
chooses Di+1 = Dh + C+l - Ch. 

If Gj - Gh 2:: 2k- i then D j - Dh 2:: 2k-i, and there are three ca8es: Ci +1 - Cit < 
2k - i - 1 , Gj Gi+l < 2k - i - 1 , and neither of the previous two inequalities holds. In the 
first case, Player II cho08es Di+1 = Dh + Ci +1 Gh · Then Cj - C+l Cj - Gh -

(C+l - Gh ) > 2k - i - 2k - i - 1 = 2k - i - 1 • and similarly for D j - D i+1, and so (i) - (iii) 
hold. An analogous argument applies to the second case. In the; third case, Player 
II chooses Di+l = Dh + 2k - i - 1. Then D j - Di+1 2:: 2k - i - 2k - i - 1 = 2k - i - 1. This 
completes the induction step. 

Since Player II can choose so that (i) - (iii) hold for i = k, he can win the game. 
D 

To finish the proof of Theorem 1.1, take any state C and tv E C. By the last 
lemma, there is a state 1) such that wl m E 1) and wI m+l E V. Since pen) < 1 for 
sufficiently large TI, \vith positive probability, 1) can be reached from C inm steps 
and can return to itself in one step. 

5 Related Results and Problems 

If binary second-order variables are allo'wed, Theorem 1.2 fails. A consequence of 
some theorems in complexity theory (see Lynch [19]) i8 that any set S of natural 
numbers that is accepted in nondeterministic time n2 when encoded in unary notation 
is definable by a binary second-order sentence. This sentence will be true for all words 
whose length is in S and false otherwise. An example is the set of primes. \iVhether 
there is some eyen weaker convergence law is unknown. 

In a different direction, other papers have studied random relations of degree 
greater than one on an ordered set of indices. A word may be regarded as a unary 
relation on a linearly ordered set of indices. A random binary relation on the same set 
of indices is an ordered random graph. Again, there is no convergence law when the 
edge probability is constant (Compton, Henson, and Shelah [4]) or variable except in 
very restricted cases (Dolan and Lynch [6]). 

These negatiye results would seem to imply that the convergence laws of this 
paper cannot be extended to more powerful languages, in particular ones that capture 
important complexity classes. Hmvever, it is possible that the techniques of this article 
\vould be useful in the analysis of specific sentences. Potential applications are to the 
average case complexity and reliability of algorithms. 

Given an algorithm or program, using the methods of descriptive complexity, a 
sentence can be constructed such that the probability of the sentence equals the 
probability that the algorithm will halt within a certain number of steps or will enter 
certain states. The average complexity of the algorithm can be computed from the 
halting probability, and the reliability is given by the probability that the algorithm 
does not enter any undesirable states. 
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sentences, techniques related to those of this paper may be applicable to many sen-
tences that arise in practice. This does not seem an unreasonable hope since a similar 
philosophy underlies much of the work in automated theorem proving. There, the 
general problem is unsolvable, and researchers concentrate on finding methods that 
work on broad classes of sentences. 

\Ve conclude with two simple extensions of our languageb that capture complexity 
classes. They may be good candidates for the kind of analysis that was described. One 
is obtained from our first-order language by adding another binary relation symbol 
B with a fixed interpretation. For any indices x and y, B(:c, y) means that bit .1' in 
the binary representation of y is 1. This language corresponds to uniform ACo. It is 
a proper subclass of ACo, but it is still of significant interest and has been studied in 
numerous papers (again see Immerman [15]). The other language is an extension of 
our monadic second-order language. We add the ternary relation symbol A such that 
A(x, y, z) means x + y = z. As alluded to in the Introduction, this language captures 
the class of properties recognizable in nondeterministic linear time, which includes 
many properties of practical importance. 

References 

[1] M. Ajtai, 'Ei - formulae on finite structures, Ann. Applied and Pure Logic 24 
(1983), 1-48. 

[2] J. R. Biichi, Weak second-order arithmetic and finite automata, Z. Math. Logik 
Grundlagen Math. 6 (1960), 66-92. 

[3] K. J. Compton, 0-1 laws in logic and combinatorics, Pmc. 1987 NATO Adv. 
Study Inst. on Algorithms and Order, 1. Rival, ed., Reidel, Dordrecht (1988). 

[4] K. J. Compton, C.W. Henson, and S. Shelah, Nonconvergence, undecidabil­
ity, and intractability in asymptotic problems, Ann. PlLre and Applied Logic 36 
(1987), 207-224. 

[5] P. Dolan, A zero-one law for a random subset, Random Struct. Alg. 2 (1991), 
317-326. 

[6] P. Dolan and J. F. Lynch, The logic of ordered random. structures, to appear in 
Random Stnlct. Alg. 

[7] A. Ehrenfeucht, An application of games to the completeness problem for for­
malized theories, Fund. Math. 49 (1961), 129-141. 

[8) C. C. Elgot, Decision problems of finite-automata design and related arithmetics, 
Trans. AMS 98 (1961),21-51. 

[9) R. Fagin, Generalized first-order spectra and polynomial-time recognizable sets, 
in Complexity of Comp'lLtation, R. Karp, ed., SIAM-AMS Proc. 7, Am. Math. 
Soc., New York, 1974,43-73. 

155 



[10] ______ , Probabilities on finite models, J. Symbohc Logic 41 (1976),50-58. 

[ll] \V. Feller, An Introdllction to Probability Theory and 'its Application, 3rd ed., 
\Viley, New York (1967). 

[12) ~I. Furst, J. Saxe, and M. Sipser, Parity, circuits, and the polynomial-time hier­
archy, Math. Systems Theory 17 (1984), 13-27. 

[13] H. Gaifman, Concerning measures in first-order calculi. Israel.!. Math. 2 (1964), 
1-18. 

[14] Y. V. Glebskil, D. 1. Kogan, ~1. 1. Liogon'kil, and V. A. Talanov, Range and 
degree of realizability of formulas in the restricted predicate cakulus, Kibernetika 
(K'iev) 2 (1969),17-28; English translation, Cybernetics 5 (1972), 142-154. 

[15] N. Immerman, Expressibilityas a complexity measure: results and directions, 
Proc 2nd Stmctllre in Complexity Theory Conf. (1987), 194-202. 

[16] T. Kato, Pert'urbation Theory JOT Linear Opemtors, Springer-Verlag, Berlin 
(1966). 

[17] J. G. Kemeny and J. L. Snell, Finite Markov Chains, Springer-Verlag, New York­
Heidelberg (1976). 

[18] J. F. Lynch, Almost sure theories, Ann. Math. Logic 18 (1980),91-135. 

[19] The quantifier structure of sentences that characterize nondeter-
ministic time complexity, Computational Complexity 2 (1992), 40-66. 

[20] Threshold functions for Markov chains: a graph theoretic ap-
proach, submitted to Combinatorica. 

[21] E. Mendelson, IntTOdllction to Mathematical Logic, Wadsworth and Brooks/Cole, 
Monterey, California, 1987. 

[22} S. Shelah and J. Spencer, Random sparse unary predicates, submitted to Random 
Strtlct. Alg. 

{Received 4/8/92; revised 3/11/92} 

156 


