On the computational complexity of upper distance fractional domination

Johannes H. Hattingh
Department of Mathematics
Rand Afrikaans University
Johannesburg, South Africa
Michael A. Henning
Department of Mathematics and Applied Mathematics
University of Natal
Pietermaritzburg, South Africa
Jakobus L. Walters
Department of Mathematics
Rand Afrikaans University
Johannesburg, South Africa

Abstract

Let $n \geq 1$ be an integer and let $G=(V, E)$ be a graph. In this paper we study a nondiscrete generalization of $\mathrm{Y}_{n}(G)$, the maximum cardinality of a minimal n-dominating sef in G. A real-valued function $f: V \rightarrow[0,1]$ is n-dominating if for each $v \in V$, the sum of the values assigned to the vertices in the closed n-neighbourhood of $v, N_{n}[v]$, is at least one, i.e., $f\left(N_{n}[u]\right) \geq 1$. The wcight of an n-dominating function f is $f\left(V^{V}\right)$, the sum of all values $f(v)$ for $v \in V$, and $\Gamma_{n f}(G)$ is the maximum weight over all minimal n-dominating functions. We show that the decision problems corresponding to the problems of computing $\Gamma_{n}(G)$ and $\Gamma_{n f}(G)$ are $N P$-complete, generalising the result of Cheston, Fricke, Hedetniemi and Jacobs for the case $n=1$.

1 Introduction

Let $n \geq 1$ be an integer and $G=(V, E)$ a graph. A set $D \subseteq V$ is an n-dominating set if every vertex $v \in V-D$ is within distance n from some vertex of D. An n-dominating set

Australasian Journal of Combinatorics 7(1993), pp.133-144
is minimal if no proper subset is n-dominating. The n-domination number of G, denoted by $\gamma_{n}(G)$, is the minimum cardinality over all minimal n-dominating sets of G, while the upper n-domination number of G, denoted by $\Gamma_{n}(G)$, is the maximum cardinality over all minimal n-dominating sets of G. In this paper we consider a generalisation of $\Gamma_{n}(G)$.

Let $f: V \rightarrow[0,1]$. To simplify notation we will write $f(D)$ for $\sum_{v \in D} f(v)$ and we define the weight of f to be $\sum_{v \in V} f(v)=f(V)$. Given a vertex v its closed n-neighbourhood, denoted by $N_{n}[v]$, is the set containing v as well as all vertices within distance n from v. We say f is an n-dominating function if for each $v \in V$ we have that $f\left(N_{n}[v]\right) \geq 1$. Given an n-dominating function f, we say it is minimal n-dominating if it is minimal among all n-dominating functions under the usual partial ordering for real-valued functions (i.e., $f \leq g$ iff $f(v) \leq g(v)$ for all $v \in V)$. The concepts introduced in this paper generalises those of Cheston, Fricke, Hedetniemi and Jacobs (see (11).

The following result gencralises a result of Cheston, Fricke, Hedetniemi and Jacobs (see [1]). It will prove to be very useful.

Lemma 1 Let f be an n-dominating function for a graph $G=(V, E)$. Then f is minimalndominating if and only if whenever $f(v)>0$ there cxists some $u \in N_{n}[v]$ such that $f\left(N_{n}[u]\right)=$ 1.

Proof. Let $v \in V$ such that $f(v)>0$. Then $f\left(N_{n}[v]\right) \geq 1$. Let $N_{n}[v]=\left\{w_{1}, \ldots, w_{\ell}\right\}$. If $f\left(N_{n}\left[w_{i}\right]\right)=1$ for some i, we are done. Assume, therefore, that $f\left(N_{n}\left[w_{i}\right]\right)=1+\delta_{i}>1$ for $i=1,2, \ldots, \ell$. Suppose $v=w_{1}$. If $f(v)=a$, then $f\left(N_{n}[v]\right)=a+f\left(N_{n}(v)\right)=1+\delta_{1}$. Let $\delta=\min \left\{\delta_{1}, \ldots, \delta_{\ell}\right\}$. Note that $\delta>0$. Define $g: V \rightarrow[0,1]$ by $g(x)=f(x)$ if $x \neq v$ with $g(v)=\max \{0, a-\delta\}$, so that $g<f$. Note that $g\left(N_{n}[v]\right)=g\left(w_{1}\right)+\ldots+g\left(w_{\ell}\right) \geq$ $a-\delta+g\left(w_{2}\right)+\ldots+g\left(w_{\ell}\right)=1+\delta_{1}-\delta \geq 1$, while $g\left(N_{n}\left[w_{i}\right]\right)=f\left(N_{n}\left[w_{i}\right]-\{v\}\right)+g(v) \geq$ $f\left(N_{n}\left[w_{i}\right]-\{v\}\right)+a-\delta=f\left(N_{n}\left[w_{i}\right]\right)-\delta \geq f\left(N_{n}\left[w_{i}\right]\right)-\delta_{i}=1$ so that g is an n-dominating function of G with $g<f$, which contradicts the minimality of f.

For the converse, suppose there exists a g such that $g<f$ - let $v \in V$ such that $g(v)<f(v)$. Since $f(v)>0$, there exists $u \in N_{n}[v]$ such that $f\left(N_{n}[u]\right)=1$. But $g\left(N_{n}[u]\right)=$ $g\left(N_{n}[u]-\{v\}\right)+g(v)<f\left(N_{n}[u]-\{v\}\right)+f(v)=1$, which contradicts the fact that g is n-dominating.

For a graph G with vertex set $V=\left\{v_{1}, \ldots, v_{m}\right\}$ we can identify functions from V into R as n-tuples $\left(x_{1}, \ldots, x_{n}\right) \in \mathbf{R}^{m}$. Such a function is n-dominating if and only if $0 \leq x_{i} \leq 1$ and
$\sum_{v, \in N_{n}\left[v_{]}\right]} x_{j} \geq 1$ for $i=1, \ldots, m$. If the aforementioned two conditions hold, by Lemma 1, the notion of minimality is equivalent to $x_{i} \prod_{v_{j} \in N_{n}\left[v_{i}\right]}\left(1-\sum_{v_{k} \in N_{n}\left[v_{j}\right]} x_{k}\right)=0$ for $i=1, \ldots, m$.

For any graph G, the points $\left(x_{1}, \ldots, x_{m}\right) \in \mathbf{R}^{m}$ satisfying the aforementioned three conditions are precisely the set of all minimal n-dominating functions. Since this set is compact and the function $\left(x_{1}, \ldots, x_{m}\right) \rightarrow \sum x_{i}$ is continuous on R^{m}, there exists a minimal n dominating function of maximum weight. We denote the weight of such a function by $\Gamma_{n j}(G)$. Note that Γ, in this setting, is merely the weight obtained when the x_{i} are additionally constrainced to be 0 or 1. Clearly $\Gamma_{n}(G) \leq \Gamma_{n f}(G)$.

In Section 2 we give an example of a graph G for which $\Gamma_{n}(G)<\Gamma_{n f}(G)$. Section 3 considers the complexity of the decision problems corresponding to the problems of computing $\Gamma_{n}(G)$ and $\Gamma_{n f}\left(G^{\prime}\right)$. The construction used in the latter, gives a new proof of the NPcompleteness of upper fractional domination, originally settled by Cheston, Fricke, Hedetniemi and Jacobs in [1].

2 An example of $\Gamma_{n}(G)<\Gamma_{n f}(G)$

In this section we give an example of a graph such $\Gamma_{n}(G)<\Gamma_{n f}(G)$. We start by proving a useful lemma.

Let n and ℓ be positive integers and consider $P_{n+1} \times K_{\ell}$. Let $\left\{v \in V\left(P_{n+1} \times K_{\ell}\right) \mid \operatorname{deg}(v)=\right.$ $\ell\}=A \cup B$ where $\langle A\rangle \cong\cong K_{\ell}$. Let $A=\left\{a_{1}, \ldots, a_{\ell}\right\}, B=\left\{b_{1}, \ldots, b_{\ell}\right\}$ and let $P: b_{0}-a_{0}$ be a path of length $n-1$. If $b_{\ell+1} \notin V\left(P_{n+1} \times K_{\ell}\right) \cup V(P)$, construct the graph $H(n, \ell)=\left(V^{\prime}, E^{\prime}\right)$ as follows:
(a) $V^{\prime}=V\left(P_{n+1} \times K_{\ell}\right) \cup V(P) \cup\left\{b_{\epsilon+1}\right\}$
(b) $E^{\prime}=E\left(P_{n+1} \times K_{\ell}\right) \cup E(P) \cup\left\{a_{0} a_{i} \mid i=1, \ldots, \ell\right\} \cup\left\{b_{\ell+1} b_{i} \mid i=1, \ldots, \ell\right\}$. The graph $H(n, \ell)$ is depicted in Figure 1.

Lemma 2 Let $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)=H(n, \ell)$ for some positive integers n and $\ell \geq 2$. Let $G=$ (V, E) be a graph such that $G^{\prime} \subseteq G$ and $\operatorname{deg}_{G^{\prime}}(x)=\operatorname{deg} g_{G}(x)$ for all $x \in V^{\prime}-\left\{b_{0}\right\}$. Let f be a minimal n-dominating function of G.
(a) Suppose $f(B)>1$. Then $f\left(V^{\prime}\right) \leq \ell$. Moreover, if equality holds, then $f\left(b_{i}\right)=1$ for all $i=1, \ldots, \ell$, while $f\left(V^{\prime}-B\right)=0$. Furthermore, if f is constrained to be a $0-1$ function, then $f\left(V^{\prime}-B\right)=0$.

Figure 1: The graph $H(n, \ell)$
(b) If $f(B) \leq 1$, then $f\left(V^{\prime}\right) \leq 2$.

Proof. Let $\beta_{i}=f\left(b_{i}\right)$ for $i=1, \ldots, \ell+1, I=N_{n}\left[b_{\ell+1}\right]$ and $J=V^{\prime}-I$. Note that $f(I) \geq 1$ since f must n-dominate $b_{\ell+1}$.
(a) Suppose $f(B)>1$. Note that this implies that $\beta_{\ell+1}=0$, by the minimality of f. Assume that $\beta_{i}>0$. Then, by Lemma 1 , there exists $u \in N_{n}\left[b_{i}\right]$ such that $f\left(N_{n}[u]\right)=1$. Since $\sum_{j=1}^{\ell} \beta_{j}>1$, it follows that $u \notin I$, so that $u=a_{i}$. This implies that $f\left(V^{\prime}-\left(B-\left\{b_{i}\right\}\right)\right)=1$. We now have that $f\left(V^{\prime}\right)=f\left(V^{\prime}-\left(B-\left\{b_{i}\right\}\right)\right)+\sum_{j \in\{1, \ldots, \ell\}-\{i\}} \beta_{j} \leq \ell$ with equality occurring only if $\beta_{j}=1$ for $j \in\{1, \ldots, \ell\}-\{i\}$. If $\beta_{j}=1$ for some $j \in\{1, \ldots, \ell\}-\{i\}$, then, by symmetry, we have that $f\left(V^{\prime}-\left(B-\left\{b_{j}\right\}\right)\right)=1$. Hence $1=f\left(V^{\prime}-B\right)+\beta_{i}=f\left(V^{\prime}-B\right)+\beta_{j}$, so that $\beta_{i}=\beta_{j}$. Also $f\left(V^{\prime}-B\right)=0$.

Now let D be a minimal n-dominating set of G^{\prime} such that $D \cap B=\left\{b_{i}, b_{j}\right\}$. Since D is a minimal n-dominating set, it follows that $b_{t+1} \notin D$. Since $I \subseteq N_{n}\left[b_{i}\right] \cap N_{n}\left[b_{j}\right]$, it follows that $a_{i} \in N_{n}\left[b_{i}\right]-N_{n}\left[D-\left\{b_{i}\right\}\right]$ and $a_{j} \in N_{n}\left[b_{j}\right]-N_{n}\left[D-\left\{b_{j}\right\}\right]$. This implies that $\left(V^{\prime}-B\right) \cap D=\emptyset$. Hence, if f is a minimal n-dominating function such that $f(B)>1$, we
see that $f\left(V^{\prime \prime}-B\right)=0$.
(b) Suppose that $f(B) \leq 1$. We distinguish between two cases:

Case $1 f(I)>1$.
Since $f(I)>1$, the minimality of f implies that $\beta_{\ell+1}=0$.
Subcase $1.1 \beta_{i}>0$ for some $i \in\{1, \ldots, \ell\}$.
By the minimality of f, there exists $u \in N_{n}\left[b_{i}\right]$ such that $f\left(N_{n}[u]\right)=1$. Since $f(I)>1$, it follows that $u \notin I$, so that $u=a_{i}$. This implies that $1=f\left(V^{\prime}-\left(B-\left\{b_{i}\right\}\right)\right)=f\left(V^{\prime}-B\right)+\beta_{i}$ and so $f\left(V^{\prime}\right)=f\left(V^{\prime}-B\right)+f(B) \leq f\left(V^{\prime}-B\right)+\beta_{i}+f(B) \leq 1+1=2$.

Subcase $1.2 f(B)=0$.
Let $x \in V^{\prime}-B$ such that $f(x)>0$ and $d(x, B)$ is a minimum. By the minimality of f, there exists $u \in N_{n}[x]$ such that $f\left(N_{n}[u]\right)=1$. Since $f(I)>1$, it follows that $u \in J$. In this case $f\left(V^{\prime}\right) \leq f\left(N_{n}[u]\right)=1$.

Case $2 f(I) \leq 1$.
Since $b_{\ell+1}$ must be n-dominated by f, we have that $f(I) \geq 1$, so that $f(I)=1$. We show that $f(J) \leq 1$: Suppose that $f(J)>1$. If $f\left(a_{i}\right)>0$ for some i, there exists $u \in N_{n}\left[a_{i}\right]$ such that $f\left(N_{n}[u]\right)=1$. Since $f(J)>1$, it follows that $u \in I$, so that $f\left(N_{n}[u]\right) \geq f(I)+f\left(a_{i}\right)=$ $1+f\left(a_{i}\right)>1$, which is a contradiction. Hence $f(A)=0$. Now let $x \in J-A$ such that $f(x)>0$ and $d\left(x, a_{0}\right)$ is a minimum. Then there exists $u \in N_{n}[x]$ such that $f\left(N_{n}[u]\right)=1$. Since $f(J)>1$, it follows that $u \notin J$. If $u \in I$, then $f\left(N_{n}[u]\right) \geq f(I)+f(x)>1$, which is a contradiction, whence $u \notin V^{\prime}$. If S is th" vertex set of the $b_{0}-x$ subpath of $<J>$, then, since, $S \subseteq N_{n}[u]$, we have that $f(S) \leq 1$. Note that $f(J-S)=0$, so that $f(J) \leq 1$, which is a contradiction. We conclude that $f(J) \leq 1$ so that $f\left(V^{\prime}\right)=f(I)+f(J) \leq 2$.

We now show that we can construct a graph G for which $\Gamma_{n}(G)<\Gamma_{n f}(G)$.
Let $n \geq 1$ be an integer. Take four copies $H^{1}(n, 5), H^{2}(n, 5), H^{3}(n, 5), H^{4}(n, 5)$ of $H(n, 5)$ and superscript each vertex according to the copy it appears in. Add the edges $b_{0}^{1} b_{0}^{2}, b_{0}^{2} b_{0}^{3}, b_{0}^{3} b_{0}^{4}$ and $b_{0}^{4} b_{0}^{1}$ to obtain the graph G. The graph G is depicted in Figure 2.

Lemma 3 If G is the aformentioned graph, then $\Gamma_{n}(G)=14$.

Proof. Let $B^{i}=\left\{b_{j}^{i} \mid j=1, \ldots, 5\right\}$ for $i=1, \ldots, 4$ and let D be a minimal n-dominating set

Figure 2: A graph for which $\Gamma_{n}(G)<\Gamma_{n f}(G)$
of G. Suppose $\left|B^{i} \cap D\right|>1$ for $i=1,2,3$. By Lemma 2(a), it follows that $\left(V\left(H^{i}(n, 5)-B^{i}\right) \cap\right.$ $D=\emptyset$ for $i=1,2,3$, so that vertex a_{0}^{2} is not n-dominated by D. This shows that $\left|B^{i} \cap D\right| \leq 1$ for at least two of the graphs $H^{i}(n, 5)$. Lemma 2 now implies that $|D| \leq 2.2+2.5=14$. Figure 3 shows that $\Gamma_{n}(G)=14$ with the square vertices forming a minimal n-dominating set of cardinality 14 .

Figure 4 shows that $\Gamma_{n f}(G) \geq 14 \frac{2}{3}$. (Vertices not labelled are assumed to be labelled by 0.)

3 Complexity issues

In this section we show that the decision problems corresponding to the problems of computing $\Gamma_{n}(G)$ and $\Gamma_{n f}(G)$ are $N P$-complete. More specifically, these problems are: UPPER DISTANCE DOMINATION (UDD)
Instance: A graph G and integers k and n.
Question: Is $\Gamma_{n}(G) \geq k$?

Figure 3: $\Gamma_{n}(G)=14$

$a=1 / 3$
$b=2 / 3$

Figure 4: $\Gamma_{n f}(G) \geq 14 \frac{2}{3}$

UPPER DISTANCE FRACTIONAL DOMINATION (UDFD)

Instance: A graph G, integer n and rational number q.
Question: Is $\Gamma_{n j}(G) \geq q$?
We now show that $\Gamma_{n f}(G)$ is computable and is always a rational number. If f is a minimal n-dominating function, let $S_{f}=\left\{v \in V \mid f\left(N_{n}[v]\right)=1\right\}$. By Lemma 1 , if $f(v)>0$, then $v \in N_{n}\left[S_{f}\right]$, where $N_{n}[S]=\cup_{x \in S} N_{n}[x]$. Since f is n-dominating, for every vertex v, there is some $u \in N_{n}[v]$ with $f(u) \neq 0$. The previous two comments imply that we must have $N_{n}\left[N_{n}\left[S_{f}\right]\right]=V$. Let $\mathrm{S}=\left\{S \mid S \subseteq V \wedge N_{n}\left[N_{n}[S]\right]=V\right\}$. For each $S \in \mathrm{~S}$, we consider the problem of finding a minimal n-dominating function f of maximum weight with the additional constraint that $S_{f} \supseteq S$. This subproblem can be solved using linear programming:
maximize

$$
\sum_{v_{i} \in V} x_{i}
$$

subject to

$$
\begin{gathered}
0 \leq x_{i} \leq 1 \quad \forall v_{i} \in N_{n}[S] \\
x_{i}=0 \quad \forall v_{i} \in V-N_{n}[S] \\
\sum_{v_{j} \in N_{n}\left[v_{i}\right]} x_{j} \geq 1 \quad \forall v_{i} \in V-S \\
\sum_{v, \in N_{n}\left[v_{i}\right]} x_{j}=1 \quad \forall v_{i} \in S .
\end{gathered}
$$

Note that the conditions guarantee that a solution to this problem is n-dominating. Given that a solution is n-dominating, the second and fourth conditions guarantee minimal n-domination. Hence every solution to this problem is a minimal n-dominating function. Conversely, any minimal n-dominating function f having weight $\Gamma_{n f}$ is the solution to this linear programming problem for some set $S_{f} \in \mathbf{S}$.

Also, since each member of S defines a linear programming problem and $\Gamma_{n f}(G)$ is the largest among these subproblems, $\Gamma_{n j}(G)$ is a computable function. This number is rational since each problem involves only rational numbers. Since linear programming can be solved in polynomial time, it follows that $\mathrm{UDFD} \in N P$.

It is obvious that UDD $\in N P$, since we can, in polynomial time, guess at a subset of vertices, verify that it has cardinality at least k and then verify that it is a minimal n-dominating set. Thus we have:

Theorem 1 UDD and UDFD are in $N P$.

vertices

Figure 5: The graph $i j^{\prime}(n, \ell)$

Before proceeding further, we prove a lemma. Let n and ℓ be postive integers and consider $H^{\prime}(n, \ell)=P_{n+1} \times K_{\ell}$. Let $\left\{v \in V\left(H^{\prime}(n, \ell)\right) \mid \operatorname{deg}(v)=\ell\right\}=A \cup B$ where $<A>\cong\cong K_{\ell}$. Let $A=\left\{a_{1}, \ldots, a_{\ell}\right\}$ and $B=\left\{b_{1}, \ldots, b_{\ell}\right\}$. The graph $H^{\prime}(n, \ell)$ is depicted in Figure 5.

Lesinita is Lei $\vec{G}^{\prime}=\left(V^{\prime}, \bar{E}^{\prime}\right)=H^{\prime}(n, \ell)$ for some positive integers n and $\ell \geq 3$. Let $G=$ (V, E) be a graph such that $G^{\prime} \subseteq G$ and $\operatorname{deg}_{G^{\prime}}(x)=\operatorname{deg}_{G}(x)$ for all $x \in V^{\prime}-\left\{a_{1}, b_{1}\right\}$. Let f bc a minimal n-dominating function of G. Then $f\left(V^{\prime}\right) \leq \ell$. Moreover, if equality holds, then $f\left(a_{i}\right)=1$ for all $i=1, \ldots, \ell$ and $f\left(V^{\prime}-A\right)=0$ or $f\left(b_{i}\right)=1$ for all $i=1, \ldots, \ell$ and $f\left(V^{\prime}-B\right)=0$.

Proof. Let $\alpha_{i}=f\left(a_{i}\right)$ and $\beta_{i}=f\left(b_{i}\right)$ for $i=1, \ldots, \ell$ For $i=1, \ldots, \ell$, let $X_{i}=\{v \in$ $\left.V-V^{\prime} \mid d\left(v, a_{i}\right) \leq n\right\}$ and $Y_{i}=\left\{v \in V-V^{\prime} \mid d\left(v, b_{i}\right) \leq n\right\}$. Note that $X_{i}=X_{j}$ and $Y_{i}=Y_{j}$ for $i, j \in\{2, \ldots, \ell\}$, while $X_{i} \subseteq X_{1}$ and $Y_{i} \subseteq Y_{1}$ for $i=1, \ldots, \ell$.

Case $1 f(A)>1$.
In this case $\alpha_{i}>0$ for some $i \in\{2 \ldots, \ell\}$, since otherwise $\alpha_{1}>1$, which is a contradiction. Then, by Lemma 1 , there exists $u \in N_{n}\left[a_{i}\right]=V^{\prime}-\left(B-\left\{b_{i}\right\}\right) \cup X_{i}$ such that $f\left(N_{n}[u]\right)=1$.

Since $\sum_{j=1}^{f} \alpha_{j}>1$, it follows that $u \notin\left(V^{\prime}-B\right) \cup X_{i}$. Hence $u=b_{i}$, so that $f\left(V^{\prime}-\right.$ $\left.\left(A-\left\{a_{i}\right\}\right) \cup Y_{i}^{\prime}\right)=1$. Hence $f\left(V^{\prime}\right)=f\left(V^{\prime}-\left(A-\left\{a_{i}\right\}\right)+\sum_{j \in\{1, \ldots, \ell\}-\{i\}} \alpha_{j} \leq f\left(V^{\prime}-(A-\right.\right.$ $\left.\left.\left\{a_{i}\right\}\right) \cup Y_{i}\right)+\sum_{j \in\{1, \ldots, \ell\}-\{i\}} \alpha_{j} \leq 1+(\ell-1)=\ell$, with equality occurring only if $\alpha_{j}=1$ for $j \in\{1, \ldots, C\}-\{i\}$.

Now let $\alpha_{j}=1$ for some $j \in\{2, \ldots, \ell\}-\{i\}$. By symmetry, $f\left(V^{\prime}-\left(A-\left\{a_{j}\right\}\right) \cup Y_{j}\right)=1$. Hence $1=f\left(V^{\prime}-A \cup Y_{i}\right)+\alpha_{j}=f\left(V^{\prime}-A \cup Y_{i}\right)+\alpha_{i}$, so that $\alpha_{i}=\alpha_{j}$. Also $f\left(V^{\prime}-A \cup Y_{i}^{\prime}\right)=0$, so that $f\left(V^{\prime \prime}-A\right)=0$.

Case $2 f(B)>1$. This case is similar to case 1 .
By cases 1 and 2, we may assume that $f(A) \leq 1$ and $f(B) \leq 1$. Let $x \in I=V^{\prime}-A-B$ such that $f(x)>0$. Then there exists $u \in N_{n}[x] \subseteq V^{\prime} \cup X_{2} \cup \Psi_{2}$ with $f\left(N_{n}[u]\right)=1$. If $u \in I$, then, since $N_{n}[u] \supseteq V^{\prime}$, it follows that $f\left(V^{\prime \prime}\right) \leq 1$. If $u \in A \cup B$, say $u=a_{i}$, then $N_{n}[u] \supseteq$ $\left(V^{\prime}-B\right) \cup\left\{b_{i}\right\}$, whence $f\left(V^{\prime}\right)=f\left(V^{\prime}-B\right)+\int(B)=f\left(\left(V^{\prime}-B\right) \cup\left\{b_{i}\right\}\right)+\sum_{j \in\{1, \ldots, \ell\}-\{i\}} \beta_{j} \leq$ $f\left(N_{n}[u]\right)+f(B) \leq 1+1=2$. Hence we may assume that if $x \in I$ such that $f(x)>0$, there exists $u \in X_{2} \cup Y_{2}$ such that $f\left(N_{n}[u]\right)=1$. For $x \in I$ such that $f(x)>0$, let P_{x} be a shortest path from x to $\left\{u \in X_{2} \cup Y_{2} \mid f\left(N_{n}[u]\right)=1\right\}$; denote the other endpoint of P_{x} by $e(x)$. Let $S=\left\{x \in I \mid f(x)>0 \wedge a_{1} \in P_{x}\right\}$ and $T=\left\{x \in I \mid f(x)>0 \wedge b_{1} \in P_{x}\right\}$. Let $x^{\prime} \in S$ such that $d\left(x^{\prime}, a_{1}\right)=\max \left\{d\left(x, a_{1}\right) \mid x \in S\right\}$ and let $x^{\prime \prime} \in T$ such that $d\left(x^{\prime \prime}, b_{1}\right)=\max \left\{d\left(x, b_{1}\right) \mid x \in T\right\}$.

Case $1^{\prime} S \neq 0$ and $T=0$.
In this case, if $x \in I$ such that $d\left(x, a_{1}\right)>d\left(x^{\prime}, a_{1}\right)$, it follows that $f(x)=0$. Hence $f\left(V^{\prime}\right) \leq f\left(N_{n}\left[e\left(x^{\prime}\right)\right]\right)+f(B) \leq 1+1=2$.

Case $2^{\prime} S=\emptyset$ and $T \neq \emptyset$. This case is similar to Case 1^{\prime}.
Case $3^{\prime} S \neq \emptyset$ and $T \neq 0$.
In this case, if $x \in I$ such that $d\left(x, a_{1}\right)>d\left(x^{\prime}, a_{1}\right)$ and $d\left(x, b_{1}\right)>d\left(x^{\prime \prime}, b_{1}\right)$, it follows that $f(x)=0$. Hence $f\left(V^{\prime}\right) \leq f\left(N_{n}\left[c\left(x^{\prime}\right)\right]\right)+f\left(N_{n}\left[e\left(x^{\prime \prime}\right)\right]\right) \leq 1+1=2$.

We now establish a polynomial transformation from the well-known 3-satisfiability problem (3-SAT) to UDD, thus proving it $N P$-hard. Let I be an instance of 3 -SAT consisting of the set $\left\{C_{1}, C_{2}, \ldots, C_{t}\right\}$ of 3 -literal clauses involving the literals $x_{1}, \bar{x}_{1}, x_{2}, \bar{x}_{2}, \ldots, x_{m}, \bar{x}_{m}$. Associate with cach literal pair x_{i}, \bar{x}_{i} the graph $H^{\prime}(n, 3)$ depicted in Figure 5 - where the vertices a_{1} and b_{1} are renamed by $v x_{i}, v \bar{x}_{i}$ respectively. With each clause C_{s} associate the graph $H(n, 3)$ of Figure 1 - where the vertex b_{0} is renamed by c_{s}. We insert an edge between literal vertex $v x_{i}$ (or $v \bar{x}_{i}$) and clause vertex c_{s} if and only if $x_{i}\left(o \bar{x}_{i}\right)$ is a literal in clause

Figure 6: Graph for $\left(x_{1} \vee \bar{x}_{2} \vee x_{3}\right) \wedge\left(\bar{x}_{1} \vee x_{2} \vee \bar{x}_{3}\right)$
C_{s} - name the resulting graph G. The graph associated with $\left(x_{1} \vee \bar{x}_{2} \vee x_{3}\right\} \wedge\left(\bar{x}_{1} \vee x_{2} \vee \bar{x}_{3}\right)$ is depicted in Figure 6. Clearly, this construction can be accomplished in polynomial time.

Theorem 2 UDD is $N P$-complete.
Proof. Given an instance I of 3-SAT, we construct the graph G as above and set $k=3 t+3 \mathrm{~m}$. To show that this problem is $N P$-hard, it suffices to show that I is satisfiable if and only if G has a n-dominating set of cardinality at least k.

First, suppose g is a satifying truth assignment. We construct a minimal n-dominating set D of cardinality $3(t+m)$. For each $i=1, \ldots, m$, do the following. If $g\left(x_{i}\right)=T\left(g\left(\bar{x}_{i}\right)=T\right.$ respectively) place in D the vertex $v x_{i}\left(v \bar{x}_{i}\right.$ respectively) along with the other two vertices of the 3 -clique containing $v x_{i}$ ($v \bar{x}_{i}$ respectively). Next, for every clause associated subgraph, place the vertices b_{1}, b_{2}, b_{3} in D. It is straightforward to verify that this is a minimal n dominating set of cardinality $3(t+m)$.

Conversely, assume that D is a minimal n-dominating set of cardinality at least $3(t+m)$. We may think of D as a minimal n-dominating function. By Lemma 2 and Lemma 4, this
function can be no more than 3 on each $H(n, 3)$ and $H^{\prime}(n, 3)$ graph. Thercfore, it must be exactly 3 on each such graph, since there are $t+m$ such subgraphs. By Lemma 4 , for each $i=1, \ldots, m$, exactly one of $v x_{i}$ or $v \bar{x}_{i}$ is in D. We may define $g\left(x_{i}\right)=T$ iff $v x_{i} \in D$. By Lemma 2, each vertex c_{s} is not n-dominated by any vertex within a $H(n, 3)$ graph. Hence it must be n-dominated by a vertex corresponding to one of its variables, so it follows that g is a satisfying truth assignment.

Theorem 3 UDFD is NP-complete.

Proof. Given an instance I of 3 -SAT, we map I to (G, n, q) with G the graph described before the statement of Theorem 2 and q is the rational number $3(t+m)$. We may then argue that I is satisfiable iff G has a minimal n-dominating function of weight at least $3(t+m)$. The argument is almost identical to the one given for Theorem 2 .

In closing, we note that our construction gives a new proof of the $N P$-completeness of UDFD for the case $n=1$ established by Cheston, Fricke, Hedetniemi and Jacobs (see [1]).

Acknowledgement

The South African Foundation for Research Development is thanked for their financial support.

References

[1] G.A. Cheston, G. Fricke, S.T. Hedetniemi and D.P. Jacobs, On the computational complexity of upper fractional domination, Discrete Applied Math., 27 (1990), 195-207.

