Maximum Packings of K_{n} with Hexagons

Janie Ailor Kennedy
Department of Algebra, Combinatorics and Analysis
120 Mathematics Annex
Auburn University, Alabama 36849-5307
U.S.A.

Abstract

A complete solution of the maximum packing problem of K_{n} with hexagons is given.

1 Introduction

A hexagon system is a pair (S, H) where H is a collection of edge-disjoint hexagons which partition the edge set of the complete undirected graph K_{n} with vertex set S. The number $|S|=n$ is called the order of the hexagon system (S, H) and $|H|=$ $n(n-1) / 12$. In what follows we will denote the hexagon

Figure 1:
by any cyclic shift of (a, b, c, d, e, f) or (a, f, e, d, c, b).
Example 1.1 (Hexagon systems of orders 9 and 13):
(1) $S=\{1,2,3,4,5,6,7,8,9\} ; H_{1}=\{(1,2,3,6,7,8),(3,4,5,6,8,9)$,

$$
(1,3,7,4,6,9),(2,4,1,5,3,8),(2,9,4,8,5,7),(1,6,2,5,9,7)\}
$$

(2) $S=\{1,2,3,4,5,6,7,8,9,10,11,12,13\} ; H_{2}=\{(1,2,4,7,3,8)$, $(13,1,3,6,2,7),(12,13,2,5,1,6),(11,12,1,4,13,5),(10,11,13,3,12,4)$, $(9,10,12,2,11,3),(8,9,11,1,10,2),(7,8,10,13,9,1),(6,7,9,12,8,13)$, $(5,6,8,11,7,12),(4,5,7,10,6,11),(3,4,6,9,5,10),(2,3,5,8,4,9)\}$

It is well-known that the spectrum (that is, set of all n such that hexagon system of order n exists) is precisely the set of all $n \equiv 1$ or $9(\bmod 12)$. (See, for example $[2,3]$.)

If $n \not \equiv 1$ or $9(\bmod 12)$, we cannot construct a hexagon system of order n. However, it is of interest to see just how "close" we can come to a hexagon system. A packing of K_{n} with hexagons is a pair (S, P) where P is an edge-disjoint collection of hexagons. The difference between a hexagon system (S, H) and a packing (S, P) is that the hexagons in H partition the edge set of K_{n} whereas the only requirement on the hexagons in P is that they are edge-disjoint. (They may or may not partition the edge set of K_{n}.) If (S, P) is a packing of order n, then the set of uncovered edges L is called the leave. Hence $E\left(K_{n}\right)=E(P) \cup E(L)$ and $E(P) \cap E(L)=\emptyset$. If (S, P) is a packing and $|P|$ is as large as possible (so that $|L|$ is as small as possible), then P is called a maximum packing. Of course, a hexagon system is just a maximum packing with leave the empty set.

The object of this paper is to give a complete answer to each of the following questions. For a given n :
(1) What is the number of hexagons in a maximum packing? For example, when $n \equiv 1$ or $9(\bmod 12)$, the number of hexagons is $n(n-1) / 12$.
(2) How is a maximum packing achieved?
(3) What does the leave of a maximum packing look like?

We will divide our work into six parts: (i) $n \equiv 1$ or $9(\bmod 12)$ (hexagon systems), (ii) $n \equiv 0,2,6$, or $8(\bmod 12)$ (leave a 1 -factor), (iii) $n \equiv 3$ or $7(\bmod 12)$ (leave a 3 -cycle), (iv) $n \equiv 5(\bmod 12)$ (leave a 4 -cycle), (v) $n \equiv 11(\bmod 12)$ (leave a 7 -cycle or a not necessarily disjoint 3 -cycle and 4 -cycle), and (vi) $n \equiv 4$ or $10(\bmod 12)$ (leave a spanning subgraph with $(n+8) / 2$ edges, with all vertices of odd degree).

Not too surprisingly, we will begin with $n \equiv 1$ or $9(\bmod 12)$; i.e., with the construction of hexagon systems.

2 Hexagon Systems

Before plunging into the construction of hexagon systems we will need a theorem due to D . Sotteau, as well as the following definitions. A bipartite $2 k$-cycle system (X, Y, C) is a collection C of edge-disjoint $2 k$-cycles, which partition the edges of the complete undirected bipartite graph $K_{x, y}$ with vertex set $X \cup Y(X \cap Y=\emptyset)$. If $x=|X|$ and $y=|Y|$, then (X, Y, C) is said to have order (x, y). As one might expect, a bipartite hexagon system $(B H S)$ is a triple (X, Y, B) where B is a collection of edge-disjoint hexagons which partition the edge set of $K_{x, y}$.

Theorem 2.1 (D. Sotteau [4]) A bipartite $2 k$-cycle system of order (x, y) exists if and only if
(1) x and y are both even,
(2) $x \geq k$ and $y \geq k$, and
(3) $2 k \mid x y$.

The $n+12$ Construction. [1] Let $\left(K_{n}, H_{1}\right)$ be a hexagon system of order n based on $X \bigcup\{\infty\}$ and $\left(K_{13}, H_{2}\right)$ a hexagon system of order 13 based on $Y \bigcup\{\infty\}$. Since $|Y|=12$ and $n \equiv 1$ or $9(\bmod 12)$ implies $|X|$ is even, Sotteau's Theorem guarantees that a $B H S(X, Y, B)$ of order $(|X|,|Y|)$ exists. Define a collection of hexagons H on $X \cup Y \bigcup\{\infty\}$ by $H=H_{1} \cup H_{2} \cup B$. It is easily seen that $\left(K_{n+12}, H\right)$ is a hexagon system.

Theorem 2.2 (Folk Theorem) The spectrum for hexagon systems is precisely the set of all $n \equiv 1$ or $9(\bmod 12)$.

Proof: Beginning with the hexagon systems $\left(K_{9}, H_{1}\right)$ and (K_{13}, H_{2}) in Example 1.1, the $n+12$ Construction yields a hexagon system of every order $n \equiv 1$ or $9(\bmod$ 12).

3 Necessary Conditions for Maximum Packings

If n is odd, every vertex of K_{n} has even degree, and since each vertex in a hexagon is incident with 2 edges in that hexagon, we know the leave of a maximum packing, if any, must have each of its vertices incident with an even number of edges. As we have stated, if $n \equiv 1$ or $9(\bmod 12)$ a hexagon system exists and the leave is the empty set. If $n \equiv 3$ or $7(\bmod 12) \geq 7,6 \|\left[\binom{n}{2}-3\right]$, hence the smallest possible leave is a 3 -cycle. If $n \equiv 5(\bmod 12) \geq 17,6 \left\lvert\,\left[\binom{n}{2}-4\right]\right.$, hence the smallest possible leave is a 4 -cycle. If $n \equiv 11(\bmod 12), 6 \left\lvert\,\left[\binom{n}{2}-1\right]\right.$, but, as we have noted, each vertex in the leave must be incident with an even number of edges in the leave, so the smallest possible leave has 7 edges: a 7 -cycle, or a not necessarily disjoint 3 -cycle and 4-cycle.

If n is even, since each vertex of K_{n} has odd degree, it is easily seen that the leave must be a spanning subgraph with each vertex having odd degree. The smallest such graph is a 1 -factor and is the smallest possible leave for $n \equiv 0,2,6$, or $8(\bmod 12) \geq 6$, since $\left.6 \|\left[\begin{array}{l}n \\ 2\end{array}\right)-\frac{n}{2}\right]$ for such n. However, if $n \equiv 4$ or $10(\bmod 12), 6 \|\left[\binom{n}{2}-\frac{n}{2}-4\right]$, hence the smallest possible leave has $(n+8) / 2$ edges. The only possible degree sequences for such a leave are: $(9,1, \ldots, 1),(7,3,1, \ldots, 1),(5,5,1, \ldots, 1),(5,3,3,1, \ldots, 1)$, and $(3,3,3,3,1, \ldots, 1)$.

With this information, we can proceed with the examples necessary for our construction.

4 Small Cases of Maximum Packings

In this section, we give a collection of the necessary small examples of maximum packings for the general construction to follow.

Example 4.1 $\left(K_{6}, P\right): P=\{(1,3,2,5,4,6),(1,2,4,3,6,5)\}$;
$L=\{(1,4),(2,6),(3,5)\}$.
Example $4.2\left(K_{8}, P\right): P=\{(1,5,2,8,3,7),(1,8,4,7,6,2),(1,4,2,3,5,6)$, $(3,4,5,7,8,6)\} ; L=\{(1,3),(2,7),(4,6),(5,8)\}$.

Example $4.3\left(K_{7}, P\right): P=\{(1,2,3,4,6,7),(1,4,2,5,6,3),(1,6,2,7.3,5)\}$; $L=\{(4,5,7)\}$.

Example $4.4\left(K_{15}, P\right): P=\{(1,2,3,4,6,15),(1,4,2,5,6,3),(1,6,2,15,3,5)$, $(15,7,8,11,12,13),(8,9,10,11,13,14),(15,8,12,9,11,14),(7,9,15,10,8,13)$, $(7,14,9,13,10,12),(15,11,7,10,14,12),(1,7,2,8,3,9),(4,9,5,10,6,8)$, $(1,8,5,7,3,10),(2,9,6,7,4,10),(1,11,2,12,3,13),(4,13,5,14,6,12)$, $(1,12,5,11,3,14),(2,13,6,11,4,14)\} ; L=\{(4,5,15)\}$.

Example $4.5\left(K_{17}, P\right): P=\{(1,3,5,7,9,17),(1,5,6,7,8,16),(1,6,2,7,3,8)$, $(1,7,4,6,8,9),(2,17,16,15,14,13),(1,15,17,14,12,11),(1,14,16,13,15,12)$, $(4,5,8,10,11,9),(4,8,11,13,12,17),(2,4,10,6,12,5),(1,10,2,11,3,13)$, $(3,6,9,10,12,16),(2,8,12,7,10,14),(2,12,9,5,10,15),(2,9,14,11,7,16)$, $(3,17,5,16,9,15),(3,14,5,15,4,12),(4,14,8,15,6,16),(5,13,7,14,6,11)$, $(6,17,11,16,10,13),(4,11,15,7,17,13),(3,9,13,8,17,10)\} ; L=\{(1,2,3,4)\}$.

Example $4.6\left(K_{11}, P\right): P=\{(1,11,2,10,3,9),(1,10,9,11,7,8),(1,7,9,8,10,6)$, $(1,4,2,6,11,5),(2,5,3,6,4,9),(2,7,3,11,4,8),(3,4,10,7,5,8),(8,6,9,5,10,11)\}$; $L=\{(1,2,3),(4,5,6,7)\}$.

Example $4.7\left(K_{11}, P\right): P=\{(1,11,2,10,3,9),(2,9,10,11,8,7),(1,8,2,6,10,5)$, $(1,10,8,9,11,6),(1,4,11,5,7,3),(2,4,6,8,3,5),(4,7,11,3,6,9),(4,8,5,9,7,10)\}$; $L=\{(1,2,3,4,5,6,7)\}$.

Example $4.8\left(K_{11}, P\right)$: $P=\{(1,4,6,7,10,11),(1,5,11,9,10,8),(1,6,2,10,5,9)$, $(1,7,2,8,6,10),(2,4,8,5,7,9),(2,5,3,10,4,11),(3,7,4,9,8,11),(3,8,7,11,6,9)\}$; $L=\{(1,2,3),(3,4,5,6)\}$.

Example $4.9\left(K_{11}, P\right): P=\{(1,6,2,7,9,10),(1,7,3,8,9,11),(1,8,10,11,6,9)$, $(2,4,5,7,11,8),(2,5,8,7,6,10),(2,9,4,10,5,11),(3,10,7,4,8,6),(3,9,5,6,4,11)\}$; $L=\{(1,3,5),(1,2,3,4)\}$.

Example $4.10\left(K_{10}, P\right): P=\{(1,3,2,5,4,6),(1,2,4,3,6,5),(1,7,2,8,3,9)$, $(4,9,5,10,6,8),(1,8,5,7,3,10),(2,9,6,7,4,10)\} ; L=\{(1,4),(2,6),(3,5),(7,9),(8,9)$, $(9,10),(7,8,10)\}$.

Example $4.11\left(K_{10}, P\right): P=\{(1,4,2,3,6,8),,(1,5,2,6,7,9),(1,6,9,8,5,10)$, $(2,7,3,8,4,10),(2,9,4,6,10,8),(3,9,5,4,7,10)\} ; L=\{(1,2),(7,8) ;(5,6),(3,4)$, $(9,10),(1,3,5,7)\}$.

Example $4.12\left(K_{10}, P\right): P=\{(1,2,3,6,7,8),(3,4,5,6,8,9),(1,3,7,4,6,9)$, $(2,4,1,5,3,8),(2,9,4,8,5,7),(1,6,2,5,9,7)\} ; L=\{(1,10),(2,10),(3,10),(4,10)$, $(5,10),(6,10),(7,10),(8,10),(9,10)\}$.

Example $4.13\left(K_{10}, P\right): P=\{(1,3,6,4,5,7),(1,4,2,6,9,8),(1,5,9,7,8,10)$, $(1,6,10,7,3,9),(2,10,5,8,4,7),(2,8,3,10,4,9)\} ; L=\{(1,2),(3,4),(5,6),(6,7)$, $(6,8),(9,10),(2,3,5)\}$.
Example $4.14\left(K_{10}, P\right): P=\{(1,3,6,4,8,9),(1,4,7,10,8,6),(1,5,7,9,6,10)$, $(1,7,2,9,5,8),(2,6,7,3,10,5),(2,8,3,9,4,10)\} ; L=\{(1,2),(3,4),(5,6),(7,8)$, $(9,10),(3,5,4,2)\}$.
Example $4.15\left(K_{10}, P\right): P=\{(1,2,9,10,8,6),(1,3,2,8,9,5),(1,4,2,7,5,8)$, $(1,7,4,6,3,9),(2,5,3,4,9,6),(4,5,6,7,3,8)\} ; L=\{(1,10),(2,10),(3,10),(4,10)$, $(5,10),(6,10),(7,10),(7,8),(7,9)\}$.

Example $4.16\left(K_{10}, P\right): P=\{(1,2,10,9,8,4),(1,3,8,5,7,9),(1,6,2,3,4,7)$, $(1,8,7,2,4,10),(2,8,10,7,3,9),(3,6,4,9,5,10)\} ; L=\{(1,5),(2,5),(3,5),(4,5)$, $(5,6),(6,7),(6,8),(6,9),(6,10)\}$.
Example $4.17\left(K_{10}, P\right): P=\{(1,2,9,8,10,6),(1,3,2,8,6,9),(1,4,6,3,9,5)$, $(1,7,2,6,5,8),(2,4,7,3,10,5),(3,5,7,9,4,8)\} ; L=\{(1,10),(2,10),(9,10)$, $(4,10),(4,5),(3,4),(7,10),(7,8),(6,7)\}$.
Example $4.18\left(K_{10}, P\right): P=\{(1,2,3,10,4,9),(1,3,9,6,7,8),(1,4,8,5,3,7)$, $(1,5,2,8,3,6),(4,6,10,2,9,7),(2,6,8,9,5,7)\} ; L=\{(1,10),(7,10),(8,10),(9,10)$, $(5,10),(5,6),(4,5),(2,4),(3,4)\}$.

Example $4.19\left(K_{10}, P\right): P=\{(1,5,6,7,10,9),(1,7,4,8,5,10),(2,8,1,6,9,7)$, $(2,3,4,6,8,9),(8,10,3,9,5,7),(5,3,6,10,2,4)\} ; L=\{(1,2),(1,3),(1,4),(2,5),(2,6)$, $(3,7),(3,8),(4,9),(4,10)\}$.

Example $4.20\left(K_{10}, P\right): P=\{(1,3,2,10,8,9),(1,4,5,10,9,7),(1,5,2,7,8,6)$, $(2,8,1,10,6,4),(5,6,2,9,4,8),(3,9,5,7,4,10)\} ; L=\{(1,2),(3,4),(3,5),(3,6),(3,7)$, $(3,8),(6,7),(6,9),(7,10)\}$.
Example $4.21\left(K_{10}, P\right): P=\{(1,4,6,10,9,7),(1,5,7,10,4,9),(1,6,9,5,10,2)$,
$(1,8,2,6,3,10),(2,4,7,3,8,5),(2,9,3,4,8,7)\} ; L=\{(1,3),(2,3),(3,5),(4,5),(5,6)$, $(6,7),(6,8),(8,9),(8,10)\}$.

Example $4.22\left(K_{10}, P\right): P=\{(1,3,6,7,8,10),(1,4,6,10,7,5),(1,6,8,5,4,9)$,
$(1,7,2,9,3,8),(2,8,4,7,3,10),(2,6,9,5,10,4)\} ; L=\{(1,2),(5,6),(3,4)(7,9),(8,9)$, $(9,10),(2,3,5)\}$.
Example $4.23\left(K_{16}, P\right): P=\{(1,3,5,10,16,15),(1,4,6,13,14,11)$,
$(1,5,7,12,15,10),(1,16,12,10,9,14),(2,3,6,9,11,13),(2,4,7,10,13,9)$,
$(2,5,13,7,11,10),(1,6,2,7,3,8),(1,7,8,11,6,12),(3,13,1,9,7,14),(2,11,3,10,6,14)$,
$(3,15,2,16,8,12),(4,9,16,7,15,11),(4,10,14,8,13,15),(4,13,16,11,5,14)$, $(8,2,12,5,9,15),(16,3,9,12,4,5),(5,15,6,16,4,8)\} ; L=\{(1,2),(3,4),(5,6),(6,7)$, $(6,8),(8,9),(8,10),(11,12),(12,13),(12,14),(14,15),(14,16)\}$.

Example 4.24 $\left(K_{16}, P\right)$: $P=\{(1,3,5,8,9,16),(1,4,5,7,8,10),(2,3,14,4,9,15)$, $(1,5,16,15,6,11),(1,6,10,11,12,13),(1,7,12,14,11,8),(1,15,12,16,10,14)$, $(2,9,1,12,10,13),(2,4,6,12,8,14),(3,7,9,12,4,13),(3,8,13,11,15,10)$, $(2,7,16,8,15,5),(2,6,9,13,7,11),(3,16,2,10,4,11),(3,12,2,8,4,15)$, $(5,10,7,14,16,11),(6,13,5,14,9,3),(4,7,15,14,6,16)\} ; L=\{(1,2),(3,4),(5,6)$, $(5,9),(5,12),(6,7),(6,8),(9,10),(9,11),(13,14),(13,15),(13,16)\}$.

Example $4.25\left(K_{16}, P\right) P=\{(1,3,5,9,16,15),(1,4,2,16,12,14)$,
$(1,5,10,11,15,13),(1,6,2,15,4,7),(3,6,7,8,11,12),(3,7,9,15,12,10)$, $(4,5,11,7,12,6),(2,7,16,13,14,5),(2,9,1,16,6,11),(2,10,1,11,14,8)$, $(2,3,8,10,13,12),(3,13,2,14,6,15),(3,14,7,13,8,16),(4,11,3,9,6,13)$, $(10,16,11,13,5,15),(8,1,12,5,16,4),(8,15,7,10,4,12),(4,14,10,6,8,9)\}$;
$L=\{(1,2),(3,4),(5,6),(5,7),(5,8),(9,10),(9,11),(9,12),(9,13),(9,14),(14,15)$, $(14,16)\}$.

Example $4.26\left(K_{16}, P\right): P=\{(1,3,7,8,11,14),(1,4,2,5,16,13),(1,5,11,4,14,12)$, $(1,6,9,10,11,16),(1,7,2,16,14,10),(2,8,1,9,15,6),(3,5,12,15,11,9)$, $(2,3,6,4,10,13),(2,11,1,15,3,12),(2,9,8,12,4,15),(10,2,14,5,13,3)$,
$(7,11,3,14,9,12),(16,3,8,13,14,7),(4,5,15,10,6,8),(6,7,4,9,16,12)$,
$(7,15,8,14,6,13),(16,8,10,12,11,6),(10,7,9,13,4,16)\} ; L=\{(1,2),(3,4),(5,6)$,
$(5,7),(5,8),(5,9),(5,10),(11,13),(12,13),(13,15),(14,15),(15,16)\}$.
Example $4.27\left(K_{16}, P\right): P=\{(1,9,2,3,12,16),(1,10,16,14,6,15)$, $(1,11,14,15,12,13),(1,12,11,9,8,14),(2,4,3,16,5,8),(2,5,4,16,6,10)$, $(2,6,9,16,8,15),(2,7,9,15,10,13),(2,11,6,13,8,12),(3,14,2,16,7,13)$, $(3,11,16,13,15,5),(3,6,7,8,4,10),(4,7,3,8,6,12),(4,15,3,9,12,14)$, $(4,6,5,14,7,11),(9,4,13,5,10,14),(5,12,7,10,8,11),(5,7,15,11,13,9)\} ; L=\{(1,2)$, $(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(9,10),(10,11),(10,12),(13,14),(15,16)\}$.

Example $4.28\left(K_{16}, P\right): P=\{(1,7,2,3,4,8),(2,4,5,6,7,16),(1,9,10,12,16,13)$, $(1,10,2,5,13,15),(1,16,3,5,8,14),(1,11,3,15,14,12),(3,6,16,14,11,8)$, $(2,8,16,9,11,15),(2,6,11,10,14,9),(2,11,12,15,9,13),(4,6,8,12,2,14)$, $(4,9,6,14,7,13),(5,10,6,13,8,15),(5,12,6,15,4,16),(3,7,4,11,5,14)$, $(3,9,5,7,15,10),(8,9,12,3,13,10),(4,10,16,11,13,12)\} ; L=\{(1,3),(1,4),(1,5)$, $(1,6),(1,2),(12,7),(7,8),(7,9),(7,10),(7,11),(13,14),(15,16)\}$.

Example $4.29\left(K_{16}, P\right): P=\{(1,2,4,7,9,10),(1,4,5,6,8,9),(1,5,12,16,9,15)$,
$(1,6,2,5,15,12),(1,7,2,15,11,16),(1,8,2,12,14,13),(2,11,1,14,9,13)$,
$(3,5,9,12,13,8),(3,6,4,11,13,10),(3,9,2,10,8,12),(3,16,2,14,8,11)$,
$(6,15,3,7,10,14),(4,14,3,13,16,10),(4,9,6,10,15,8),(4,12,7,14,5,13)$,
$(5,16,4,15,7,11),(6,13,7,16,14,11),(5,10,12,6,16,8)\} ; L=\{(1,3),(2,3),(3,4)$,
$(5,7),(6,7),(7,8),(9,11),(10,11),(11,12),(13,15),(14,15),(15,16)\}$.

Example $4.30\left(K_{16}, P\right): P=\{(1,11,3,15,7,14),(1,7,8,10,11,12)$,
$(1,8,2,9,11,16),(1,9,3,4,5,15),(1,10,12,14,15,13),(2,3,10,7,11,14)$,
$(2,5,3,6,4,10),(2,4,7,6,8,12),(2,6,9,12,7,13),(2,7,16,14,8,15)$,
$(3,7,5,16,10,13),(3,8,16,9,15,12),(5,8,11,15,10,14),(4,11,6,13,5,12)$,
$(4,13,9,14,6,15),(4,16,12,6,5,9),(6,10,5,11,2,16)$,
$(4,14,3,16,13,8)\} ; L=\{(1,2),(1,3),(1,4),(1,5),(1,6),(7,9),(8,9),(9,10),(11,13)$, $(12,13),(13,14),(15,16)\}$.

5 Maximum Packings

We will construct maximum packings according to the leave.
$n \equiv 0,2,6$, or $8(\bmod 12)$. In this case the leave is a 1 -factor. The cases $n=6$ and $n=8$ are handled in Examples 4.1 and 4.2. So we can assume $n \geq 12$. The following construction will allow us to take care of the remaining cases.

The $n+6$ Construction. Let $\left(K_{n}, P_{1}\right)$ be a maximum packing of even order n based on X with leave L_{1} and $\left(K_{6}, P_{2}\right)$ the maximum packing of order 6 in Example 4.1 based on Y with leave L_{2}. Let (X, Y, B) be a $B H S$ of order $(|X|,|Y|)$. (See [4].) Then $\left(K_{n+6}, P_{1} \cup P_{2} \cup B\right)$ is a maximum packing of order $n+6$ based on $X \cup Y$ with leave $L_{1} \cup L_{2}$.

Theorem 5.1 If $n \equiv 0,2,6$, or $8(\bmod 12)$ the leave of a maximum packing is a 1 -factor and such a maximum packing exists for all admissible $n \geq 6$.
Proof: Starting with the examples of orders 6 and 8 , the $n+6$ Construction produces a maximum packing of every order $n \equiv 0,2,6$, or $8(\bmod 12) \geq 12$.
$n \equiv 3$ or $7(\bmod 12)$. In this case the leave is a 3 -cycle. The cases for $n=7$ and 15 are handled in Examples 4.3 and 4.4, respectively. We use the following obvious modification of the $n+12$ Construction.

The $n+12 M P$ Construction. Let $\left(K_{n}, P\right)$ be a maximum packing of odd order n based on $X \cup\{\infty\}$ with leave L and $\left(K_{13}, H\right)$ the hexagon system of order 13 in Example 1.1 based on $Y \cup\{\infty\}$. Let (X, Y, B) be a $B H S$ of order $(|X|,|Y|)$. Then $\left(K_{n+12}, P \cup H \cup B\right)$ is a maximum packing of order $n+12$ based on $X \cup Y \cup\{\infty\}$ with leave L.

Theorem 5.2 If $n \equiv 3$ or $7(\bmod 12)$ the leave of a maximum packing is a 3-cycle and such a maximum packing exists for admissible $n \geq 7$.
Proof: Beginning with the examples of orders 7 and 15 , the $n+12 M P$ Construction yields a maximum packing of every order $n \equiv 3$ or $7(\bmod 12) \geq 7$.
$n \equiv 5(\bmod 12)$. For this case the leave is a 4 -cycle. The case for $n=17$ is given in Example 4.5.

Theorem 5.3 If $n \equiv 5(\bmod 12) \geq 17$ the leave of a maximum packing is a 4 -cycle and such a maximum packing exists for admissible $n \geq 17$.

Proof: Beginning with the example of order 17, the $n+12 M P$ Construction yields a maximum packing of every order $n \equiv 5(\bmod 12) \geq 17$.
$n \equiv 11(\bmod 12)$. In this case the leave is a 7 -cycle or a not necessarily disjoint 3 -cycle and 4 -cycle. The 4 possible leaves are given in Examples 4.6, 4.7, 4.8, and 4.9 .

Theorem 5.4 If $n \equiv 11$ (mod 12) a maximum packing has leave a 7 -cycle or a not necessarily disjoint 3 -cycle and 4 -cycle.
Proof: Starting with any one of the maximum packings in Examples 4.6, 4.7, 4.8, and 4.9 the $n+12 M P$ Construction yields a maximum packing of every order $n \equiv 11$ $(\bmod 12)$.
$n \equiv 4$ or $10(\bmod 12)$. In this case the leave is a spanning subgraph of odd degree with $(n+8) / 2$ edges. If $n=10$ the only leaves are those in Examples 4.10 -4.22. If $n=16$ the leave is either one of the leaves from Examples 4.23-4.30 or one of the leaves from Examples $4.10-4.22$ plus a disjoint 1 -factor (the leave from $\left(K_{6}, P\right)$). For $n \geq 22$ the leave is one of those in Examples 4.10-4.30 plus a disjoint 1 -factor.

Theorem 5.5 If $n \equiv 4$ or 10 (mod 12) a maximum packing has one of the leaves in Examples $4.10-4.30$ plus a disjoint 1 -factor, and all 21 l eaves are possible for all' $n \equiv 4$ or $10(\bmod 12) \geq 16$. For $n=10$, the only possible leaves are those in Examples 4.10-4.22.

Proof: Beginning with the packings in Examples 4.10-4.30, the $n+6$ Construction yields all maximum packings of every order $n \equiv 4$ or $10(\bmod 12) \geq 22$.

6 Summary

We summarize the results in the following easy-to-read table.

K_{n}	Number of Hexagons in a Maximum Packing	Leave
$\begin{gathered} \text { all } \\ n \equiv 1 \text { or } 9(\bmod 12) \end{gathered}$	$n(n-1) / 12$	\emptyset
$\begin{aligned} & n \equiv 0,2,6, \text { or } 8(\bmod 12) \\ & \geq 6 \end{aligned}$	$n(n-2) / 12$	1-factor
$\begin{gathered} \text { all } \\ n \equiv 3 \text { or } 7(\bmod 12) \end{gathered}$	$\left(n^{2}-n-6\right) / 12$	3 -cycle
$n \equiv 5(\operatorname{all} 12) \geq 17$	$\left(n^{2}-n-8\right) / 12$	4 -cycle
$\stackrel{\text { all }}{n \equiv 11(\bmod 12)}$	$\left(n^{2}-n-14\right) / 12$	4 leaves are possible: a 7-cycle or the union of a (not necessarily disjoint) 3 -cycle and 4 -cycle
$\begin{gathered} \text { all } \\ n \equiv 4 \text { or } 10(\bmod 12) \\ \geq 10 \end{gathered}$	$\left(n^{2}-2 n-8\right) / 12$	spanning subgraph of odd degree with $(n+8) / 2$ edges:
$n=10$		leaves in Examples $4.10-4.21$
$\begin{gathered} n \equiv 4 \text { or } 10(\bmod 12) \\ \geq 16 \end{gathered}$		the 13 leaves for $n=10$ plus a disjoint 1 -factor and the leaves in Examples 4.23-4.30 plus a disjoint 1-factor when $n \geq 22$

Acknowledgement

The author would like to thank Professor Ebad Mahmoodian of Sharif University of Technology for supplying several of the examples in section 4 .

References

[1] C. C. Lindner, C. A. Rodger, Decompositions into cycles II: cycle systems, Contemporary design theory: a collection of surveys, (John Wiley and Sons), eds. J. H. Dinitz and D. R. Stinson, (1992), 325-369.
[2] A. Rosa, On cyclic decompositions of the complete graph into ($4 m+2$)-gons. Mat.-Fyz. Cas, 16 (1966), 349-352.
[3] A. Rosa and C. Huang, Another class of balanced graph designs: balanced circuit designs, Discrete Math. 12 (1975), 269-293.
[4] D. Sotteau, Decompositions of $K_{m, n}\left(K_{m, n}^{*}\right)$ into cycles (circuits) of length $2 k, \mathrm{~J}$. Combin. Th. (B), 30 (1981), 75-81.

