Maximum Packings of K_n with Hexagons

Janie Ailor Kennedy

Department of Algebra, Combinatorics and Analysis 120 Mathematics Annex Auburn University, Alabama 36849-5307 U.S.A.

Abstract

A complete solution of the maximum packing problem of K_n with hexagons is given.

1 Introduction

A hexagon system is a pair (S, H) where H is a collection of edge-disjoint hexagons which partition the edge set of the complete undirected graph K_n with vertex set S. The number |S| = n is called the *order* of the hexagon system (S, H) and |H| = n(n-1)/12. In what follows we will denote the hexagon

Figure 1:

by any cyclic shift of (a, b, c, d, e, f) or (a, f, e, d, c, b).

Example 1.1 (Hexagon systems of orders 9 and 13):

- (1) $S = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}; H_1 = \{(1, 2, 3, 6, 7, 8), (3, 4, 5, 6, 8, 9), (1, 3, 7, 4, 6, 9), (2, 4, 1, 5, 3, 8), (2, 9, 4, 8, 5, 7), (1, 6, 2, 5, 9, 7)\}$
- $\begin{array}{rcl} (2) & S &=& \{1,2,3,4,5,6,7,8,9,10,11,12,13\}; H_2 = \{(1,2,4,7,3,8), \\ && (13,1,3,6,2,7), (12,13,2,5,1,6), (11,12,1,4,13,5), (10,11,13,3,12,4), \\ && (9,10,12,2,11,3), (8,9,11,1,10,2), (7,8,10,13,9,1), (6,7,9,12,8,13), \\ && (5,6,8,11,7,12), (4,5,7,10,6,11), (3,4,6,9,5,10), (2,3,5,8,4,9)\} \end{array}$

Australasian Journal of Combinatorics 7(1993), pp.101-110

It is well-known that the spectrum (that is, set of all n such that hexagon system of order n exists) is precisely the set of all $n \equiv 1$ or 9 (mod 12). (See, for example [2, 3].)

If $n \not\equiv 1$ or 9 (mod 12), we cannot construct a hexagon system of order *n*. However, it is of interest to see just how "close" we can come to a hexagon system. A packing of K_n with hexagons is a pair (S, P) where *P* is an edge-disjoint collection of hexagons. The difference between a hexagon system (S, H) and a packing (S, P) is that the hexagons in *H* partition the edge set of K_n whereas the only requirement on the hexagons in *P* is that they are edge-disjoint. (They may or may not partition the edge set of K_n .) If (S, P) is a packing of order *n*, then the set of uncovered edges *L* is called the *leave*. Hence $E(K_n) = E(P) \cup E(L)$ and $E(P) \cap E(L) = \emptyset$. If (S, P) is a packing and |P| is as large as possible (so that |L| is as small as possible), then *P* is called a maximum packing. Of course, a hexagon system is just a maximum packing with leave the empty set.

The object of this paper is to give a *complete answer* to each of the following questions. For a given n:

- (1) What is the number of hexagons in a maximum packing? For example, when $n \equiv 1$ or 9 (mod 12), the number of hexagons is n(n-1)/12.
- (2) How is a maximum packing achieved?
- (3) What does the leave of a maximum packing look like?

We will divide our work into six parts: (i) $n \equiv 1$ or 9 (mod 12) (hexagon systems), (ii) $n \equiv 0, 2, 6$, or 8 (mod 12) (leave a 1-factor), (iii) $n \equiv 3$ or 7 (mod 12) (leave a 3-cycle), (iv) $n \equiv 5 \pmod{12}$ (leave a 4-cycle), (v) $n \equiv 11 \pmod{12}$ (leave a 7-cycle or a not necessarily disjoint 3-cycle and 4-cycle), and (vi) $n \equiv 4$ or 10 (mod 12) (leave a spanning subgraph with (n + 8)/2 edges, with all vertices of odd degree).

Not too surprisingly, we will begin with $n \equiv 1$ or 9 (mod 12); i.e., with the construction of hexagon systems.

2 Hexagon Systems

Before plunging into the construction of hexagon systems we will need a theorem due to D. Sotteau, as well as the following definitions. A *bipartite 2k-cycle system* (X, Y, C) is a collection C of edge-disjoint 2k-cycles, which partition the edges of the complete undirected bipartite graph $K_{x,y}$ with vertex set $X \cup Y$ $(X \cap Y = \emptyset)$. If x = |X| and y = |Y|, then (X, Y, C) is said to have order (x, y). As one might expect, a *bipartite hexagon system* (BHS) is a triple (X, Y, B) where B is a collection of edge-disjoint hexagons which partition the edge set of $K_{x,y}$.

Theorem 2.1 (D. Sotteau [4]) A bipartite 2k-cycle system of order (x, y) exists if and only if

(1) x and y are both even,

Born Brittler average **102** mars 1. Name segments of the actual

- (2) $x \geq k$ and $y \geq k$, and
- (3) 2k | xy.

The n+12 Construction. [1] Let (K_n, H_1) be a hexagon system of order n based on $X \cup \{\infty\}$ and (K_{13}, H_2) a hexagon system of order 13 based on $Y \cup \{\infty\}$. Since |Y| = 12 and $n \equiv 1$ or 9 (mod 12) implies |X| is even, Sotteau's Theorem guarantees that a BHS (X, Y, B) of order (|X|, |Y|) exists. Define a collection of hexagons Hon $X \cup Y \cup \{\infty\}$ by $H = H_1 \cup H_2 \cup B$. It is easily seen that (K_{n+12}, H) is a hexagon system.

Theorem 2.2 (Folk Theorem) The spectrum for hexagon systems is precisely the set of all $n \equiv 1$ or 9 (mod 12).

Proof: Beginning with the hexagon systems (K_9, H_1) and (K_{13}, H_2) in Example 1.1, the n + 12 Construction yields a hexagon system of every order $n \equiv 1$ or 9 (mod 12).

3 Necessary Conditions for Maximum Packings

If n is odd, every vertex of K_n has even degree, and since each vertex in a hexagon is incident with 2 edges in that hexagon, we know the leave of a maximum packing, if any, must have each of its vertices incident with an even number of edges. As we have stated, if $n \equiv 1$ or 9 (mod 12) a hexagon system exists and the leave is the empty set. If $n \equiv 3$ or 7 (mod 12) \geq 7, $6|[\binom{n}{2} - 3]$, hence the smallest possible leave is a 3-cycle. If $n \equiv 5 \pmod{12} \geq 17$, $6|[\binom{n}{2} - 4]$, hence the smallest possible leave is a 4-cycle. If $n \equiv 11 \pmod{12}$, $6|[\binom{n}{2} - 1]$, but, as we have noted, each vertex in the leave must be incident with an even number of edges in the leave, so the smallest possible leave has 7 edges: a 7-cycle, or a not necessarily disjoint 3-cycle and 4-cycle.

If n is even, since each vertex of K_n has odd degree, it is easily seen that the leave must be a spanning subgraph with each vertex having odd degree. The smallest such graph is a 1-factor and is the smallest possible leave for $n \equiv 0, 2, 6$, or $8 \pmod{12} \ge 6$, since $6|\binom{n}{2} - \frac{n}{2}|$ for such n. However, if $n \equiv 4$ or 10 (mod 12), $6|\binom{n}{2} - \frac{n}{2} - 4|$, hence the smallest possible leave has (n + 8)/2 edges. The only possible degree sequences for such a leave are: $(9, 1, \ldots, 1), (7, 3, 1, \ldots, 1), (5, 5, 1, \ldots, 1), (5, 3, 3, 1, \ldots, 1)$, and $(3, 3, 3, 3, 1, \ldots, 1)$.

With this information, we can proceed with the examples necessary for our construction.

4 Small Cases of Maximum Packings

In this section, we give a collection of the necessary small examples of maximum packings for the general construction to follow.

Example 4.1 (K_6, P) : $P = \{(1, 3, 2, 5, 4, 6), (1, 2, 4, 3, 6, 5)\};$ $L = \{(1, 4), (2, 6), (3, 5)\}.$

Example 4.2 (K_8, P) : $P = \{(1, 5, 2, 8, 3, 7), (1, 8, 4, 7, 6, 2), (1, 4, 2, 3, 5, 6), (3, 4, 5, 7, 8, 6)\}; L = \{(1, 3), (2, 7), (4, 6), (5, 8)\}.$

Example 4.3 (K_7, P) : $P = \{(1, 2, 3, 4, 6, 7), (1, 4, 2, 5, 6, 3), (1, 6, 2, 7, 3, 5)\};$ $L = \{(4, 5, 7)\}.$

Example 4.4 (K_{15} , P): $P = \{(1, 2, 3, 4, 6, 15), (1, 4, 2, 5, 6, 3), (1, 6, 2, 15, 3, 5), (15, 7, 8, 11, 12, 13), (8, 9, 10, 11, 13, 14), (15, 8, 12, 9, 11, 14), (7, 9, 15, 10, 8, 13), (7, 14, 9, 13, 10, 12), (15, 11, 7, 10, 14, 12), (1, 7, 2, 8, 3, 9), (4, 9, 5, 10, 6, 8), (1, 8, 5, 7, 3, 10), (2, 9, 6, 7, 4, 10), (1, 11, 2, 12, 3, 13), (4, 13, 5, 14, 6, 12), (1, 12, 5, 11, 3, 14), (2, 13, 6, 11, 4, 14)\}; L = \{(4, 5, 15)\}.$

Example 4.5 (K_{17}, P) : $P = \{(1, 3, 5, 7, 9, 17), (1, 5, 6, 7, 8, 16), (1, 6, 2, 7, 3, 8), (1, 7, 4, 6, 8, 9), (2, 17, 16, 15, 14, 13), (1, 15, 17, 14, 12, 11), (1, 14, 16, 13, 15, 12), (4, 5, 8, 10, 11, 9), (4, 8, 11, 13, 12, 17), (2, 4, 10, 6, 12, 5), (1, 10, 2, 11, 3, 13), (3, 6, 9, 10, 12, 16), (2, 8, 12, 7, 10, 14), (2, 12, 9, 5, 10, 15), (2, 9, 14, 11, 7, 16), (3, 17, 5, 16, 9, 15), (3, 14, 5, 15, 4, 12), (4, 14, 8, 15, 6, 16), (5, 13, 7, 14, 6, 11), (6, 17, 11, 16, 10, 13), (4, 11, 15, 7, 17, 13), (3, 9, 13, 8, 17, 10)\}; L = \{(1, 2, 3, 4)\}.$

Example 4.6 (K_{11}, P) : $P = \{(1, 11, 2, 10, 3, 9), (1, 10, 9, 11, 7, 8), (1, 7, 9, 8, 10, 6), (1, 4, 2, 6, 11, 5), (2, 5, 3, 6, 4, 9), (2, 7, 3, 11, 4, 8), (3, 4, 10, 7, 5, 8), (8, 6, 9, 5, 10, 11)\};$ $L = \{(1, 2, 3), (4, 5, 6, 7)\}.$

Example 4.7 (K_{11}, P) : $P = \{(1, 11, 2, 10, 3, 9), (2, 9, 10, 11, 8, 7), (1, 8, 2, 6, 10, 5), (1, 10, 8, 9, 11, 6), (1, 4, 11, 5, 7, 3), (2, 4, 6, 8, 3, 5), (4, 7, 11, 3, 6, 9), (4, 8, 5, 9, 7, 10)\};$ $L = \{(1, 2, 3, 4, 5, 6, 7)\}.$

Example 4.8 (K_{11}, P) : $P = \{(1, 4, 6, 7, 10, 11), (1, 5, 11, 9, 10, 8), (1, 6, 2, 10, 5, 9), (1, 7, 2, 8, 6, 10), (2, 4, 8, 5, 7, 9), (2, 5, 3, 10, 4, 11), (3, 7, 4, 9, 8, 11), (3, 8, 7, 11, 6, 9)\};$ $L = \{(1, 2, 3), (3, 4, 5, 6)\}.$

Example 4.9 (K_{11}, P) : $P = \{(1, 6, 2, 7, 9, 10), (1, 7, 3, 8, 9, 11), (1, 8, 10, 11, 6, 9), (2, 4, 5, 7, 11, 8), (2, 5, 8, 7, 6, 10), (2, 9, 4, 10, 5, 11), (3, 10, 7, 4, 8, 6), (3, 9, 5, 6, 4, 11)\};$ $L = \{(1, 3, 5), (1, 2, 3, 4)\}.$

Example 4.10 (K_{10}, P) : $P = \{(1, 3, 2, 5, 4, 6), (1, 2, 4, 3, 6, 5), (1, 7, 2, 8, 3, 9), (4, 9, 5, 10, 6, 8), (1, 8, 5, 7, 3, 10), (2, 9, 6, 7, 4, 10)\}; L = \{(1, 4), (2, 6), (3, 5), (7, 9), (8, 9), (9, 10), (7, 8, 10)\}.$

Example 4.11 (K_{10}, P) : $P = \{(1, 4, 2, 3, 6, 8,), (1, 5, 2, 6, 7, 9), (1, 6, 9, 8, 5, 10), (2, 7, 3, 8, 4, 10), (2, 9, 4, 6, 10, 8), (3, 9, 5, 4, 7, 10)\}; L = \{(1, 2), (7, 8), (5, 6), (3, 4), (9, 10), (1, 3, 5, 7)\}.$

Example 4.12 (K_{10}, P) : $P = \{(1, 2, 3, 6, 7, 8), (3, 4, 5, 6, 8, 9), (1, 3, 7, 4, 6, 9), (2, 4, 1, 5, 3, 8), (2, 9, 4, 8, 5, 7), (1, 6, 2, 5, 9, 7)\}; L = \{(1, 10), (2, 10), (3, 10), (4, 10), (5, 10), (6, 10), (7, 10), (8, 10), (9, 10)\}.$

Example 4.13 (K_{10}, P) : $P = \{(1, 3, 6, 4, 5, 7), (1, 4, 2, 6, 9, 8), (1, 5, 9, 7, 8, 10), (1, 6, 10, 7, 3, 9), (2, 10, 5, 8, 4, 7), (2, 8, 3, 10, 4, 9)\}; L = \{(1, 2), (3, 4), (5, 6), (6, 7), (6, 8), (9, 10), (2, 3, 5)\}.$

Example 4.14 (K_{10}, P) : $P = \{(1, 3, 6, 4, 8, 9), (1, 4, 7, 10, 8, 6), (1, 5, 7, 9, 6, 10), (1, 7, 2, 9, 5, 8), (2, 6, 7, 3, 10, 5), (2, 8, 3, 9, 4, 10)\}; L = \{(1, 2), (3, 4), (5, 6), (7, 8), (9, 10), (3, 5, 4, 2)\}.$

Example 4.15 (K_{10}, P) : $P = \{(1, 2, 9, 10, 8, 6), (1, 3, 2, 8, 9, 5), (1, 4, 2, 7, 5, 8), (1, 7, 4, 6, 3, 9), (2, 5, 3, 4, 9, 6), (4, 5, 6, 7, 3, 8)\}; L = \{(1, 10), (2, 10), (3, 10), (4, 10), (5, 10), (6, 10), (7, 10), (7, 8), (7, 9)\}.$

Example 4.16 (K_{10}, P) : $P = \{(1, 2, 10, 9, 8, 4), (1, 3, 8, 5, 7, 9), (1, 6, 2, 3, 4, 7), (1, 8, 7, 2, 4, 10), (2, 8, 10, 7, 3, 9), (3, 6, 4, 9, 5, 10)\}; L = \{(1, 5), (2, 5), (3, 5), (4, 5), (5, 6), (6, 7), (6, 8), (6, 9), (6, 10)\}.$

Example 4.17 (K_{10}, P) : $P = \{(1, 2, 9, 8, 10, 6), (1, 3, 2, 8, 6, 9), (1, 4, 6, 3, 9, 5), (1, 7, 2, 6, 5, 8), (2, 4, 7, 3, 10, 5), (3, 5, 7, 9, 4, 8)\}; L = \{(1, 10), (2, 10), (9, 10), (4, 10), (4, 5), (3, 4), (7, 10), (7, 8), (6, 7)\}.$

Example 4.18 (K_{10}, P) : $P = \{(1, 2, 3, 10, 4, 9), (1, 3, 9, 6, 7, 8), (1, 4, 8, 5, 3, 7), (1, 5, 2, 8, 3, 6), (4, 6, 10, 2, 9, 7), (2, 6, 8, 9, 5, 7)\}; L = \{(1, 10), (7, 10), (8, 10), (9, 10), (5, 10), (5, 6), (4, 5), (2, 4), (3, 4)\}.$

Example 4.19 (K_{10}, P) : $P = \{(1, 5, 6, 7, 10, 9), (1, 7, 4, 8, 5, 10), (2, 8, 1, 6, 9, 7), (2, 3, 4, 6, 8, 9), (8, 10, 3, 9, 5, 7), (5, 3, 6, 10, 2, 4)\}; L = \{(1, 2), (1, 3), (1, 4), (2, 5), (2, 6), (3, 7), (3, 8), (4, 9), (4, 10)\}.$

Example 4.20 (K_{10}, P) : $P = \{(1, 3, 2, 10, 8, 9), (1, 4, 5, 10, 9, 7), (1, 5, 2, 7, 8, 6), (2, 8, 1, 10, 6, 4), (5, 6, 2, 9, 4, 8), (3, 9, 5, 7, 4, 10)\}; L = \{(1, 2), (3, 4), (3, 5), (3, 6), (3, 7), (3, 8), (6, 7), (6, 9), (7, 10)\}.$

Example 4.21 (K_{10} , P): $P = \{(1, 4, 6, 10, 9, 7), (1, 5, 7, 10, 4, 9), (1, 6, 9, 5, 10, 2), (1, 8, 2, 6, 3, 10), (2, 4, 7, 3, 8, 5), (2, 9, 3, 4, 8, 7)\}; L = \{(1, 3), (2, 3), (3, 5), (4, 5), (5, 6), (6, 7), (6, 8), (8, 9), (8, 10)\}.$

Example 4.22 (K_{10}, P) : $P = \{(1, 3, 6, 7, 8, 10), (1, 4, 6, 10, 7, 5), (1, 6, 8, 5, 4, 9), (1, 7, 2, 9, 3, 8), (2, 8, 4, 7, 3, 10), (2, 6, 9, 5, 10, 4)\}; L = \{(1, 2), (5, 6), (3, 4)(7, 9), (8, 9), (9, 10), (2, 3, 5)\}.$

Example 4.23 (K_{16}, P) : $P = \{(1, 3, 5, 10, 16, 15), (1, 4, 6, 13, 14, 11), (1, 5, 7, 12, 15, 10), (1, 16, 12, 10, 9, 14), (2, 3, 6, 9, 11, 13), (2, 4, 7, 10, 13, 9), (2, 5, 13, 7, 11, 10), (1, 6, 2, 7, 3, 8), (1, 7, 8, 11, 6, 12), (3, 13, 1, 9, 7, 14), (2, 11, 3, 10, 6, 14), (3, 13, 10, 10)$

 $\begin{array}{l} (3,15,2,16,8,12),(4,9,16,7,15,11),(4,10,14,8,13,15),(4,13,16,11,5,14),\\ (8,2,12,5,9,15),(16,3,9,12,4,5),(5,15,6,16,4,8)\}; L=\{(1,2),(3,4),(5,6),(6,7),\\ (6,8),(8,9),(8,10),(11,12),(12,13),(12,14),(14,15),(14,16)\}. \end{array}$

Example 4.24 (K_{16}, P) : $P = \{(1, 3, 5, 8, 9, 16), (1, 4, 5, 7, 8, 10), (2, 3, 14, 4, 9, 15), (1, 5, 16, 15, 6, 11), (1, 6, 10, 11, 12, 13), (1, 7, 12, 14, 11, 8), (1, 15, 12, 16, 10, 14), (2, 9, 1, 12, 10, 13), (2, 4, 6, 12, 8, 14), (3, 7, 9, 12, 4, 13), (3, 8, 13, 11, 15, 10), (2, 7, 16, 8, 15, 5), (2, 6, 9, 13, 7, 11), (3, 16, 2, 10, 4, 11), (3, 12, 2, 8, 4, 15), (5, 10, 7, 14, 16, 11), (6, 13, 5, 14, 9, 3), (4, 7, 15, 14, 6, 16)\}; L = \{(1, 2), (3, 4), (5, 6), (5, 9), (5, 12), (6, 7), (6, 8), (9, 10), (9, 11), (13, 14), (13, 15), (13, 16)\}.$

Example 4.25 $(K_{16}, P) P = \{(1, 3, 5, 9, 16, 15), (1, 4, 2, 16, 12, 14), (1, 5, 10, 11, 15, 13), (1, 6, 2, 15, 4, 7), (3, 6, 7, 8, 11, 12), (3, 7, 9, 15, 12, 10), (4, 5, 11, 7, 12, 6), (2, 7, 16, 13, 14, 5), (2, 9, 1, 16, 6, 11), (2, 10, 1, 11, 14, 8), (2, 3, 8, 10, 13, 12), (3, 13, 2, 14, 6, 15), (3, 14, 7, 13, 8, 16), (4, 11, 3, 9, 6, 13), (10, 16, 11, 13, 5, 15), (8, 1, 12, 5, 16, 4), (8, 15, 7, 10, 4, 12), (4, 14, 10, 6, 8, 9)\}; L = \{(1, 2), (3, 4), (5, 6), (5, 7), (5, 8), (9, 10), (9, 11), (9, 12), (9, 13), (9, 14), (14, 15), (14, 16)\}.$

Example 4.26 (K_{16}, P) : $P = \{(1, 3, 7, 8, 11, 14), (1, 4, 2, 5, 16, 13), (1, 5, 11, 4, 14, 12), (1, 6, 9, 10, 11, 16), (1, 7, 2, 16, 14, 10), (2, 8, 1, 9, 15, 6), (3, 5, 12, 15, 11, 9), (2, 3, 6, 4, 10, 13), (2, 11, 1, 15, 3, 12), (2, 9, 8, 12, 4, 15), (10, 2, 14, 5, 13, 3), (7, 11, 3, 14, 9, 12), (16, 3, 8, 13, 14, 7), (4, 5, 15, 10, 6, 8), (6, 7, 4, 9, 16, 12), (7, 15, 8, 14, 6, 13), (16, 8, 10, 12, 11, 6), (10, 7, 9, 13, 4, 16)\}; L = \{(1, 2), (3, 4), (5, 6), (5, 7), (5, 8), (5, 9), (5, 10), (11, 13), (12, 13), (13, 15), (14, 15), (15, 16)\}.$

Example 4.27 (K_{16}, P) : $P = \{(1, 9, 2, 3, 12, 16), (1, 10, 16, 14, 6, 15), (1, 11, 14, 15, 12, 13), (1, 12, 11, 9, 8, 14), (2, 4, 3, 16, 5, 8), (2, 5, 4, 16, 6, 10), (2, 6, 9, 16, 8, 15), (2, 7, 9, 15, 10, 13), (2, 11, 6, 13, 8, 12), (3, 14, 2, 16, 7, 13), (3, 11, 16, 13, 15, 5), (3, 6, 7, 8, 4, 10), (4, 7, 3, 8, 6, 12), (4, 15, 3, 9, 12, 14), (4, 6, 5, 14, 7, 11), (9, 4, 13, 5, 10, 14), (5, 12, 7, 10, 8, 11), (5, 7, 15, 11, 13, 9)\}; L = \{(1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (1, 7), (1, 8), (9, 10), (10, 11), (10, 12), (13, 14), (15, 16)\}.$

Example 4.28 $(K_{16}, P) : P = \{(1, 7, 2, 3, 4, 8), (2, 4, 5, 6, 7, 16), (1, 9, 10, 12, 16, 13), (1, 10, 2, 5, 13, 15), (1, 16, 3, 5, 8, 14), (1, 11, 3, 15, 14, 12), (3, 6, 16, 14, 11, 8), (2, 8, 16, 9, 11, 15), (2, 6, 11, 10, 14, 9), (2, 11, 12, 15, 9, 13), (4, 6, 8, 12, 2, 14), (4, 9, 6, 14, 7, 13), (5, 10, 6, 13, 8, 15), (5, 12, 6, 15, 4, 16), (3, 7, 4, 11, 5, 14), (3, 9, 5, 7, 15, 10), (8, 9, 12, 3, 13, 10), (4, 10, 16, 11, 13, 12)\}; L = \{(1, 3), (1, 4), (1, 5), (1, 6), (1, 2), (12, 7), (7, 8), (7, 9), (7, 10), (7, 11), (13, 14), (15, 16)\}.$

Example 4.29 (K_{16}, P) : $P = \{(1, 2, 4, 7, 9, 10), (1, 4, 5, 6, 8, 9), (1, 5, 12, 16, 9, 15), (1, 6, 2, 5, 15, 12), (1, 7, 2, 15, 11, 16), (1, 8, 2, 12, 14, 13), (2, 11, 1, 14, 9, 13), (3, 5, 9, 12, 13, 8), (3, 6, 4, 11, 13, 10), (3, 9, 2, 10, 8, 12), (3, 16, 2, 14, 8, 11), (6, 15, 3, 7, 10, 14), (4, 14, 3, 13, 16, 10), (4, 9, 6, 10, 15, 8), (4, 12, 7, 14, 5, 13), (5, 16, 4, 15, 7, 11), (6, 13, 7, 16, 14, 11), (5, 10, 12, 6, 16, 8)\}; L = \{(1, 3), (2, 3), (3, 4), (5, 7), (6, 7), (7, 8), (9, 11), (10, 11), (11, 12), (13, 15), (14, 15), (15, 16)\}.$

Example 4.30 (K_{16}, P) : $P = \{(1, 11, 3, 15, 7, 14), (1, 7, 8, 10, 11, 12), (1, 8, 2, 9, 11, 16), (1, 9, 3, 4, 5, 15), (1, 10, 12, 14, 15, 13), (2, 3, 10, 7, 11, 14), (2, 5, 3, 6, 4, 10), (2, 4, 7, 6, 8, 12), (2, 6, 9, 12, 7, 13), (2, 7, 16, 14, 8, 15), (3, 7, 5, 16, 10, 13), (3, 8, 16, 9, 15, 12), (5, 8, 11, 15, 10, 14), (4, 11, 6, 13, 5, 12), (4, 13, 9, 14, 6, 15), (4, 16, 12, 6, 5, 9), (6, 10, 5, 11, 2, 16), (4, 14, 3, 16, 13, 8)\}; L = \{(1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (7, 9), (8, 9), (9, 10), (11, 13), (12, 13), (13, 14), (15, 16)\}.$

5 Maximum Packings

We will construct maximum packings according to the leave.

 $n \equiv 0, 2, 6$, or 8 (mod 12). In this case the leave is a 1-factor. The cases n = 6 and n = 8 are handled in Examples 4.1 and 4.2. So we can assume $n \ge 12$. The following construction will allow us to take care of the remaining cases.

The n + 6 Construction. Let (K_n, P_1) be a maximum packing of even order n based on X with leave L_1 and (K_6, P_2) the maximum packing of order 6 in Example 4.1 based on Y with leave L_2 . Let (X, Y, B) be a BHS of order (|X|, |Y|). (See [4].) Then $(K_{n+6}, P_1 \cup P_2 \cup B)$ is a maximum packing of order n + 6 based on $X \cup Y$ with leave $L_1 \cup L_2$.

Theorem 5.1 If $n \equiv 0, 2, 6$, or 8 (mod 12) the leave of a maximum packing is a 1-factor and such a maximum packing exists for all admissible $n \ge 6$.

Proof: Starting with the examples of orders 6 and 8, the n+6 Construction produces a maximum packing of every order $n \equiv 0, 2, 6$, or $8 \pmod{12} \ge 12$.

 $n \equiv 3$ or 7 (mod 12). In this case the leave is a 3-cycle. The cases for n = 7 and 15 are handled in Examples 4.3 and 4.4, respectively. We use the following obvious modification of the n + 12 Construction.

The n+12 MP Construction. Let (K_n, P) be a maximum packing of odd order n based on $X \cup \{\infty\}$ with leave L and (K_{13}, H) the hexagon system of order 13 in Example 1.1 based on $Y \cup \{\infty\}$. Let (X, Y, B) be a BHS of order (|X|, |Y|). Then $(K_{n+12}, P \cup H \cup B)$ is a maximum packing of order n + 12 based on $X \cup Y \cup \{\infty\}$ with leave L.

Theorem 5.2 If $n \equiv 3$ or 7 (mod 12) the leave of a maximum packing is a 3-cycle and such a maximum packing exists for admissible $n \geq 7$.

Proof: Beginning with the examples of orders 7 and 15, the n+12 MP Construction yields a maximum packing of every order $n \equiv 3$ or 7 (mod 12) ≥ 7 .

 $n \equiv 5 \pmod{12}$. For this case the leave is a 4-cycle. The case for n = 17 is given in Example 4.5.

Theorem 5.3 If $n \equiv 5 \pmod{12} \ge 17$ the leave of a maximum packing is a 4-cycle and such a maximum packing exists for admissible $n \ge 17$.

Proof: Beginning with the example of order 17, the n + 12 MP Construction yields a maximum packing of every order $n \equiv 5 \pmod{12} \ge 17$.

 $n \equiv 11 \pmod{12}$. In this case the leave is a 7-cycle or a not necessarily disjoint 3-cycle and 4-cycle. The 4 possible leaves are given in Examples 4.6, 4.7, 4.8, and 4.9.

Theorem 5.4 If $n \equiv 11 \pmod{12}$ a maximum packing has leave a 7-cycle or a not necessarily disjoint 3-cycle and 4-cycle.

Proof: Starting with any one of the maximum packings in Examples 4.6, 4.7, 4.8, and 4.9 the n+12 MP Construction yields a maximum packing of every order $n \equiv 11 \pmod{12}$.

 $n \equiv 4$ or 10 (mod 12). In this case the leave is a spanning subgraph of odd degree with (n+8)/2 edges. If n = 10 the only leaves are those in Examples 4.10 - 4.22. If n = 16 the leave is either one of the leaves from Examples 4.23 - 4.30 or one of the leaves from Examples 4.10 - 4.22 plus a disjoint 1-factor (the leave from (K_6, P)). For $n \ge 22$ the leave is one of those in Examples 4.10 - 4.30 plus a disjoint 1-factor.

Theorem 5.5 If $n \equiv 4$ or 10 (mod 12) a maximum packing has one of the leaves in Examples 4.10 - 4.30 plus a disjoint 1-factor, and all 21 l eaves are possible for all $n \equiv 4$ or 10 (mod 12) ≥ 16 . For n = 10, the only possible leaves are those in Examples 4.10 - 4.22.

Proof: Beginning with the packings in Examples 4.10 - 4.30, the n+6 Construction yields all maximum packings of every order $n \equiv 4$ or $10 \pmod{12} \ge 22$.

П

6 Summary

We summarize the results in the following easy-to-read table.

	Number of Hexagons	
Kn	in a Maximum Packing	Leave
all	n(n-1)/12	Ø · · · ·
$n\equiv 1 { m or} 9 ({ m mod} 12)$		
all		
$n \equiv 0, 2, 6, \text{ or } 8 \pmod{12}$	n(n-2)/12	1-factor
≥ 6 all		
all		
$n \equiv 3 \text{ or } 7 \pmod{12}$	$(n^2 - n - 6)/12$	3-cycle
all		
$n \equiv 5 \pmod{12} \ge 17$	$(n^2 - n - 8)/12$	4-cycle
	Sec. 1	4 leaves are possible:
all	$(n^2 - n - 14)/12$	a 7-cycle or the union of a
$n \equiv 11 \pmod{12}$		(not necessarily disjoint)
		3-cycle and 4-cycle
all		spanning subgraph of
$n \equiv 4 \text{ or } 10 \pmod{12}$		odd degree with
≥ 10		(n+8)/2 edges:
n = 10		leaves in Examples
	$(n^2 - 2n - 8)/12$	4.10 - 4.21
	1	the 13 leaves for $n = 10$
		plus a disjoint 1-factor
$n \equiv 4 \text{ or } 10 \pmod{12}$		and the leaves in
≥ 16		Examples $4.23 - 4.30$
		plus a disjoint 1-factor
		when $n \geq 22$

Acknowledgement

The author would like to thank Professor Ebad Mahmoodian of Sharif University of Technology for supplying several of the examples in section 4.

References

- C. C. Lindner, C. A. Rodger, Decompositions into cycles II: cycle systems, Contemporary design theory: a collection of surveys, (John Wiley and Sons), eds. J. H. Dinitz and D. R. Stinson, (1992), 325-369.
- [2] A. Rosa, On cyclic decompositions of the complete graph into (4m + 2)-gons. Mat.-Fyz. Cas, 16 (1966), 349-352.
- [3] A. Rosa and C. Huang, Another class of balanced graph designs: balanced circuit designs, Discrete Math. 12 (1975), 269-293.
- [4] D. Sotteau, Decompositions of $K_{m,n}(K_{m,n}^*)$ into cycles (circuits) of length 2k, J. Combin. Th. (B), 30 (1981), 75-81.

(Received 31/8/92)