\textbf{Abstract}

A simple graph $G = (V, E)$ admits an H-covering if every edge in E is contained in a subgraph $H' = (V', E')$ of G which is isomorphic to H. In this case we say that G is H-supermagic if there is a bijection $f : V \cup E \to \{1, \ldots, |V| + |E|\}$ such that $f(V) = \{1, \ldots, |V|\}$ and
\[\sum_{v \in V(H')} f(v) + \sum_{e \in E(H')} f(e)\] is constant over all subgraphs \(H'\) of \(G\) which are isomorphic to \(H\). Extending results from [M. Roswitha and E.T. Baskoro, Amer. Inst. Physics Conf. Proc. 1450 (2012), 135-138], we show that the firecracker \(F_{k,n}\) is \(F_{2,n}\)-supermagic, the banana tree \(B_{k,n}\) is \(B_{k-1,n}\)-supermagic and the flower \(F_n\) is \(C_3\)-supermagic.

1 Introduction

The graphs considered in this paper are finite, undirected and simple. For a positive integer \(n\) we denote the set \(\{1, \ldots, n\}\) by \([n]\), and for integers \(a \leq b\), the set \([a, b]\) is denoted by \([a, b]\). Let \(V(G)\) and \(E(G)\) be the set of vertices and edges of a graph \(G\). A graph labeling is an assignment of integers to the vertices or edges, or both, subject to certain conditions. Graph labeling was first introduced by Rosa \([8]\) in 1967. Since then there are various types of labeling that have been studied and developed (see [1]).

For a graph \(H\), a graph \(G\) admits an \(H\)-covering if every edge of \(G\) belongs to at least one subgraph of \(G\) which is isomorphic to \(H\). A graph \(G = (V, E)\) which admits an \(H\)-covering is called \(H\)-magic if there exists a bijection \(f : V \cup E \rightarrow |V| + |E|\) and a constant \(f(H)\), which we call the \(H\)-magic sum of \(f\), such that \(\sum_{v \in V(H')} f(v) + \sum_{e \in E(H')} f(e) = f(H)\) for every subgraph \(H' \subseteq G\) with \(H' \cong H\). Additionally, if \(f(V) = |V|\) then we say that \(G\) is \(H\)-supermagic.

The concept of \(H\)-supermagic labeling was introduced by Gutiérrez and Lladó \([2]\) in 2005, for \(H\) being a star or a path. In \([4]\), Lladó and Moragas constructed cycle-supermagic labelings for some graphs. Furthermore, Maryati et al. \([5]\) studied path-supermagic labelings while Ngurah et al. \([7]\), Roswitha et al. \([10]\) and Kojima \([3]\) proved that some graphs have cycle-supermagic labelings. Some results for certain shackles and amalgamations of a connected graph have been proved by Maryati et al. \([6]\). Recently, Roswitha and Baskoro \([9]\) established \(H\)-supermagic coverings for some trees.

Roswitha and Baskoro \([9]\) show that for any integer \(k\) and even \(n\), the firecracker graph \(F_{k,n}\) is \(F_{2,n}\)-supermagic and the banana tree graph \(B_{k,n}\) is \(B_{k-1,n}\)-supermagic and left the remaining cases as open problems. In this paper, we solve these two problems. The result for banana trees is an immediate consequence of a theorem about amalgamations of graphs from \([6]\) which we recall in Section 2. The result for firecrackers in Section 3 is obtained by a similar method. In addition, we prove in Section 4 that for odd \(n\), the flower graph \(F_n\) is \(C_3\)-supermagic.

2 Amalgamations and banana trees

Let \(H\) be a graph with \(n\) vertices, say \(V(H) = \{v_1, \ldots, v_n\}\) and \(m\) edges, say \(E(H) = \{e_1, \ldots, e_m\}\). Take \(k\) copies of \(H\) denoted by \(H^1, \ldots, H^k\) and let the vertex and edge sets be \(V(H') = \{v_1^i, \ldots, v_n^i\}\) and \(E(H') = \{e_1^i, \ldots, e_m^i\}\). Fix a vertex \(v \in V(H)\), without loss of generality \(v = v_n\), and form a graph, \(G = A_k(H, v)\) by identifying
all the vertices v_n^1, \ldots, v_n^k (and denoting the identified vertex by v_n). The following theorem was proved in [6].

Theorem 1 ([6]). Let H be any graph, and let $v \in V(H)$. If $G = A_k(H, v)$ contains exactly k subgraphs isomorphic to H then G is H-supermagic with H-supermagic sums

$$f(H) = \begin{cases} \frac{3(n+m)-1}{2} + \frac{k(n+m-1)^2}{2} & \text{if } (m+n-1)(k-1) \text{ is even}, \\ \frac{3(n+m)-2}{2} + \frac{k[n(m-1)^2+1]}{2} & \text{if } (m+n-1)(k-1) \text{ is odd}. \end{cases}$$

For the convenience of the reader we provide an explicit description of the labeling.

Proof. The graph $A_k(H, v)$ has $k(n-1) + 1$ vertices and km edges. We define the labeling

$$f : V(A_k(H, v)) \cup E(A_k(H, v)) \to [k(n+m-1)+1]$$

as follows.

Case 1 If $n+m$ is odd, we start with $f(v_n) = 1$. Then we use the labels $2, \ldots, k(n-1) + 1$ for the remaining vertices:

$$f(v_i^j) = \begin{cases} 1 + (i-1)k + j & \text{if } i \text{ is odd}, \\ ik + 2 - j & \text{if } i \text{ is even}, \end{cases} \text{ for } i \in [n-1], j \in [k]. \quad (1)$$

Finally we use the labels $k(n-1) + 2, \ldots, k(n+m-1)+1$ for the edges:

$$f(e_i^j) = \begin{cases} 1 + (i+n-2)k + j & \text{if } i + n - 1 \text{ is odd}, \\ (i+n-1)k + 2 - j & \text{if } i + n - 1 \text{ is even}, \end{cases} \text{ for } i \in [n-1], j \in [k]. \quad (2)$$

The sum of the labels used for H^j is independent of j:

$$f(v_n) + \sum_{i=1}^{n-1} f(v_i^j) + \sum_{i=1}^{m} f(e_i^j) = 1 + \sum_{i=1, i \text{ odd}}^{n+m-1} [1 + (i-1)k + j]$$

$$+ \sum_{i=1, i \text{ even}}^{n+m-1} [ik + 2 - j]$$

$$= \frac{3(n+m)-1}{2} + \frac{k(n+m-1)^2}{2}.$$

Case 2 If $n+m$ is even and k is odd, we start with $f(v_n) = 1$. Next we use the labels $2, \ldots, 3k+1$ to label the vertices v_i^j for $i \in [3], j \in [k]$ (assuming that $n \geq 4$, otherwise use the first edges in the obvious way):

$$f(v_1^1) = 1 + j$$

$$f(v_1^j) = \begin{cases} 3(k+1)/2 + j & \text{for } j \in [(k-1)/2], \\ (k+3)/2 + j & \text{for } j \in [(k+1)/2, k], \end{cases}$$

$$f(v_3^j) = \begin{cases} 3k + 2 - 2j & \text{for } j \in [(k-1)/2], \\ 4k + 2 - 2j & \text{for } j \in [(k+1)/2, k]. \end{cases}$$
Then we use the labels $3k + 2, \ldots, k(n - 1) + 1$ for the remaining vertices, applying (1) for $i \in [4, n - 1]$. Finally, we use the labels $k(n - 1) + 2, \ldots, k(n + m - 1) + 1$ for the edges, applying (2). The sum of the labels used for H^j is independent of j:

\[
\begin{align*}
 f(v_n) + \sum_{i=1}^{3} f(v_i^1) + \sum_{i=4}^{n-1} f(v_i^1) + \sum_{i=1}^{m} f(e_i^j) & = 1 + \frac{9(k+1)}{2} + \sum_{i=4, i \text{ odd}}^{n+m-1} [1 + (i - 1)k + j] + \sum_{i=4, i \text{ even}}^{n+m-1} [ik + 2 - j] \\
 & = \frac{3(n + m) - 1}{2} + \frac{k(n + m - 1)^2}{2}.
\end{align*}
\]

Case 3 If $n + m$ is even and k is even, we start with $f(v_n) = k/2 + 1$. Next we use the labels $1, \ldots, k/2, k/2 + 2, \ldots, 3k + 1$ to label the vertices v_i^j for $i \in [3], j \in [k]$ (assuming that $n \geq 4$, otherwise use the first edges in the obvious way):

\[
\begin{align*}
 f(v_i^1) & = \begin{cases}
 j & \text{for } j \in [k/2], \\
 j + 1 & \text{for } j \in [k/2 + 1, k],
\end{cases} \\
 f(v_i^2) & = \begin{cases}
 3k/2 + 1 + j & \text{for } j \in [k/2], \\
 k/2 + 1 + j & \text{for } j \in [k/2 + 1, k],
\end{cases} \\
 f(v_i^3) & = \begin{cases}
 3(k + 1) - 2j & \text{for } j \in [k/2], \\
 4k + 2 - 2j & \text{for } j \in [k/2 + 1, k].
\end{cases}
\end{align*}
\]

Then we use the labels $3k + 2, \ldots, k(n - 1) + 1$ for the remaining vertices, applying (1) for $i = 4, \ldots, n-1$. Finally, we use the labels $k(n-1)+2, \ldots, k(n + m - 1) + 1$ for the edges, applying (2). The sum of the labels used for H^j is independent of j:

\[
\begin{align*}
 f(v_n) + \sum_{i=1}^{3} f(v_i^1) + \sum_{i=4}^{n-1} f(v_i^1) + \sum_{i=1}^{m} f(e_i^j) & = (k/2 + 1) + \frac{9k + 8}{2} + \sum_{i=4, i \text{ odd}}^{n+m-1} [1 + (i - 1)k + j] + \sum_{i=4, i \text{ even}}^{n+m-1} [ik + 2 - j] \\
 & = \frac{3(n + m) - 2}{2} + \frac{k[(n + m - 1)^2 + 1]}{2}. \quad \Box
\end{align*}
\]

Let H be the graph obtained by taking a star with n vertices and connecting an additional vertex v to exactly one leaf of the star. The **banana tree** $B_{k,n}$ is the graph $A_k(H, v)$.

Corollary 1. For any integers k and $n \geq k + 2$, the banana tree $B_{k,n}$ is $B_{1,n}$-supermagic.
The condition \(n \geq k + 2 \) is needed because otherwise \(B_{k,n} \) contains more than \(k \) subgraphs isomorphic to \(B_{1,n} \). We do not have this problems for \(H = B_{t,n} \) with \(\ell \geq 2 \), and therefore we get the following result.

Corollary 2. For any integers \(n \), \(k \) and \(\ell \in [2, k - 1] \), the banana tree \(B_{k,n} \) is \(B_{\ell,n} \)-supermagic. In particular, for \(\ell = k - 1 \), this solves the open problem in \([9]\).

Remark 1. Note that the labeling strategy in the first case of the proof of Theorem 11 immediately gives the following result. Fix an induced subgraph \(H' \) of \(H \), say induced by the last \(\ell \) vertices, and form a graph, \(G = A_k(H, H') \) by identifying the vertices \(v_1^k, \ldots, v_k^k \) for \(i = n - \ell + 1, \ldots, n \). If \(n - \ell + |E(H) \setminus E(H')| \) is even and \(G \) contains exactly \(k \) subgraphs isomorphic to \(H \), then \(G \) is \(H \)-supermagic.

3 Attaching copies of a fixed graph to a path

Let \(G \) be a graph with \(n \) vertices, say \(V(G) = \{v_1, \ldots, v_n\} \) and \(m \) edges, say \(E(G) = \{e_1, \ldots, e_m\} \). Let \(P_k, k \geq 2 \), be a path with vertex set \(V(P_k) = \{w_1, w_2, \ldots, w_k\} \) and edge set \(E(P_k) = \{w_1w_2, \ldots, w_{k-1}w_k\} \). Take \(k \) copies of \(G \) denoted by \(G^1, G^2, \ldots, G^k \) and let the vertex and edge sets be \(V(G_i) = \{v_i^1, \ldots, v_n^i\} \) and \(E(G_i) = \{e_i^1, \ldots, e_m^i\} \). Fix a vertex \(v \in V(G) \), without loss of generality \(v = v_n \), and attach the copies of \(G \) to the path such that the vertex \(v_i^k \in V(G^k) \) is identified with the vertex \(w_i \) in \(P_k \), \(i = 1, 2, \ldots, k \). The resulting graph is denoted by \(P_k(G, v) \).

Theorem 2. Let \(G \) be a graph with \(n \) vertices and \(m \) edges and let \(k \geq 2 \) be an integer. If \((n + m - 1)(k - 1) \) is even and \(P_k(G, v) \) contains exactly \(k - 1 \) subgraphs isomorphic to \(P_2(G, v) \), then \(P_k(G, v) \) is \(P_2(G, v) \)-supermagic with supermagic sum \((n + m)[(n + m + 1)k + 1] + [k/2] \).

Proof. The graph \(P_k(G, v) \) has \(kn \) vertices and \((m + 1)k - 1 \) edges. We define the labeling
\[
f : V(P_k(G, v)) \cup E(P_k(G, v)) \to [(m + n + 1)(k - 1)]
\]
as follows. For the path vertices, we use the first \(k \) labels \(1, \ldots, k \):
\[
f(w_i) = \begin{cases}
 (i + 1)/2 & \text{if } i \text{ is odd}, \\
 [k/2] + i/2 & \text{if } i \text{ is even},
\end{cases}
\]
for \(i \in [k] \).

For the path edges, we use the the labels in \([(m + n)k + 1, (m + n)k + (k - 1)] \):
\[
f(w_iw_{i+1}) = (n + m + 1)k - i \quad \text{for } i \in [k - 1].
\]

For labeling the remaining elements we distinguish two cases.

Case 1 If \(n + m - 1 \) is even, we set
\[
f(v_j^i) = \begin{cases}
 jk + i & \text{if } j \text{ is odd}, \\
 (j + 1)k + 1 - i & \text{if } j \text{ is even},
\end{cases}
\]
for \(j \in [n - 1], i \in [k] \).

Case 2 If \(n + m - 1 \) is odd, we set
\[
f(v_j^i) = \begin{cases}
 (n - 1 + j)k + i & \text{if } n - 1 + j \text{ is odd}, \\
 (n + j)k + 1 - i & \text{if } n - 1 + j \text{ is even},
\end{cases}
\]
for \(j \in [m], i \in [k] \). (4)
Case 2 If $n + m − 1$ is odd and k is odd, we set
\[
\begin{align*}
f(v_1^i) &= k + i \\
f(v_2^i) &= \begin{cases} (5k + 1)/2 + i & \text{for } i \in \lfloor (k - 1)/2 \rfloor, \\ (3k + 1)/2 + i & \text{for } i \in \lceil (k + 1)/2, k \rceil, \end{cases} \\
f(v_3^i) &= \begin{cases} 4k + 1 - 2i & \text{for } i \in \lfloor (k - 1)/2 \rfloor, \\ 5k + 1 - 2i & \text{for } i \in \lceil (k + 1)/2, k \rceil. \end{cases}
\end{align*}
\]
As in the proof of Theorem 1 (3) and (4) are used for labeling the remaining vertices and edges.

Denoting the sum of the labels used for G^i by A_i, we obtain
\[
A_i = \sum_{j=1}^{n-1} f(v_j^i) + \sum_{j=1}^{m} f(e_j^i) + f(w_i)
= \frac{(n + m - 1)(n + m + 1)k + (n + m - 1)}{2} + \begin{cases} (i + 1)/2 & \text{if } i \text{ is odd}, \\ \lceil k/2 \rceil + i/2 & \text{if } i \text{ is even}. \end{cases}
\]
Finally, the sum of the labels of the subgraph isomorphic to $P_2(G, v)$ which is formed by G^i, G^{i+1} and the edge w_iw_{i+1} is independent of i:
\[
A_i + A_{i+1} + f(w_iw_{i+1}) = (n + m)[(n + m + 1)k + 1] + \lceil k/2 \rceil. \tag*{□}
\]

Remark 2. We think that it might be possible that the parity assumption in Theorem 2 is not necessary, and we leave the case that both $n + m$ and k are even for future work.

Example 1. We illustrate the construction in Theorem 2 for $k = 5$, $G = K_4^-$ (the graph obtained from a complete graph on 4 vertices by deleting one edge) and v being a vertex of degree 3 in G. We obtain the $P(K_4^-, v_4)$-supermagic labeling shown in Figure 1.

Corollary 3. Let $G = K_{1,n-1}$ be a star with $n \geq 4$ vertices, and let v be a pendant vertex of G. The firecracker graph is $F_{k,n} = P_k(G, v)$. Since $|V(G)| + |E(G)| = 2n − 1$ is odd, and there are exactly $k - 1$ subgraphs isomorphic to $F_{2,n}$, the firecracker $F_{k,n}$ is $F_{2,n}$-supermagic with supermagic sum $(2n - 1)(2nk + 1) + \lceil k/2 \rceil$.

4 C3-Supermagic Labeling of the Flower Graph \mathcal{F}_n

A flower graph \mathcal{F}_n is constructed from a wheel W_n by adding n vertices, each new vertex adjacent to one vertex on the cycle and the center of the wheel with vertex set $V = \{x_0\} \cup \{x_i : 1 \leq i \leq n\} \cup \{y_i : 1 \leq i \leq n\}$ and edge set $E = \{x_0x_i : 1 \leq i \leq n\} \cup \{x_0y_i : 1 \leq i \leq n\} \cup \{x_iy_i : 1 \leq i \leq n\} \cup \{x_ix_{i+1} : 1 \leq i \leq n\}$, where indices are interpreted modulo n in the obvious way.
We consider four permutations \(\pi_1, \ldots, \pi_4\) of the set \([n]\), and define a total labeling of the flower graph \(F_n\) as follows.

\[
\begin{align*}
 f(x_0) &= n + 1, \\
 f(x_i) &= \pi_1(i) & \text{for } i \in [n], \\
 f(y_i) &= \pi_2(i) + n + 1 & \text{for } i \in [n], \\
 f(x_0x_i) &= \pi_2(i) + 5n + 1 & \text{for } i \in [n], \\
 f(x_0y_i) &= \pi_2(i) + 4n + 1 & \text{for } i \in [n], \\
 f(x_iy_i) &= \begin{cases}
 \pi_3(i) + 2n + 1 & \text{odd } i \\
 \pi_3(i) + 3n + 1 & \text{even } i
\end{cases} & \text{for } i \in [n], \\
 f(x_ix_{i+1}) &= \pi_4(i) + 2n + 1 + (n + 1)/2 & \text{for } i \in [n - 1].
\end{align*}
\]

Lemma 1. Define

\[
\varphi_k^i(\pi_1, \ldots, \pi_4) = \pi_1(i) + \pi_1(i + 1) + \pi_2(i) + \pi_2(i + 1) + \pi_4(i) + (n + 1)/2 - 1,
\]

\[
\varphi_k^j(\pi_1, \ldots, \pi_4) = \pi_1(i) + 3\pi_2(i) + \pi_3(i) + \begin{cases}
 n & \text{if } i \text{ is even}, \\
 0 & \text{if } i \text{ is odd}.
\end{cases}
\]

If \(\varphi_k^i(\pi_1, \ldots, \pi_4)\) is equal to a constant \(\varphi\) for all \(i \in [n]\) and \(k \in \{1, 2\}\), then the labeling given above is \(C_3\)-supermagic with supermagic sum \(f(C_3) = 13n + 5 + \varphi\).

Proof. The flower graph \(F_n\) contains \(2n\) subgraphs \(H_1, \ldots, H_{2n}\) isomorphic to \(C_3\). We distinguish two types of 3-cycles: (1) cycles induced by vertex sets \(\{x_0, x_i, x_{i+1}\}\), and (2) cycles induced by vertex sets \(\{x_0, x_i, y_i\}\).

Case 1 Cycle \((x_0, x_i, x_{i+1})\). The sum of the vertex labels is

\[
 f(x_0) + f(x_i) + f(x_{i+1}) = n + 1 + \pi_1(i) + \pi_1(i + 1),
\]
and the sum of the edge labels is
\[f(x_0x_i) + f(x_ix_{i+1}) + f(x_0x_{i+1}) = \pi_2(i) + \pi_2(i+1) + \pi_4(i) + 12n + 3 + (n+1)/2. \tag{6} \]

Taking the sum of (5) and (6), we have the supermagic sum
\[f(C_3) = n + 1 + \pi_1(i) + \pi_1(i+1) + \pi_2(i) + \pi_2(i+1) + \pi_4(i) + 12n + 3 + (n+1)/2 \]
\[= 13n + 5 + [\pi_1(i) + \pi_1(i+1) + \pi_2(i) + \pi_2(i+1) + \pi_4(i) - 1 + (n+1)/2] \]
\[= 13n + 5 + \varphi_1^i(\pi_1, \ldots, \pi_4) \]
\[= 13n + 5 + \varphi. \]

Case 2 Cycle \((x_0, x_i, y_i)\). The sum of the vertex labels is
\[f(x_0) + f(x_i) + f(y_i) = 2n + 2 + \pi_1(i) + \pi_2(i), \tag{7} \]
and the sum of the edge labels is
\[f(x_0x_i) + f(x_iy_i) + f(x_0y_i) = \pi_2(i) + \pi_2(i) + \pi_3(i) + \begin{cases} 11n + 3 & \text{if } i \text{ is odd}, \\ 12n + 3 & \text{if } i \text{ is even}. \end{cases} \tag{8} \]

Taking the sum of (7) and (8) gives the supermagic sum
\[f(C_3) = 13n + 5 + \varphi_2^i(\pi_1, \ldots, \pi_4) = 13n + 5 + \varphi. \qedhere \]

In the following lemma we provide permutations \(\pi_1, \ldots, \pi_4\) which satisfy the condition in Lemma [1].

Lemma 2. Define the permutations by
\[
\begin{align*}
\pi_1(i) &= i, \\
\pi_2(i) &= n + 1 - \begin{cases} (i + 1)/2 & \text{for odd } i, \\ i/2 + (n + 1)/2 & \text{for even } i, \end{cases} \\
\pi_3(i) &= \begin{cases} (i + 1)/2 & \text{for odd } i, \\ i/2 + (n + 1)/2 & \text{for even } i, \end{cases} \\
\pi_4(i) &= n + 1 - i.
\end{align*}
\]

Then for every \(i \in [n]\) we have \(\varphi_1^i(\pi_1, \ldots, \pi_4) = \varphi_2^i(\pi_1, \ldots, \pi_4) = 3n + 2\).

Theorem 3. For any odd integer \(n\), the flower graph \(F_n\) is \(C_3\)-supermagic.

Proof. The total labeling of \(F_n\) can be obtained by applying the permutations in Lemma [2] to the labeling construction. Using the value of \(\varphi\) in Lemma [2] and the supermagic the sum of the permutations in Lemma [2] we have the constant supermagic sum on flower graph \(F_n\)
\[f(C_3) = 13n + 5 + \varphi = 13n + 5 + 3n + 2 = 16n + 7. \]
Hence, flower graph \(F_n\) is \(C_3\)-supermagic, for odd \(n\). \qedhere

Example 2. Using Lemma [2] for \(n = 7\) we get the permutations \(\pi_1 = (1, 2, 3, 4, 5, 6, 7), \pi_2 = (7, 3, 6, 2, 5, 1, 4), \pi_3 = (1, 5, 2, 6, 3, 7, 4)\) and \(\pi_4 = (7, 6, 5, 4, 3, 2, 1)\). These permutations give the labeling for \(F_7\) shown in Figure [2].
Acknowledgements

The first author was supported by the Indonesian Government under the Indonesia Endowment Fund for Education (LPDP) Scholarship. The second author was supported by APVV-15-0116 and by VEGA 1/0385/17.

References

(Received 28 July 2016; revised 30 June 2017)