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A survey of face-antimagic evaluations of graphs
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Abstract

The concept of face-antimagic labeling of plane graphs was introduced by
Mirka Miller in 2003. This survey aims to give an overview of the recent
results obtained in this topic.
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1 Introduction

Let G = (V,E) be a finite connected graph without loops and multiple edges, where
V (G) and E(G) are its vertex set and edge set, respectively. Let |V (G)| = p and
|E(G)| = q. A general reference for graph-theoretic notions is [44].

A labeling of a graph is any mapping that sends some set of graph elements to
a set of numbers or colors. Graph labelings provide valuable information that can
be applied to different areas, see [30].

Sedláček [39] defined a graph to be magic if its edges can be labeled with a range
of positive integers, such that all the vertex-weights are equal, where a vertex-weight
of a vertex x is the sum of labels of all edges incident with x. A graph G is called
antimagic if its edges can be labeled with the labels 1, 2, . . . , q in such a way that
all vertex-weights are pairwise distinct. The concept of an antimagic graph was
introduced by Hartsfield and Ringel [31]. They conjectured that every connected
graph, except K2, is antimagic. Alon et al. [5] used several probabilistic tools and
some techniques from analytic number theory to show that this conjecture is true
for all graphs having minimum degree Ω(log |V (G)|). In [42] Wang proved that
the Cartesian product of two or more cycles is antimagic. Cheng [28] proved that
Cartesian products of two paths and of a cycle and a path are antimagic. In [29]
Cheng generalized result in [42] and proved that all Cartesian products of two or
more regular graphs are antimagic.

We investigate antimagic labelings of plane graphs with restrictions placed on
the weights of faces. If we consider a plane graph (i.e., a planar graph drawn on the
Euclidean plane without edge crossings), then in addition to vertices and edges we
can also consider its faces, including the unique face of the infinite area. We denote
a plane graph as G = (V,E, F ), where F (G) is the set of all faces in G. If f denotes
the number of internal faces then |F (G)| = f + 1.

A labeling of type (1, 1, 1) assigns the labels from the set {1, 2, . . . , p+ q + f + 1}
to the vertices, edges and faces of a plane graph G in such a way that each vertex,
edge and face receives exactly one label and each number is used exactly once as
a label.

A labeling of type (1, 1, 0), is a bijection from the set {1, 2, . . . , p+q} to the vertices
and edges of plane graph G. This labeling is also called a total labeling. If we label
only vertices (respectively edges) we call such a labeling a vertex (respectively edge)
labeling; alternatively, this labeling is said to be labeling of type (1, 0, 0) (respectively
labeling of type (0, 1, 0)).

The weight of a face under a labeling is the sum of the labels (if present) carried
by that face and the edges and vertices surrounding it.

A labeling of a plane graph is called d-antimagic, if for every number s, the set
of s-sided face weights is Ws={as, as+ d, . . . , as+(fs−1)d} for some integers as and
d, d ≥ 0, where fs is the number of the s-sided faces. We allow different sets Ws for
different s.

Somewhat related types of antimagic labelings were defined by Bodendiek and
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Walther in [27].

If d = 0 then Lih calls such labeling magic [35] and describes magic (0-antimagic)
labelings of type (1, 1, 0) for wheels, friendship graphs and prisms. The magic la-
belings of type (1, 1, 1) for grid graphs and honeycomb are given in [8] and [9],
respectively. Ali, Hussain, Ahmad, and Miller [4] studied magic labeling of type
(1, 1, 1) for wheels and subdivided wheels. Ahmad [1] proved that subdivided lad-
ders admit magic labelings of type (1, 1, 1) and admit consecutive magic labelings of
type (1, 1, 0). Kathiresan and Gokulakrishnan [34] provided magic labelings of type
(1, 1, 1) for the families of planar graphs with 3-sided faces, 5-sided faces, 6-sided
faces, and one external infinite face.

The concept of d-antimagic labeling of plane graphs was defined in [22]. Lin et
al. in [36] showed that prism Dn, n ≥ 3, admits d-antimagic labelings of type (1, 1, 1)
for d ∈ {2, 4, 5, 6}. It is the case that d-antimagic labelings of type (1, 1, 1) for Dn

and for several d ≥ 7 are described in [41], see also [14].

A d-antimagic labeling is called super if the smallest possible labels appear on
the vertices. The super d-antimagic labelings of type (1, 1, 1) for antiprisms and for
d ∈ {0, 1, 2, 3, 4, 5, 6} are described in [11], and the existence of such labelings for
Jahangir graphs for certain different values of d is shown in [40]. The existence of
super d-antimagic labelings of type (1, 1, 1) for toroidal fullerenes is examined in [26],
for generalized prism is investigated in [24] and for uniform subdivisions of wheels is
studied in [32].

In the next section let us focus on the recent results obtained in this topic.

2 Recent results on d-antimagic labelings

Kathiresan and Ganesan [33] define a class of plane graphs denoted by P b
a , a ≥ 3,

b ≥ 2, as the graph obtained by starting with vertices v1, v2, . . . , va and for each
i = 1, 2, . . . , a− 1 joining vi and vi+1 with b internally disjoint paths of length i+ 1.
They prove that P b

a has d-antimagic labelings of type (1, 1, 1) for d ∈ {0, 1, 2, 3, 4, 6}.
Lin and Sugeng [37] prove that P b

a has a d-antimagic labeling of type (1, 1, 1) for
d ∈ {5, a− 7, a− 4, a− 3, a− 1, a+ 1, a+ 2, a+ 3, a+ 5, 2a− 3, 2a− 1, 2a+ 1, 2a+
3, 3a− 3, 3a− 1, 3a+ 1, 4a− 3, 4a− 1, 5a− 5, 5a− 3, 6a− 7, 6a− 5, 7a− 7, 7a− 2}.

Similarly, Bača, Baskoro and Cholily define a class of plane graphs denoted by
Cb

a as the graph obtained by starting with vertices v1, v2, . . . , va and for each i =
1, 2, . . . , a joining vi and vi+1 with b internally disjoint paths of length i + 1, where
indices are taken modulo a. In [12] and [13] they prove that for a ≥ 3 and b ≥ 2, the
graph Cb

a admits a d-antimagic labeling of type (1, 1, 1) for d ∈ {0, 1, 2, 3, a− 2, a−
1, a+ 1, a+ 2}.

The generalized Petersen graph P (n,m), n ≥ 3 and 1 ≤ m ≤ �(n−1)/2�, consists
of an outer n-cycle y0, y1, . . . , yn−1, a set of n spokes yixi, 0 ≤ i ≤ n− 1, and n edges
xixi+m, 0 ≤ i ≤ n − 1, with indices taken modulo n. The standard Petersen graph
is the instance P (5, 2). By definition, P (n,m) is a 3-regular graph which has 2n
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vertices and 3n edges. Generalized Petersen graphs were first defined by Watkins
[43].

If m = 1 and n ≥ 3 or m = 2 and n is even, n ≥ 6, then the generalized
Petersen graph P (n,m) is plane. Note that P (n, 1) is the prism Dn. The next two
theorems give necessary conditions for P (n, 2) to possess a d-antimagic labeling of
type (1, 1, 1).

Theorem 2.1. [20] For every generalized Petersen graph P (n, 2), n ≥ 6, there is
no d-antimagic vertex labeling with d ≥ 10 and no d-antimagic edge labeling with
d ≥ 15.

In light of Theorem 2.1 and the fact that under a d-antimagic face labeling
F (P (n, 2)) → {1, 2, . . . , n} the parameter d is no more than 1, we get the following
upper bound for the difference of antimagic labeling of type (1, 1, 1).

Theorem 2.2. [20] Let P (n, 2), n ≥ 6, be a generalized Petersen graph which admits
d1-antimagic vertex labeling ϕ1, d2-antimagic edge labeling ϕ2 and 1-antimagic face
labeling ϕ3, d1 ≥ 0, d2 ≥ 0. If the labelings ϕ1, p + ϕ2 and p + q + ϕ3 combine to a
d-antimagic labeling of type (1, 1, 1) then the parameter d ≤ 24.

In [20] it is proved that P (n, 2) has a 1-antimagic labeling of type (1, 1, 1) for n
even, n ≥ 6, and a d-antimagic labeling of type (1, 1, 1) for n ≡ 2 (mod 4), n ≥ 6,
n 	= 10 and d ∈ {0, 2, 3}. Moreover, there is a description of a 2-antimagic labeling of
type (1, 1, 1) for the dodecahedron P (10, 2). For n ≡ 0 (mod 4) the following results
have been obtained.

Theorem 2.3. [20] If n ≡ 0 (mod 4), n ≥ 8 and d ∈ {2, 3, 6, 9}, then the generalized
Petersen graph P (n, 2) has a d-antimagic labeling of type (1, 1, 1).

It has been conjectured in [20] that

Conjecture 1. [20] There is a d-antimagic labeling of type (1, 1, 1) for the generalized
Petersen graph P (n, 2) for n ≡ 2 (mod 4), n ≥ 6 and d ∈ {6, 9}.

The upper bound for difference d in Theorem 2.2 is too large, therefore the authors
in [20] proposed the following open problem.

Open Problem 1. [20] Find other possible values of the parameter d and the cor-
responding d-antimagic labeling of type (1, 1, 1) for the generalized Petersen graph
P (n, 2).

For n ≥ 1, m ≥ 1, we denote by Hm
n (honeycomb) the hexagonal plane map with

m rows and n columns of hexagons. The face set F (Hm
n ) contains mn 6-sided faces

and one external infinite face. It was proved in [15] that if n is even, n ≥ 2 and
m ≥ 1, then the plane map Hm

n supports 2-antimagic and 4-antimagic labelings of
type (1, 1, 1). For n odd, it was obtained the following result.
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Theorem 2.4. [16] If n is odd, n ≥ 1, m ≥ 1, mn > 1 and d ∈ {1, 2, 3, 4}, then the
hexagonal plane map Hm

n admits a d-antimagic labeling of type (1, 1, 1).

In [16], it is proposed the following open problem.

Open Problem 2. [16] Find other possible values of the parameter d and the cor-
responding d-antimagic labeling of type (1, 1, 1) for the hexagonal plane map Hm

n .

For n ≥ 1 and m ≥ 1, let Gm
n be the grid graph which can be defined as the

Cartesian product Pm+1 ×Pn+1 of a path on (m+1) vertices with a path on (n+1)
vertices embedded in the plane.

Necessary conditions for grids to bear d-antimagic labelings of types (1, 0, 0) and
(0, 1, 0) as listed in [21] are given in the following theorem.

Theorem 2.5. [21] For every grid graph Gm
n , m,n > 7, there is no d-antimagic

vertex labeling with d ≥ 5 and no d-antimagic edge labeling with d ≥ 9.

Applying the previous theorem, and the fact that under a d-antimagic face label-
ing F (Gm

n ) → {1, 2, . . . , f} the parameter d is no more than 1, we get the following
upper bound for the difference of antimagic labeling of type (1, 1, 1).

Theorem 2.6. [21] Let Gm
n , m,n > 7, be a graph which admits a d1-antimagic

vertex labeling σ1, a d2-antimagic edge labeling σ2 and a 1-antimagic face labeling σ3,
d1 ≥ 0, d2 ≥ 0. If the labelings σ1, p + σ2 and p + q + σ3 combine to a d-antimagic
labeling of type (1, 1, 1), then the parameter d ≤ 13.

Bača, Lin and Miller proved the following theorem:

Theorem 2.7. [21] For m ≥ 1, n ≥ 1, n + m 	= 2 and d ∈ {1, 2, 3, 4, 6}, the grid
graph Gm

n has a d-antimagic labeling of type (1, 1, 1).

This theorem led the authors to propose

Conjecture 2. [21] There is a 5-antimagic labeling of type (1, 1, 1) for the plane
graph Gm

n and for all m ≥ 1, n ≥ 1, m+ n 	= 2.

From the necessary conditions it follows that d ≤ 13. Therefore, it is a natural
step to formulate the following open problem.

Open Problem 3. [21] Find other possible values of the parameter d and corre-
sponding d-antimagic labelings of type (1, 1, 1) for Gm

n .

The friendship graph Fn is a set of n triangles having a common center vertex.
So, the face set of Fn contains n 3-sided faces and one external infinite face. Bača,
Brankovic and Semaničová–Feňovč́ıková [19] proved that

Theorem 2.8. [19] The friendship graph Fn, n ≥ 2, has a super d-antimagic labeling
of type (1, 1, 1) for d ∈ {0, 2, 4, . . . , 20}.
Moreover, if n ≡ 1 (mod 2) then the graph Fn also admits a super d-antimagic
labeling of type (1, 1, 1) for d ∈ {1, 3, 5, 7, 9, 11, 15, 17}.
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A triangular snake is a connected graph whose blocks are cycles C3 and its block-
cutpoint graph is a path, see [38]. By En we denote the triangular snake embedded
in the plane with the vertex set V (En) = {v1, v2, . . . , vn+1, u1, u2, . . . , un} and the
edge set E(En) = {vivi+1, viui, uivi+1 : i = 1, 2, . . . , n}. The face set of En contains
n 3-sided faces and one external infinite face. For the triangular snake En it was
shown that

Theorem 2.9. [19] The graph En, n ≥ 2, has a super d-antimagic labeling of type
(1, 1, 1) for d ∈ {0, 1, 2, . . . , 19}.

Let Bn be a graph consisting of a set of n cycles C4 having a common center
vertex. Consider the graph Bn embedded in the plane with the vertex set V (Bn) =
{vi, ui, wi, v : i = 1, 2, . . . , n} and the edge set E(Bn) = {viv, wiv, viui, uiwi : i =
1, 2, . . . , n}. The face set of Bn contains n 4-sided faces and one external infinite
face. It is known that

Theorem 2.10. [19] The graph Bn, n ≥ 2, has a super d-antimagic labeling of type
(1, 1, 1) for d ∈ {0, 2, 4, 6, . . . , 28, 30, 34}.
Moreover, if n ≡ 1 (mod 2) then the graph Bn also admits a super d-antimagic
labeling of type (1, 1, 1) for d ∈ {1, 3, 5, . . . , 27}.

A quadrilateral snake is a connected graph whose blocks are the cycles C4.
By Gn we denote the quadrilateral snake embedded in the plane with vertex set
V (Gn) = {v1, v2, . . . , vn+1, u1, u2, . . . , un, w1, w2, . . . wn} and the edge set E(Gn) =
{viui, uivi+1, viwi, wivi+1 : i = 1, 2, . . . , n}. The face set of Gn contains n 4-sided
faces and one external infinite face. It was proved that

Theorem 2.11. [19] The graph Gn, n ≥ 2, has a super d-antimagic labeling of type
(1, 1, 1) for d ∈ {0, 1, 2, . . . , 31}.

In [18], it is examined the existence of super d-antimagic labelings of type (1, 1, 1)
for the plane graphs containing a special Hamilton path.

Theorem 2.12. [18] Let G be a plane graph. If there exists in G a Hamilton path
such that for every face except the external face, the Hamilton path contains all but
one edges surrounding that face, then G is super d-antimagic of type (1, 1, 1) for
d = 0, 1, 2, 3, 5.

Moreover, if 2(|F (G)| − 1) ≤ |V (G)|, then it is also possible to find a super
d-antimagic labeling of type (1, 1, 1) for d = 4 and d = 6.

Theorem 2.13. [18] Let G be a plane graph. If there exists in G a Hamilton path
such that for every face except the external face, the Hamilton path contains all but
one edge surrounding that face and if 2(|F (G)| − 1) ≤ |V (G)|, then G is super d-
antimagic of type (1, 1, 1) for d = 0, 1, 2, 3, 4, 5, 6.

The results from Theorems 2.12 and 2.13 are generalized as follows:
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Theorem 2.14. [18] Let G be a plane graph and let M = �|V (G)|/(|F (G)| − 1)�.
Suppose that there exists in G a Hamilton path such that for every face, except the
external face, the Hamilton path contains all but one edge surrounding that face.

i) If M = 1, then G admits a super d-antimagic labeling of type (1, 1, 1) for
d = 0, 1, 2, 3, 5.

ii) If M ≥ 2, then G admits a super d-antimagic labeling of type (1, 1, 1) for
d = 0, 1, 2, 3, . . . , M + 4.

In [18] it is noted that if the plane graph contains s1-sided, s2-sided, . . . , st-sided
faces and their number is “almost the same” then it is possible to label the graph
with the super d-antimagic labeling of type (1, 1, 1) for differences up to t+4, where
t is the number of different sided faces.

Immediately from the Theorem 2.12 it follows that the grid graph Pn × P2, n ≥
3 also admits a super 5-antimagic labeling of type (1, 1, 1). This result supports
Conjecture 2. Moreover, it is shown how to find other feasible values of the parameter
d for a super d-antimagic labeling of type (1, 1, 1) of Pn × P2.

Theorem 2.15. [18] The Cartesian product Pn × P2, n ≥ 3, admits a super d-
antimagic labeling of type (1, 1, 1) for d ∈ {0, 1, 2, . . . , 15}.

In addition to the lattices having 4-sided faces, the lattices having 3-sided faces
have also been studied. The Lm

n can be obtained from the grid graph Pn × Pm by
adding a new edge in every 4-sided face such that the added edges are “parallel”.
In [17] it is proved that the graph Lm

n , n ≥ 2, 2 ≤ m ≤ 5, admits a super d-
antimagic labeling of type (1, 1, 1) for d = 0, 2, 4 (see also [6, 7]). From Theorem 2.12
it immediately follows that the graph L2

n, n ≥ 2, also admits a super d-antimagic
labeling of type (1, 1, 1) for d = 0, 1, 2, 3, 5. In [18], other feasible values of parameter
d are found for a super d-antimagic labeling of type (1, 1, 1) of L2

n.

Theorem 2.16. [18] The graph L2
n, n ≥ 2, admits a super d-antimagic labeling of

type (1, 1, 1) for d ∈ {0, 1, 2, . . . , 9}.

Several authors investigated the existence of super d-antimagic labelings for dis-
connected plane graphs. There was studied in the following problem: If a graph G
admits a (super) d-antimagic labeling, does the disjoint union of m copies of the
graph G, denoted by mG, admit a (super) d-antimagic labeling as well?

Ahmad et al. in [2] investigated super d-antimagicness of type (1, 1, 0). They
proved that if there exists a super 0-antimagic labeling of type (1, 1, 0) of a plane
graph G then, for every positive integer m, the graph mG also admits a super 0-
antimagic labeling of type (1, 1, 0). Moreover, if a plane graph G with 3-sided inner
faces admits a super d-antimagic labeling of type (1, 1, 0) for d = 0, 6 then, for
every positive integer m, the graph mG also admits a super d-antimagic labeling
of type (1, 1, 0). They also proved that if a plane tripartite graph G with 3-sided
inner faces admits a super d-antimagic labeling of type (1, 1, 0) for d = 2, 4 then for
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every positive integer m, the graph mG admits a super d-antimagic labeling of type
(1, 1, 0). In [2] it is shown that if a plane graph G with 4-sided inner faces admits a
super d-antimagic labeling of type (1, 1, 0) for d = 0, 4, 8 then the disjoint union of
an arbitrary number of copies of G also admits a super d-antimagic labeling of type
(1, 1, 0).

Super d-antimagic labelings of type (1, 1, 1) for disjoint union of prisms and for d
belonging to {0, 1, 2, 3, 4, 5} are given in [3] and for d belonging to {6, 7} are given in
[10]. The existence of the super d-antimagic labeling of type (1, 1, 1) for the disjoint
union of m copies of antiprism and for d ∈ {1, 2, 3, 5, 6} is proved in [25].

The next theorem gives a result concerning (super) 1-antimagic labeling for an
arbitrary plane graph. Note that the symbol zext is used to denote the unique external
face in the plane graph.

Theorem 2.17. [23] Let G(V,E, F ) be a plane graph. If there exists a (super) 1-
antimagic labeling h of type (1, 1, 1) of G such that h(zext) = p+ q + f + 1 then, for
every positive integer m, the graph mG also admits a (super) 1-antimagic labeling of
type (1, 1, 1).

The next theorem presents results on (super) d-antimagic labelings of type (1, 1, 1)
for plane graphs containing 3-sided inner faces.

Theorem 2.18. [23] Let G(V,E, F ) be a plane graph with 3-sided inner faces. Let h
be a (super) d-antimagic labeling of type (1, 1, 1) of G such that h(zext) = p+q+f+1.

i) If d = 1, 5, 7, then for every positive integer m, the graph mG also admits a
(super) d-antimagic labeling of type (1, 1, 1).

ii) If G is a tripartite graph and d = 3, then for every positive integer m, the graph
mG also admits a (super) d-antimagic labeling of type (1, 1, 1).

iii) If G is a tripartite graph and d = 0, 2, 4, 6, then for every odd positive integer
m, the graph mG also admits a (super) d-antimagic labeling of type (1, 1, 1).

According to Theorems 2.8 and 2.9, from Theorem 2.18, we get

Corollary 2.1. Let m,n, d be nonnegative integers, n ≥ 2, m ≥ 1. Then for m
odd, the graphs mFn and mEn admit a super d-antimagic labeling of type (1, 1, 1),
for d = 0, 2, 4, 6. Moreover, if n ≡ 1 (mod 2) then mFn and mEn admit a super
d-antimagic labeling of type (1, 1, 1), for d = 1, 3, 5, 7.

For the plane graphs with all inner 4-sided faces, the following theorem was
proved.

Theorem 2.19. [23] Let G(V,E, F ) be a plane graph with 4-sided inner faces. Let h
be a (super) d-antimagic labeling of type (1, 1, 1) of G such that h(zext) = p+q+f+1.
If d = 1, 3, 5, 7, 9, then for every positive integer m, the graph mG also admits a
(super) d-antimagic labeling of type (1, 1, 1).
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Combining Theorems 2.10 and 2.11 with Theorem 2.19 we obtain the next two
corollaries.

Corollary 2.2. [23] Let m,n, d be nonnegative integers, 3 ≤ n ≡ 1 (mod 2), m ≥ 1.
Then the graph mBn admits a super d-antimagic labeling of type (1, 1, 1), for d =
1, 3, 5, 7, 9.

Corollary 2.3. [23] Let m,n, d be nonnegative integers, n ≥ 2, m ≥ 1. Then the
graph mGn admits super d-antimagic labeling of type (1, 1, 1), for d = 1, 3, 5, 7, 9.

It is possible to generalize the results in Theorems 2.18 and 2.19 for plane graphs
containing only k-sided faces except the external face, where k is a positive integer,
k ≥ 3.

Theorem 2.20. [23] Let k, d be positive integers, k ≥ 3. Let G(V,E, F ) be a plane
graph with k-sided inner faces. Let h be a (super) d-antimagic labeling of type (1, 1, 1)
of G such that h(zext) = p + q + f + 1.

i) If d = 1, 2k± 1, then for every positive integer m, the graph mG also admits a
(super) d-antimagic labeling of type (1, 1, 1).

ii) Moreover, if k is even and d = k ± 1, then for every positive integer m, the
graph mG also admits a (super) d-antimagic labeling of type (1, 1, 1).

We can also formulate similar results for plane graphs with two kinds of inner
faces.

Theorem 2.21. [23] Let k be a positive integer, k ≥ 3. Let G(V,E, F ) be a plane
graph with k-sided and (k+1)-sided inner faces. Let h be a (super) (2k+1)-antimagic
labeling of type (1, 1, 1) of G such that h(zext) = p+q+f+1. Then, for every positive
integer m, the graph mG also admits a (super) (2k + 1)-antimagic labeling of type
(1, 1, 1).

Acknowledgements

This work was supported by the Slovak Science and Technology Assistance Agency
under the contract No. APVV-15-0116.

The authors are grateful to the anonymous referees for their valuable comments
and suggestions that improved this paper.

References

[1] S. Ahmad, On the evaluation of a subdivision of the ladder graph, Punjab Univ.
J. Math. 47(1) (2015), 15–19.
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[8] M. Bača, On magic labelings of grid graphs, Ars Combin. 33 (1992), 295–299.

[9] M. Bača, On magic labelings of honeycomb, Discrete Math. 105 (1992), 305–
311.
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[23] M. Bača, M. Miller, O. Phanalasy and A. Semaničová-Feňovč́ıková, Super d-
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