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Colourings with bounded monochromatic
components in graphs of given circumference
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Abstract

We prove that every graph with circumference at most k is O(log k)-
colourable such that every monochromatic component has size at most
k. The O(log k) bound on the number of colours is best possible, even in
the setting of colourings with bounded monochromatic degree.
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In a vertex-coloured graph, a monochromatic component is a connected compo-
nent of the subgraph induced by all the vertices of one colour. As a relaxation of
proper colouring, recent work has focused on graph colourings with monochromatic
components of bounded size (so-called clustered colourings [1, 3, 8, 13, 14, 16, 18,
19, 22]) or bounded monochromatic degree (so-called defective colourings [2, 4–7, 9–
12, 15, 17, 21, 22]).

The circumference of a graph G is the length of the longest cycle if G contains
a cycle, and is 2 if G is a forest. This paper studies colourings of graphs of given
circumference with monochromatic components of bounded size. Our primary goal
is to minimize the number of colours, while reducing the order of the monochromatic
components is a secondary objective.

Let g(k) be the minimum integer c for which there exists an integer d such
that every graph with circumference at most k has a c-colouring in which every
monochromatic component has order at most d. Our main result is that g(k) =
Θ(log k). First we prove the upper bound.

Theorem 1. For every integer k � 2, every graph G with circumference at most k is
�3 log2 k�-colourable such that every monochromatic component has order at most k.

This result is implied by the following lemma with C = ∅. A clique is a set of
pairwise adjacent vertices.

Lemma 2. For every integer k � 2, for every graph G with circumference at most
k and for every pre-coloured clique C of size at most 2 in G, there is a �3 log2 k�-
colouring of G such that every monochromatic component has order at most k and
every monochromatic component that intersects C is contained in C.

Proof. We proceed by induction on k + |V (G)|. The result is trivial if |V (G)| � 2.
Now assume |V (G)| � 3.

First suppose that k = 2. Then G is a forest, which is properly 2-colourable. If
|C| � 1 or |C| = 2 and two colours are used on C, we obtain the desired colouring
(with 2 < �3 log2 k� colours). Otherwise, |C| = 2 with the same colour on the vertices
in C. Contract the edge C and 2-colour the resulting forest by induction, to obtain
the desired colouring of G. Now assume that k � 3.

Suppose that G is not 3-connected. Then G has a minimal separation (G1, G2)
with S := V (G1∩G2) of size at most 2. If |S| = 2, then add the edge on S if the edge
is not already present. Consider both G1 and G2 to contain this edge. Observe that
since the separation is minimal, there is a path in each Gj (j = 1, 2) between the two
vertices of S. Therefore, adding the edge does not increase the circumference of G.
Also note that any valid colouring of the augmented graph will be valid for the original
graph. Since C is a clique, we may assume that C ⊆ V (G1). By induction, there
is a �3 log2 k�-colouring of G1, with C precoloured, such that every monochromatic
component of G1 has order at most k and every monochromatic component ofG1 that
intersects C is contained in C. This colours S. By induction, there is a �3 log2 k�-
colouring of G2, with S precoloured, such that every monochromatic component of
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G2 has order at most k and every monochromatic component of G2 that intersects S
is contained in S. By combining the two colourings, every monochromatic component
of G has order at most k and every monochromatic component of G that intersects
C is contained in C, as required. Now assume that G is 3-connected.

Menger’s theorem implies that every 3-connected graph contains a cycle of length
at least 4. Thus k � 4.

If G contains no cycle of length k, then apply the induction hypothesis for k− 1;
thus we may assume that G contains a cycle Q of length k. Let A be the set of cycles
in G of length at least �1

2
(k − 5)	. Suppose that a cycle A ∈ A is disjoint from Q.

Since G is 3-connected, there are three disjoint paths between A and Q. It follows
that G contains three cycles with total length at least 2(|A| + |Q| + 3) > 3k. Thus
G contains a cycle of length greater than k, which is a contradiction. Hence, every
cycle in A intersects Q.

Let S := V (Q) ∪C. As shown above, G′ := G− S contains no cycle of length at
least �1

2
(k − 5)	. Then G′ has circumference at most max{2, �1

2
(k − 7)	}, which is

at most �1
2
k�, which is at least 2. By induction (with no precoloured vertices), there

is a �3 log2�1
2
k��-colouring of G′ such that every monochromatic component of G′

has order at most �1
2
k�. Use a set of colours for G′ disjoint from the (at most two)

preassigned colours for C. Use one new colour for S \C, which has size at most k. In
total, there are at most �3 log2�1

2
k��+ 3 � �3 log2 k� colours. Every monochromatic

component of G has order at most k, and every monochromatic component of G that
intersects C is contained in C.

Note that if h is the function defined by the recurrence,

h(k) :=

⎧⎪⎨
⎪⎩

2 if k = 2

5 if 3 � k � 11

h(�1
2
(k − 7)	) + 3 if k � 12,

then �3 log2 k� can be replaced by h(k) in Theorem 1.

We now show that the O(log k) bound in Theorem 1 is within a constant factor
of optimal even in the setting of colourings of bounded monochromatic degree. The
following result is implicit in [21]. We include the proof for completeness.

Proposition 3. For any integers k, d � 1 there is a graph Gk,d with circumference
at most 2k, such that every k-colouring of Gk,d contains a vertex of monochromatic
degree at least d.

Proof. We proceed by induction on k � 1 with d fixed (and thus write Gk instead
of Gk,d), and with the additional property that Gk contains no path of order 2k+1.
For the base case, k = 1, let G1 be the star K1,d, which has circumference 2 and
no path of order 4. Every 1-colouring of G1 contains a vertex of monochromatic
degree d. Now assume that k � 2 and there is a graph Gk−1 with circumference 2k−1

and no path of order 2k, such that every (k− 1)-colouring of Gk−1 contains a vertex
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of monochromatic degree at least d. Let Gk be obtained from d copies of Gk−1 by
adding one new dominant vertex v.

If C is a cycle in Gk with length at least 2k + 1, then C is contained in one copy
of Gk−1 plus v, and thus Gk−1 contains a path of order 2k, which is a contradiction.
Thus Gk has circumference at most 2k.

If Gk contains a path P of order 2k+1, then v is in P , otherwise P is contained in
some copy of Gk−1. Hence P −v includes a path component of order �1

2
(2k+1 − 1)	 =

2k contained in a copy of Gk−1, which is a contradiction. Hence Gk contains no path
of order 2k+1.

Finally, consider a k-colouring of Gk. Say v is blue. If every copy of Gk−1 contains
a blue vertex, then v has monochromatic degree d, and we are done. Otherwise, some
copy of Gk−1 contains no blue vertex, in which case Gk−1 is (k − 1)-coloured, and
thus G contains a monochromatic vertex of degree at least d.

Let f(k) be the minimum integer c for which there exists an integer d such
that every graph with circumference at most k has a c-colouring in which every
monochromatic component has maximum degree at most d. In the language of
Ossona de Mendez et al. [21], f(k) is the defective chromatic number of the class
of graphs with circumference at most k. Obviously, bounded size implies bounded
degree, so f(k) � g(k). Theorem 1 and Proposition 3 imply that

�log2 k�+ 1 � f(k) � g(k) � �3 log2 k�. (1)

We conclude this paper by placing our results in the context of a conjecture of
Ossona de Mendez et al. [21]. The closure of a rooted tree T is the graph obtained
from T by adding an edge between each ancestor and descendant. The tree-depth
of a connected graph H , denoted td(H), is the minimum depth of a rooted tree for
which H is a subgraph of the closure of T , where the depth of a rooted tree T is the
maximum number of vertices in a root-to-leaf path. For a graph H , let f(H) be the
minimum integer c such that there exists an integer d such that every H-minor-free
graph has a c-colouring in which every monochromatic component has maximum
degree at most d. Ossona de Mendez et al. [21] proved that f(H) � td(H)− 1 for
every connected graph H , and conjectured that

f(H) = td(H)− 1. (2)

A graph has circumference at most k if and only if it contains no Ck+1 minor; thus
f(k) = f(Ck+1). It is easily seen that

td(Ck+1) = 1 + �log2(k + 1)	 = 2 + �log2 k�.
Thus the lower bound f(H) � td(H)− 1, in the case of cycles, is equivalent to the
lower bound on f(k) in (1). And conjecture (2), in the case of cycles, asserts that
equality holds. That is,

f(k) = f(Ck+1) = td(Ck+1)− 1 = �log2(k + 1)	.
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Hence Theorem 1, which proves that f(k) � �3 log2 k�, is within a factor 3 of con-
jecture (2) for excluded cycles. The best previous upper bound was linear in k.

We obtain similar results for graph classes excluding a fixed path, which were
identified by Ossona de Mendez et al. [21] as a key case for which their bounds on f
were far apart. Let Pk be the path on k vertices. Then td(Pk) = �log2(k + 1)	; see
[20]. Of course, a graph contains a Pk minor if and only if it contains a Pk subgraph.
Thus conjecture (2), in the case of paths, asserts that

f(Pk+1) = td(Pk+1)− 1 = �log2(k + 2)	 − 1.

Every graph with no Pk+1-minor has circumference at most k. Thus Theorem 1
implies that f(Pk+1) � �3 log2 k�, which is within a factor of 3 of conjecture (2) for
excluded paths. The best previous upper bound was linear in k.

Acknowledgements

This research was completed at the Australasian Conference on Combinatorial Math-
ematics and Combinatorial Computing (40ACCMCC) held at The University of New-
castle, Australia, December 2016. Thanks to the conference organisers.

References

[1] Noga Alon, Guoli Ding, Bogdan Oporowski and Dirk Vertigan,
Partitioning into graphs with only small components, J. Combin. Theory Ser.
B 87(2) (2003), 231–243. doi: 10.1016/S0095-8956(02)00006-0. MR: 1957474.

[2] Dan Archdeacon, A note on defective colorings of graphs in surfaces, J.
Graph Theory 11(4) (1987), 517–519. doi: 10.1002/jgt.3190110408.

[3] Maria Axenovich, Torsten Ueckerdt and Pascal Weiner, Splitting
Planar Graphs of Girth 6 into Two Linear Forests with Short Paths, J. Graph
Theory 85(3) (2017), 601–618. doi: 10.1002/jgt.22093.

[4] Oleg V. Borodin, Anna O. Ivanova, Mickaël Montassier and André
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