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Abstract

It is shown that for all admissible n ≥ 15 there exists a nonlinear binary
1-perfect code of length n whose minimum distance graph contains at
least 7(n + 1)/16 pairwise edge-disjoint Hamiltonian cycles. It is also
shown that for all admissible n ≥ 15 the minimum distance graph of the
binary Hamming code of length n contains at least 7(n+ 1)/16 pairwise
edge-disjoint Hamiltonian cycles.

1 Introduction

Let Fn
2 be a vector space of dimension n over the finite field F2. The Hamming

distance between two vectors x, y ∈ Fn
2 is the number of coordinates in which

they differ, denoted by d(x,y). An arbitrary subset C of Fn
2 is called a binary

perfect 1-error correcting code (briefly 1-perfect code) of length n if for every vector
x ∈ Fn

2 there exists a unique vector c ∈ C such that d(x, c) ≤ 1. Non-trivial
binary 1-perfect codes of length n exist only if n = 2m − 1, where m is a natural
number not less than two. The minimum distance of any 1-perfect code is 3. Two
codes C1, C2 ⊆ Fn

2 are said to be equivalent if there exists a vector v ∈ Fn
2 and a

permutation π in the symmetric group Sn such that C2 = {v+ π(c) | c ∈ C1} where
π(c) = π(c1, . . . , cn) := (cπ−1(1), . . . , cπ−1(n)).

We assume that the all-zero vector 0 is in code. A code is called linear if it
is a linear space over F2. A linear binary 1-perfect code of length n is unique up
to equivalence and is called the binary Hamming code. We will denote the binary
Hamming code of length n by Hn.

A distance graph of the code C is a graph whose vertex set is C and vertices
x,y ∈ C are adjacent if and only if d(x,y) = d, where d is a fixed natural number.
If d is the minimum distance of the code C, then the distance graph is called the
minimum distance graph, denoted by G(C).
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Minimum distance graphs arise naturally from error-correcting codes. It was
shown [3] that the minimum distance graphs of two binary 1-perfect codes are iso-
morphic if and only if the codes are equivalent. In [11], it was established that
nonequivalent binary extended 1-perfect codes have non-isomorphic minimum dis-
tance graphs. In [6, 10], it was established that the minimum distance graphs of two
extended Preparata codes are isomorphic if and only if the codes are equivalent. If
C is a binary 1-perfect code of length n, then the minimum distance graph G(C) is
a (n)(n− 1)/6-regular bipartite graph with 2n−m vertices, n = 2m − 1, m ≥ 2.

Definition 1 If G is a k-regular graph, then a Hamiltonian decomposition of G is
a set of �k/2� pairwise edge-disjoint Hamiltonian cycles in G.

It is known that a complete graph with more than two vertices is Hamiltonian
decomposable [1, 4, 8]. The minimum distance graph of the vector space Fn

2 is called
hypercube of dimension n. The n-dimensional hypercube is an n-regular graph with
2n vertices. The n-dimensional hypercube also has a Hamiltonian decomposition,
i.e., �n/2� pairwise edge-disjoint Hamiltonian cycles [2].

It is known that G(H7) is Hamiltonian decomposable [12]. We conjecture that
the minimum distance graph G(Hn) of the binary Hamming code Hn of length n is
Hamiltonian decomposable for all n = 2m − 1, m ≥ 3.

In [12], Pike has shown that the minimum distance graph G(Hn) has at least
�(n−m)/2� edge-disjoint Hamiltonian cycles, n = 2m − 1, m ≥ 3. In this paper, we
prove that for all admissible n ≥ 15 the minimum distance graph G(Hn) has at least
7(n+1)/16 edge-disjoint Hamiltonian cycles. This is better than the Pike bound for
n = 15, 31.

In [13], it was shown that for all admissible n ≥ 15 there exists a nonlinear binary
1-perfect code of length n whose minimum distance graph has Hamiltonian cycles. In
[14], it was shown that for all n = (qm− 1)/(q− 1), m ≥ 2 (except q = 2, 3, 4, m = 2,
and q = 2, m = 3) there exists a nonlinear q-ary 1-perfect code of length n whose
minimum distance graph has Hamiltonian cycles. In this paper, we prove that for
all admissible n ≥ 15 there exists a nonlinear binary 1-perfect code of length n
whose minimum distance graph contains at least 7(n + 1)/16 pairwise edge-disjoint
Hamiltonian cycles.

It has been shown [15] that there exist at least 22
cn

nonequivalent binary 1-perfect
codes of length n, where c = 1

2
− ε.

2 Main results

In this section, we construct a nonlinear binary 1-perfect code Tn and we prove
that the minimum distance graph G(Tn) of the code Tn contains a certain special
subgraph.

The parity-check matrix H = [h1,h2, . . . ,hn] of the binary Hamming code Hn

of length n = 2m − 1 consists of n pairwise linearly independent column vectors hi,
i ∈ {1, . . . , n}. The transposed column vector hT

i belongs to Fm
2 \{0}, i ∈ {1, . . . , n}.

We assume that the columns of the parity-check matrix H are arranged in some
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fixed order. Set Fm
2 \ {0} generates a projective geometry PG(m− 1, 2) of geometric

dimension m − 1 over the finite field F2. In this geometry, the points correspond
to the columns of H and the points i, j, k lie on the same line if the corresponding
columns hi,hj,hk are linearly dependent, i.e., their sum is all-zero column.

Let x = (x1, x2, . . . , xn) ∈ Fn
2 , then the support of the vector x is the set

supp(x) = {i | xi 	= 0}.

A vector of weight 3 of the binary Hamming code Hn is called triple. Let i ∈
{1, . . . , n}, then we denote a subspace spanned by the set of all triples of the code
Hn having 1 in the ith coordinate by Ri. By definition, the minimum distance of the
code Ri is 3.

Proposition 2 The minimum distance graph G(Ri) and the hypercube of dimension
(n− 1)/2 are isomorphic.

Proof. Let u ∈ Hn be a triple having 1 in the ith coordinate. Then the supp(u)
can be considered as a line in the projective geometry PG(m− 1, 2). The number of
lines passing through a fixed point in PG(m−1, 2) is equal to (n−1)/2, n = 2m−1,
m ≥ 3. By definition of the binary Hamming code Hn and the parity-check matrix
H of code Hn, it follows that all triples of the code Hn having 1 in the ith coordinate
are linearly independent. Therefore the dimension of Ri is (n−1)/2. Since all triples
have weight 3, the minimum distance graph G(Ri) and the hypercube of dimension
(n− 1)/2 are isomorphic. �

Consider a vector x ∈ Fn
2 such that its supp(x) is a hyperplane of geometric

dimension m− 2. Let C ⊆ Fk
2, k = (n− 1)/2, α be a bijective map from supp(x) to

{1, 2, . . . , k}, and Cx ⊆ Fn
2 . Then a vector c′ = (c′1, c

′
2, . . . , c

′
n) belongs to the code

Cx if and only if there exists c = (c1, c2, . . . , ck) ∈ C such that

c′i =

{
cα(i) if i ∈ supp(x),

0 if i /∈ supp(x),

for all i ∈ {1, 2, . . . , n}. The code Cx can be viewed as embedding the code C in a
large dimensional space.

Now we construct a nonlinear binary 1-perfect code T15 of length 15 by switching
construction [5, 15]. For given i ∈ {1, 2, . . . , 15}, Ri ⊂ H15, and c ∈ (H15 \ Ri), we
set

T15 = (H15 \ (Ri + c)) ∪ (Ri + c+ ei),

where ei is a binary vector of length 15, in which the ith component is equal to 1
and all other components are 0.

The binary Hamming code Hn of length n is unique linear code with 2-transitive
automorphism group [9]. Hence the nonlinear binary 1-perfect code T15 is unique.

Next, we present a recursive construction of a code Tn of length n = 2m − 1,
m ≥ 5. Let us assume that we have already constructed the code Tk of length
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k = (n− 1)/2. Then for given x ∈ Fn
2 such that its supp(x) is an m− 2 dimensional

hyperplane, i ∈ {1, 2, . . . , n}, i /∈ supp(x), Ri ⊂ Hn, we set

Tn =
⋃

u∈Tx
k

(Ri + u).

Lemma 3 Let x ∈ Fn
2 be such that its supp(x) is an m− 2 dimensional hyperplane,

i ∈ {1, 2, . . . , n}, i /∈ supp(x), the code Ri ⊂ Hn, k = (n− 1)/2, n = 2m − 1, m ≥ 5.
Then the following statement holds:

T x
k ∩Ri = {0}.

Proof. By definition, 0 ∈ T x
k and 0 ∈ Ri. Therefore 0 ∈ T x

k ∩Ri.
Next we prove that (T x

k ∩ Ri) \ {0} = ∅. For every two distinct points, there is
exactly one line that contains both points. Let l be a line which passes through the
point i. Since i /∈ supp(x), the intersection of the hyperplane supp(x) with the line
l contains exactly one point. Otherwise, all points on the line l must belong to the
hyperplane supp(x). Let u,u′ be triples of the code Hn having 1 in the ith coordinate
and let supp(u) = {i, j, k}), supp(u′) = {i, j′, k′}). Since {i, j, k} and {i, j′, k′} are
lines of the projective geometry PG(m− 1, 2), j = j′ if and only if k = k′. Therefore

supp(c) � supp(x) for all c ∈ Ri, c 	= 0. (1)

Further we define a set Fx. Let

Fx = {c ∈ Fn
2 | supp(c) ⊆ supp(x)} .

From (1) it follows that (Fx ∩ Ri) \ {0} = ∅. By definition, T x
k ⊆ Fx. Hence, we

proved that (T x
k ∩Ri) \ {0} = ∅. �

Lemma 4 The code Tn is a nonlinear binary 1-perfect code of length n = 2m − 1,
m ≥ 4.

Proof. We will prove the theorem by induction on m. By definition, the code T15 is
a nonlinear binary 1-perfect code of length 15, see [5, 15]. By induction hypothesis,
the code Tk is a nonlinear binary 1-perfect code of length k = (n − 1)/2. Next we
prove that the code

Tn =
⋃

u∈Tx
k

(Ri + u)

is a nonlinear binary 1-perfect code of length n = 2m − 1, m ≥ 5.
We need to prove that the number of codewords in the code Tn is correct and

that the minimum distance of Tn is equal to 3. From Proposition 2 it follows that
the code Ri ⊆ Hn contains 2

n−1
2 codewords. By induction hypothesis, the code Tk

contains 2
n−1
2

−m+1 codewords. Hence, taking into account Lemma 3, we have that
the code Tn contains 2n−m codewords.
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Now we show that the minimum distance of Tn is equal to 3. Suppose that the
first k+1 components of the vector x are equal to 0, and the remaining components
of this vector are equal to 1. Then any codeword in Tn can be represented in the
form

(v|w) + (0|u),
where (·|·) denotes concatenation, (v|w) ∈ Ri, supp(v) ∩ supp(x) = ∅, supp(w) ⊆
supp(x), and u ∈ T x

k . Since i /∈ supp(x), then from the definition of the code Ri,
it follows that d(v,v′) ≥ 2 for all (v|w), (v′|w′) ∈ Ri and (v|w) 	= (v′|w′). For
d(v,v′) ≥ 3 taking into account Lemma 3, we have that the minimum distance of
the code Tn is 3.

Let d(v,v′) = 2, then it follows from the definition of Ri that

1 ≤ d(w,w′) ≤ 2.

From the definition of the 1-perfect code it follows that the 1-perfect code T x
k of

length k and vectors e1, e2, . . . , ek form a partition of the space Fk
2. Then since

1 ≤ d(w,w′) ≤ 2, then taking into account Lemma 3, we get that

d(w + u,w′ + u′) ≥ 1 for all u,u′ ∈ T x
k .

Hence we have that the minimum distance of the code Tn is 3.
By induction hypothesis, the code Tk is nonlinear, therefore the code Tn is also

nonlinear. �
We will use the notation G1�G2 for the Cartesian product of graphs. Further we

consider a special subgraph G(Ri) �G(Tk).

Lemma 5 The minimum distance graph G(Tn) of the code Tn contains the spanning
subgraph G(Ri) �G(Tk) where x ∈ Fn

2 , supp(x) is an m− 2 dimensional hyperplane,
Ri ⊂ Hn, i /∈ supp(x), k = (n− 1)/2, n = 2m − 1, m ≥ 5.

Proof. By definition, the minimum distance graphG(T x
k ) and the minimum distance

graph G(Tk) are isomorphic. Hence from Lemma 3, it follows that the minimum
distance graph G(Tn) of the code Tn contains the spanning subgraph G(Ri) �G(Tk).

�

Theorem 6 The minimum distance graph G(Tn) of the nonlinear binary 1-perfect
code Tn contains at least 7(n+ 1)/16 pairwise edge-disjoint Hamiltonian cycles, n =
2m − 1, m ≥ 4.

Proof. We will prove the theorem by induction on m. It is not difficult to check
by computer that the minimum distance graph G(T15) contains at least 7 pairwise
edge-disjoint Hamiltonian cycles. By induction hypothesis, the minimum distance
graph G(Tk) contains at least 7(n+1)/32 pairwise edge-disjoint Hamiltonian cycles,
k = (n − 1)/2, n = 2m − 1, m ≥ 5. By Proposition 2 as well as observations
made in [2], it follows that the minimum distance graph G(Ri) of the code Ri ⊂ Hn
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contains (n − 3)/4 pairwise edge-disjoint Hamiltonian cycles. It is well known that
Cartesian product of any two cycles can be decomposed into two Hamiltonian cycles
[7]. Therefore, by Lemma 5, it follows that the minimum distance graph G(Tn) of the
nonlinear binary 1-perfect code Tn contains at least 7(n+1)/16 pairwise edge-disjoint
Hamiltonian cycles, n = 2m − 1, m ≥ 4. �

Lemma 7 The minimum distance graph G(Hn) of the binary Hamming code Hn

contains the spanning subgraph G(Ri) �G(Hk) where Hk is the binary Hamming code
of length k = (n− 1)/2, n = 2m − 1, m ≥ 3, i ∈ {1, 2, . . . , n}.

Proof. Let x ∈ Fn
2 be such that its supp(x) is an m − 2 dimensional hyperplane.

Let
Hx

k = {u ∈ Hn | supp(u) ⊆ supp(x)} ,
where k = (n− 1)/2. If i /∈ supp(x) then Hx

k ∩Ri = {0} and

Hn =
⋃

u∈Hx
k

(Ri + u).

Therefore the minimum distance graph G(Hn) of the binary Hamming code Hn

contains the spanning subgraph G(Ri) �G(Hk). �

Theorem 8 The minimum distance graph G(Hn) of the binary Hamming code Hn

contains at least 7(n+ 1)/16 pairwise edge-disjoint Hamiltonian cycles, n = 2m − 1,
m ≥ 4.

Proof. This proof is similar to the proof of Theorem 6. It is not difficult to
check by computer that the minimum distance graph G(H15) of the binary Hamming
code H15 of length n = 15 contains at least 7 pairwise edge-disjoint Hamiltonian
cycles. Therefore, by Lemma 7, it follows that the minimum distance graph G(Hn)
of the binary Hamming code Hn contains at least 7(n+1)/16 pairwise edge-disjoint
Hamiltonian cycles, n = 2m − 1, m ≥ 4. �
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