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Abstract

We consider, for class-1, Δ-regular graphsG, the associated graphKE (G),
where the vertices of KE (G) are Δ-edge colorings of G and edges of
KE (G) are present where two Δ-edge colorings of G differ by a single
edge-Kempe switch. We focus on the case of cubic graphs and determine
various structural properties of KE (G) and KE v(G), where the latter
considers a fixed set of colors on the edges incident to the vertex v. Ad-
ditionally, we consider the ways in which KE v(G) for any choice of v
must be very similar, as well as how they can differ.

1 Introduction and Summary

Consider a graph G with a proper edge coloring. A maximal two-color alternating
path or cycle of edges is called an edge-Kempe chain; switching the colors along such
a chain is called an edge-Kempe switch. Two edge-colorings are Kempe equivalent if
one can be obtained from the other by a sequence of edge-Kempe switches. In [1],
we examined equivalence classes of edge-colorings of graphs, with a focus on cubic
graphs. Here we examine the Kempe-equivalence graph, denoted KE (G), and defined
as follows. Let G be a graph with maximum degree Δ, associate to each Δ(G)-edge
coloring of G a vertex in KE (G), and two vertices of KE (G) are adjacent when the
colorings they represent differ by a single edge-Kempe switch. An equivalence class
of colorings corresponds to a connected component of KE (G). (In [1], we denoted
the number of components of KE (G) as K ′(G,Δ(G)).)

Kempe-equivalence graphs are an example of reconfiguration graphs. A reconfig-
uration graph has as its vertices all feasible solutions to a given problem, and two
solutions are adjacent if and only if one can be obtained from the other by one ap-
plication of a specific reconfiguration rule. There are several useful reconfiguration
graphs for coloring that are currently being studied. One reason for this interest is the
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application to theoretical physics, where vertex-coloring graphs describe the Glauber
dynamics of an anti-ferromagnetic Potts model at zero temperature [6, 9, 14]. In this
situation, the set of all proper vertex k-colorings of a graph forms the state space
for a Markov chain with iterations given by randomly recoloring a randomly selected
vertex of G.

Motivated by the Markov chain connection, a graph G is said to be k-mixing if the
k-coloring graph, with vertices representing proper vertex k-colorings of G and edges
joining colorings that differ at a single vertex, is connected. The question of when G
is k-mixing as well as the computational complexity of answering that question have
been extensively studied [3, 4]. For instance, it has been shown that if the chromatic
number χ(G) = k ∈ {2, 3}, then G is not k-mixing. There are also examples of G
with k1 < k2 such that G is k1-mixing but not k2-mixing. Mixing properties related
to modifications of the k-coloring graph have also been studied (cf. [2, 8]). Recent
work considers when the coloring graph and its modifications contain a Hamiltonian
cycle [5, 8]. In each of the above references, the reconfiguration rule used was to
allow recoloring of one vertex at a time. There is some literature that suggests that
using Kempe changes is an appropriate model for some Glauber dynamics [13]. A
recent paper by Feghali [7] et. al. shows that for almost all connected cubic graphs
all 3-vertex colorings are Kempe equivalent.

In this paper we consider edge colorings, and two edge colorings will be adja-
cent if one is obtained from the other by switching the colors along one edge-Kempe
chain. We investigate the structure of the Kempe-equivalence edge coloring graphs
as has been done for other reconfiguration graphs. (We are not the first to do so;
while Kaszonyi [10] has some similar results, these are for a very restricted class of
cubic graphs and his language and notation are highly non-standard. Additionally,
his proof methods are quite different from ours.) More recently, the Kempe equiva-
lence of edge colorings was addressed in [12]. It turns out that while we can obtain
some structural results, these are of limited use in understanding even relatively
straightforward examples; the arguments used in proving structure theorems neither
specialize nor extend in individual cases. We include a detailed example in Section
4 to show the limits of the theory and how cumbersome the calculation is.

Theorem 3.1 in [1] shows that given a vertex v of G, we can reach any edge-
Kempe equivalent coloring with the same colors on edges incident to v without
changing colors at v in the process. If we fix the edge colors at a vertex v of G (so
as to ignore colorings that differ only because of color permutation), we denote the
resulting Kempe-equivalence graph by KE v(G). This is in contrast to KE (G), which
has as its vertex set all colorings of the graph G. We will discuss how choice of v
does and does not effect KE v(G).

We often assume that all graphs G are k-regular (have all vertices of degree k)
and class 1 (edge colorable with k colors), although some of our results will hold
more generally. A cubic graph is 3-regular and some of our results will only hold
for cubic graphs. Colors are named as {1, 2, 3, . . . } or {dash, gray, solid} depending
on which makes most expositional sense. We say that two edge colorings c1, c2 are
isomorphic colorings if they partition the base graph G into the same sets. That
is, the colorings are isomorphic if they differ only by a permutation of the names of
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the colors. Note that in a regular, class-1 graph, all Kempe chains will in fact be
Kempe cycles. We use Sk to refer to the symmetric group on k letters (the group of
permutations).

The main results of this paper are in Section 2, where we look at structural
properties of KE v(G) and KE (G) from several perspectives. We show that KE (G)
graphs can never contain triangles, but almost always contains hypercubes. We show
that for any graph G, there is an infinite family of graphs with the same KE graph
as G. We also consider the ways in which KE v(G) for any choice of v must be
very similar, as well as how they can differ. The notation KEC(G) will denote the
subgraph of KE (G) where the colors on the edges in set C are fixed and Section
3 provides descriptions of KE (G) for some graph products that were also analyzed
in [1]. Section 4 gives a sample calculation of KE v(G) for a particular graph, and
Section 5 concludes the paper with some open questions.

2 Structural Results for KE (G) and KE v(G)

We begin with some simple observations that hold for all graphs, not just those that
are regular and class 1.

Proposition 2.1. For any graph G, KE (G) is triangle free.

Proof. Suppose there were a 3-cycle in KE (G). This means there is a sequence
of exactly three edge-Kempe switches that returns a graph to its original coloring.
Without loss of generality, let the first switch involve colors 1 and 2. If the second
switch also involves colors 1 and 2, then the switched chains are disjoint and both
cannot be un-switched using a third switch. If the second switch involves two different
colors 3 and 4, the same problem occurs. If the second switch involves colors 2 and 3
(or colors 1 and 3), then either the chains are disjoint, causing the same problem as
the previous case, or the chains intersect. In this case there is a subset of the edges
with a color permutation that is not a transposition and therefore cannot be undone
with a single edge-Kempe switch.

Proposition 2.2. For any graph G, KE (G) has girth 4.

Proof. Suppose KE (G) has a vertex (coloring of G) in which there are at least
two edge-disjoint 2-color edge-Kempe cycles. Switching the colors independently
generates a 4-cycle in KE (G), and so KE (G) has girth 4.

Instead, suppose thatKE (G) has no such vertex (coloring ofG). This implies that
every edge-Kempe cycle in every coloring ofG is Hamiltonian, and that the only edges
in KE (G) correspond to transposing pairs of colors. Considering any three colors,
say 1, 2, 3, then sequentially doing the color transpositions (1, 2), (1, 3), (2, 3), (1, 3)
forms a 4-cycle. Therefore KE (G) has girth 4.

Moreover, any graph G with some coloring that has many independent edge-
Kempe cycles will have multiple copies of C4 in KE (G). More precisely we have the
following.



S.M. BELCASTRO AND R. HAAS/AUSTRALAS. J. COMBIN. 69 (2) (2017), 197–214 200

Theorem 2.3. Suppose there exists a proper edge coloring, c, of a graph G with qij
Kempe chains in the color pair (i, j). Then for all 1 ≤ i < j ≤ k, KE (G) contains
a (qij)-cube. Further, all of these cubes intersect in exactly the one vertex of KE (G)
corresponding to the coloring c.

Proof. For each pair of colors, each Kempe switch generates an edge from the cube,
and because when performing two such switches of the same color pair the order does
not matter, we obtain a square in KE (G). Thus the (i, j) switches form a (qij)-cube
in KE (G).

Another basic observation is that the KE graph of a disjoint union of graphs is
the cartesian product of the KE graphs of the component parts.

Proposition 2.4. KE (G1 �G2) = KE (G1)�KE (G2).

We now move to results that hold only for regular graphs. Recall that for a cubic
graph the Δ− � operation is defined as replacing a K3 with a single vertex. This is
shown in Figure 1. Next we show that for cubic graphs the Δ− � operation has no
effect on the KE graph. Note that this proposition holds for multigraphs. We will
discuss cubic multigraphs further in Section 2.1.

Figure 1: Corresponding 3-edge colorings across a Δ− � operation.

Proposition 2.5. For any 3-edge colorable cubic (multi)graph G, and any Δ − �

operation on G, denote the resulting graph by GΔ. Then, KE (G) = KE (GΔ).

Proof. Notice that there is a one-to-one correspondence between 3-edge colorings of
G and 3-edge colorings of GΔ, as shown in Figure 1. Moreover, each edge-Kempe
switch between a pair of colorings onG corresponds to one between the corresponding
colorings of GΔ.

If G is regular of degree k > 3, then a Δ− � move does not preserve regularity.
The generalization of these results for k > 3 is that replacing a Kk by a vertex will
not change the KE graph.

For cubic G adding (or removing) a pair of triangles that share an edge changes
KE (G), because it adds (or removes) a Kempe chain. Perhaps surprisingly, the
existence of a pair of triangles in a cubic graph can produce different KEv(G) for
different v. An example of this is given in Example 2.17 of Section 2.2. By a lone
triangle (respectively lone Kk) we will mean a copy of C3 (respectively Kk) that does
not share an edge with another copy of C3 (respectively Kk).
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Corollary 2.6. In examining the structure and realizability of KE (G) for cubic
(respectively k-regular) graphs, it suffices to consider graphs without lone triangles
(respectively Kks).

Corollary 2.7. Given a k-regular graph G with associated KE (G), there is an infi-
nite family of graphs H such that for all H ∈ H, KE (H) = KE (G).

Proof. This follows from Proposition 2.5 for cubic graphs, and more generally by the
discussion above.

While the most naive method of removing triangles that share an edge can change
KE (G), it turns out that we can find an equivalent triangle-free graph if we are willing
to consider cubic multigraphs.

2.1 Cubic Multigraphs

For cubic graphs, it turns out that the graphs that can be obtained as KE (G)
when G has multiple edges are precisely the same as those obtainable for simple
graphs. Let G be a cubic multigraph with two edges e, h both between the vertices
u, v ∈ V (G). Define the graph Ge|h, shown in Figure 2 by V (Ge|h) = V (G)∪{u1, u2};

u
e

h

v u v
u1

u2

Figure 2: The construction of Ge|h from G.

and E(Ge|h) = E(G)\{e, h} ∪ {uu1, uu2, u1u2, u1v, u2v}.
Theorem 2.8. Let G be a cubic multigraph with with two edges e, h both between
the vertices u, v ∈ V (G), and Ge|h as defined above. For any vertex x ∈ V (G), we
have KE x(G) = KE x(Ge|h), and KEu(G) = KEu1(Ge|h) = KEu2(Ge|h) = KE v(G).
Additionally, KE (G) = KE (Ge|h).

Proof. First, there is a one-to-one correspondence between the proper edge colorings
of G and Ge|h, as shown in Figure 3. Then notice that the edge-Kempe structure

Figure 3: Corresponding 3-edge colorings between G and Ge|h.

of G is identical to that of Ge|h, because the three edge-Kempe chains correspond.
Fixing the colors at any of the vertices u, u1, u2, v fixes the colors at the other three
vertices, and this completes the proof.
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Corollary 2.9. Given any cubic multigraph G there is a simple graph G∗ such that
KE v(G) = KE v(G

∗), for every v ∈ V (G) and KE (G) = KE (G∗). Moreover if
u ∈ V (G∗) then there exists v ∈ V (G) such that KE v(G) = KEu(G

∗).

Proof. This follows by repeated application of the operation in Theorem 2.8 until no
multiple edges remain.

Because the operation G → Ge|h is reversible, the reverse of Corollary 2.9 is also
true.

Corollary 2.10. Suppose H is a cubic graph with u, v, u1, u2 ∈ V (H) and uu1, uu2,
vu1, vu2, u1u2 ∈ V (H). Then there is a cubic multigraph G such that H = Ge|h.

By combining this result with Proposition 2.6 we can restrict consideration to
only triangle-free multigraphs.

Corollary 2.11. In examining the structure and realizability of KE (G) for cubic
multigraphs, it suffices to consider triangle-free multigraphs.

2.2 KE v(G) for the same G and different v

For any choice of v ∈ V (G) the graph KE v(G) will have as its vertex set exactly one
copy of each non-isormorphic coloring of G. That is, there will be one vertex for each
partition of the edges into Δ independent sets. The assignment of color names to the
parts of the partition will vary based on which v is chosen and the initial assignment
of colors to the edges incident to v. It turns out that the structure of KE v(G) can
depend on the choice of v.

We start with some simple observations.

Remark 2.12. First, observe that if c and c′ are isomorphic colorings of G then they
are Kempe equivalent, since any permutation can be generated by transpositions.

Proposition 2.13. Suppose c1 is a coloring of a class-1 regular graph G in which
there are exactly two edge-Kempe chains in some color pair (say, gray-dash) and
c2, c

′
2 the colorings that result from switching one or the other of the chains. Then c2

and c′2 are isomorphic colorings.

Proof. The colorings c2, c
′
2 partition the edges of G in the same way, where the dash

edges in c2 are precisely the gray edges in c′2 and vice versa. All other color classes
are identical.

Note that under the conditions of Proposition 2.13, there is an edge of KE v(G)
between colorings c1 and c2 (or an isomorphic copy of c2) for all choices of v. We
next give a sufficient condition for KE v(G) to be isomorphic graphs for all v ∈ V (G).
Recall that G is vertex transitive if for any pair of vertices v1, v2 there is a graph
automorphism that takes v1 to v2.

Theorem 2.14. For a simple, regular graph G, if |V (G)| < 12 or if G is vertex
transitive, then for any vertices vi, vj ∈ V (G) the graphs KE vi(G) and KE vj (G) are
isomorphic, and the isomorphism associates isomorphic colorings.
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Proof. Certainly, if G is vertex transitive, then KE vi(G) and KE vj (G) are isomorphic
for any vertices vi, vj ∈ V (G). By Proposition 2.13, if KE v1(G) �= KE v2(G) then
there must be a coloring c1 that has three or more edge-Kempe chains in some color
pair. Since each edge-Kempe chain must consist of at least 4 vertices (by Proposition
2.1), there must be at least 12 vertices in the graph.

We will show the above theorem is best possible by constructing a graph on 12
vertices that has two different KE v graphs. Before constructing this example, we
first give some results that help determine the structure of KE v(G). The following
results give some relationships between various parameters on KE v(G), and KE (G).
Indeed, they show that for a given graph G, the KE v(G) must be very similar for
any choice of v.

Theorem 2.15. Let G be a class-1 k-regular graph.

(a) The degree of a vertex c, a coloring, in KE v(G) is degKE(G)(c) −
(
k
2

)
, for any

v ∈ V (G).

(b) The number of connected components of KE v(G) is equal to the number of con-
nected components of KE (G).

Proof. (a) The degree of a vertex c in KE v(G) corresponds to the number of possible
edge-Kempe switches that can be made in a coloring c of G with the edge colors at
v fixed. This number is the same independent of the choice of v ∈ V (G) because v
is on exactly

(
k
2

)
edge-Kempe chains.

(b) Suppose that c1, c2 are in the same connected component of KE v(G). Then
there exists a path between them in KE v(G), and hence in KE (G) by subgraph
inclusion. Now suppose that c1, c2 are in the same connected component of KE (G).
If the edge colors of c1, c2 do not agree at v, then there is a coloring c′2 , that is
isomorphic to c2 that has the edge colors of c1 at v. By Remark 2.12, c2, c

′
2 are in the

same connected component of KE (G). Thus it suffices to assume that the edge colors
of c1, c2 agree at v. Then by Theorem 3.1 of [1], there is a sequence of edge-Kempe
changes between c1 and c2 that avoids changing colors at v, and so c1, c2 are in the
same connected component of KE v(G).

The power of this result can be seen in the following immediate consequences of
this theorem and its proof.

Corollary 2.16. Let G be a class-1 k-regular graph.

(i) If the coloring c is a leaf in KE vi(G) then it is also a leaf in KE vj (G) for any
vj ∈ V (G). Further, if c is a leaf then its unique neighbor is the same coloring
(up to isomorphism) in all KE vj (G).

(ii) The degree sequences of KE vi(G) and KE vj (G) are equal.

(iii) If c1, c2 are colorings in the same connected component of KE vi(G), then their
isomorphic counterparts are in the same connected component of KE vj (G).
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We will now exhibit a simple connected cubic graph R on 12 vertices that has
two non-isomorphic KE v(R) graphs.

Example 2.17. In order to have 3 disjoint Kempe cycles on 12 vertices, R must
consist of three disjoint copies of C4 with six additional edges, and by Corollary 2.6,
R has no lone triangles. See Figure 4; note that R is planar, but not bipartite.

Figure 4: Colorings of a graph R with non-isomorphic KEv(R).

There are eight nonisomorphic colorings of this graph, all shown in Figure 4.
The coloring shown at top left has seven edge-Kempe chains, so will have degree
4 in KE v(R) for any v (because three edge-Kempe chains will be fixed). Let A
denote the 4-cycle bounding the pair of triangles. Switching the colors of A produces
another coloring with seven edge-Kempe chains, shown at left in the middle row.
The coloring shown at top right has five edge-Kempe chains, so will have degree 2
in KE v(R) for any v. The remaining five colorings also have five edge-Kempe chains
each. If the fixed vertex v is not on the cycle A, then the two colorings of degree 4
are adjacent in KE v(R) (via switching the colors on A). If the fixed vertex is on the
cycle A then the two colorings of degree 4 are not adjacent in KE v(R). Thus there
are (at least) two different graphs that occur as KE v(R).

A similar example on 12 vertices can be constructed that is triangle free (but not
bipartite). A connected simple example that is both bipartite and planar requires 14
vertices; G14 is shown in Figure 5. If we allow multigraphs then a smaller connected
example can be constructed by replacing the adjacent triangles of the cycle A of the
graph R in Example 2.17 with a pair of multiple edges as in Corollary 2.11. The
smallest example of a (non-connected) multigraph with two different graphs occuring
as KE v(G) is D ∪ P , depicted in Figure 6.
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Figure 5: A cubic, planar, bipartite graph that has two different KE v(G14).

D P

Figure 6: D ∪ P is a multigraph with two different KE v(D ∪ P ).

2.3 KE v(G) as a subgraph of KE (G)

In this section we describe how KE v(G) is contained in KE (G). Many of the state-
ments made about KE (G) have obvious implications for KE v(G). For example
Propositions 2.1 and 2.2 imply that for all G, v, KE v(G) must have girth at least 4.

Proposition 2.18. For any graph G, and any v ∈ V (G), KE v(G) has girth 4 if
there are are at least two disjoint edge-Kempe chains disjoint from v.

We suspect that there is no upper bound on the girth of KE v(G), for G cubic
and class 1, but the largest girth we have observed is associated to the 14-vertex
generalized Petersen graph shown in Figure 7; KE v(GP ) ∼= C7 and so has girth 7.
(Some larger generalized Petersen graphs have smaller girths.)

Figure 7: The generalized Petersen graph on 14 vertices.

In a class-1 k-regular graph, any vertex v will be in exactly one (i, j) Kempe-
chain for each pair of colors 1 ≤ i < j ≤ k. Thus we get the following corollary to
Theorem 2.3.
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Corollary 2.19. If there exists a proper edge coloring, c, of a class-1 k-regular graph
G with qij Kempe chains of colors i, j. Then for all 1 ≤ i < j ≤ k, and any v ∈ V (G),
KE v(G) contains a (qij −1)-cube. Further, all of these cubes intersect in exactly one
vertex of KE v(G) corresponding to the coloring c.

For each vertex of KE v(G) there are k! corresponding vertices in KE (G). In fact,
there are k! disjoint copies of KE v(G) that partition the vertices of KE (G). These
copies of KE v(G) differ by the assignment of colors on the k edges incident to v. In
order to describe the relationships between the copies, we introduce a more precise
notation: for σ a permutation of the k colors, define KE v(G)σ to be the graph whose
vertices are proper k-edge colorings of G, such that the order of the colors on the
edges incident to v is σ with respect to a fixed ordering of the edges of G. The k!
disjoint KE v(G)σ (one for each permutation σ) form a partition of the vertices of
KE (G). In any proper k-edge coloring of G there are

(
k
2

)
edge-Kempe chains incident

to vertex v, and each of these changes the permutation of colors at v by a different
transposition. Thus each coloring in KE v(G)σ is adjacent to

(
k
2

)
other colorings, each

of which belongs to a KE v(G)σ
′
with a distinct σ′.

That c ∈ V (KE v(G)σ) and c′ ∈ V (KE v(G)σ
′
) are adjacent does not imply that

c, c′ are isomorphic colorings. This is because moving from KE v(G)σ to KE v(G)σ
′

requires changing only, for example, the dash-solid edge-Kempe chain through v
and not all dash-solid edge-Kempe chains in G. Yet, when σ and σ′ differ by a
transposition, the edges between vertices of KE v(G)σ and KE v(G)σ

′
form a perfect

matching between these sets.
It is clear that for any two permutations σ, σ′, the graphs KE v(G)σ and KE v(G)σ

′

are isomorphic; thus, in many cases the notation KE v(G) can be used without con-
fusion.

Proposition 2.20. If KE v(G) has a Hamiltonian circuit for some v ∈ V (G), then
KE (G) has a Hamiltonian path.

Proof. A Hamiltonian path H in KE (G) is formed by concatenating Hamiltonian
paths from KE v(G)σ for each σ. It was shown in [11] that the Cayley graph of Sn

generated by transpositions has a Hamiltonian circuit. Suppose that the sequence of
transpositions that accomplishes a Hamiltonian circuit in Sn is t1, t2, . . . tp, and let ι
be the identity permutation.

Let c11, c12 be adjacent vertices in a Hamiltonian circuit in KE v(G)ι. Let H
begin with the Hamiltonian path of KE v(G)ι that begins c11 and ends c12. Now, to
coloring c12 apply the t1 edge-Kempe-switch that includes vertex v. The resulting
coloring, say c21, will be in KE v(G)t1 . Because each KE v(G) has a Hamiltonian
circuit, there is a Hamiltonian path starting at c21. Let c22 be the last vertex of this
path. Apply to c22 the t2 edge-Kempe-switch that includes vertex v, to get a coloring
c31 in KE v(G)t2t1 . Proceed in a similar manner to traverse all the colorings of each
KE v(G)σ.
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2.4 More about the structure of KE (G)

Let cσ, c(ij)σ be two isomorphic colorings of G that differ by a transposition (ij) on
color names. Then there is a path between cσ, c(ij)σ in KE (G), each of whose edges
corresponds to a edge-Kempe switch of colors i and j on some i-j edge-Kempe chain
of cσ. There are in fact many such paths, as the switches can be made in any order.
Let cσ ∼ c(ij)σ denote one such path.

Lemma 2.21. For any G, KE (G) always contains a subdivision of K3,3.

Proof. Let c be any coloring in KE (G). For each of the six permutations of {1, 2, 3}
(fixing all other colors if k > 3) there corresponds a coloring isomorphic to c. Recall
that the Cayley graph of the six permutations of S3, generated by transpositions,
forms a K3,3. Thus, the subgraph of KE (G) induced by the 9 paths cσ ∼ c(ij)σ,
where σ and (ij)σ fix all colors other than {1, 2, 3} and permute (some of) {1, 2, 3},
is therefore a subdivision of K3,3.

In fact, associated to every vertex of KE (G) are k! vertices of KE (G) (namely,
the isomorphic colorings) forming a subgraph that is a subdivision of the Cayley
graph with the transpositions of Sk as the generators. Some easy corollaries follow
from Lemma 2.21.

Corollary 2.22. No tree is realizable as KE (G) for any G.

Corollary 2.23. No KE (G) is planar.

Corollary 2.24. If G is k-regular and is uniquely k-edge colorable, then KE (G) is
isomorphic to the Cayley graph of Sk with the set of all transpositions as generators.

The graphK3,3 has two nonisomorphic edge-colorings, but in both colorings every
edge-Kempe chain is a Hamiltonian cycle. This observation produces a generalization
of the above corollary. We use Γk to denote the Cayley graph of Sk with the set of
all transpositions as generators.

Corollary 2.25. Suppose G is k-regular and class 1 with exactly h nonisomorphic
k-edge colorings. If in each of the colorings of G every edge-Kempe chain is a Hamil-
tonian cycle, then KE (G) = �hΓk.

3 Graph Products

It will be helpful to start by considering a variation on KE v(G). The graph KE v(G)
was formed by fixing the colors of the edges incident to a single vertex v ∈ V (G). We
could instead fix the colors of a 3-edge cut C of a cubic graph G, denoted KEC(G).
A parity argument implies that a 3-edge cut of a properly colored class-1 cubic graph
must contain exactly one edge of each color, so KEC(G) will contain one copy of each
non-isomorphic edge coloring of G. Thus similar statements to those in Theorem 2.15
and other results in Section 2.2 hold for KEC(G) as well.
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Proposition 3.1. Let G be a class-1 cubic graph with v ∈ V (G) and C a 3-edge cut
of G.

(i) The degree of a vertex c, a coloring, in KEC(G) is degKE(G)(c)− 3.

(ii) The number of connected components of KEC(G) is equal to the number of
connected components of KE (G).

(iii) If the coloring c is a leaf in KE v(G) then it is also a leaf in KEC(G). Further,
if c is a leaf then its unique neighbor is the same (up to isomorphism).

(iv) The degree sequences of KE v(G) and KEC(G) are equal.

The graph KEC(G) has a nice description when G is formed by the following
graph product, which was defined in [1]. Consider two cubic graphs G1, G2, and
form G1 G2 by choosing vertices v1 ∈ V (G1), v2 ∈ V (G2), removing v1, v2, and
adding a matching of three edges joining the three neighbors of v1 with the three
neighbors of v2. Of course there are many ways to choose v1, v2, and many ways
to identify their incident edges, so the construction is not unique. The following
theorem holds for any such choices.

Proposition 3.2. Let G1 G2 be formed from G1, G2 using vertices v1 ∈ V (G1),
v2 ∈ V (G2), so that C is the edge cut formed. Then

KEC(G1 G2) = KE v1(G1)�KE v2(G2).

Proof. Every coloring of G1 G2 can be written as an ordered pair of colorings (c1, c2)
where c1 is a coloring of G1 and c2 is a coloring of G2. If the colors on C are fixed, then
no edge-Kempe chain in G1 G2 can cross C. Therefore, any edge in KEC(G1 G2)
corresponds to an edge-Kempe chain in exactly one of G1 and G2. This is the
definition of KE v1(G1)�KE v2(G2).

Examining KE v(G1 G2) shows that changing v may produce nonisomorphic
graphs, even when there is only one possibility for KE v(Gi). Consider Q3 Q3 (shown
in Figure 5), where Q3 is the cube. Because Q3 is vertex transitive, all KE v(Q3) are
isomorphic, but direct computation shows that there are at least two different graphs
that occur as KE v(Q3 Q3). It is true that no matter the choices made in making
the product, and on which vertex or cut in the resulting product we fix the colors,
the number of edges in and degree sequence of KE v(Q3 Q3) or KEC(Q3 Q3) will
be the same.

Proposition 3.3. Let G1, G2 be class-1 cubic graphs, with v1 ∈ V (G1), v2 ∈ V (G2)
the vertices used in creating G1 G2 and x �= v1 ∈ V (G1). Then the vertex sets
V (KE x(G1 G2)) 
 V (KE x(G1)�KE v2(G2)), corresponding vertices have the same
degree, and E(KE x(G1 G2)) ⊇ E(KE x(G1)�KE v2(G2)).
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Proof. The set of colorings in KE x(G1 G2) may be indexed as (ci, cj), where ci is
a coloring of G1 and cj is a coloring of G2 with colors permuted to match ci on the
edges that were incident to v1, v2. Thus each ci of KE x(G1) can only be paired with
all colorings from KE v2(G2)

σ for exactly one σ. The particular σ depends on the
colors that ci assigns to the edges incident to v1. Then, by the parity lemma each
edge in a 3-edge cut of a cubic graph must receive a different color; hence, every
coloring of G1 G2 induces a coloring of G1 and of G2. Thus, V (KE x(G1 G2)) 

V (KE x(G1)�KE v2(G2)).

Let (ci, cj) ∈ V (KE x(G1 G2)) and the corresponding coloring be (ci, ĉj) ∈
V (KE x(G1)�KE v2(G2)). The coloring (ci, cj) ∈ V (KE x(G1 G2)) has three kinds
of edge-Kempe chains not incident to x, namely (i) entirely within G1 (and not inci-
dent to v1), (ii) entirely in G2 (not incident to v2), or (iii) containing edges previously
incident to v1, v2. The first kind are in one-to-one correspondence with edge-Kempe
chains in KE x(G1) that are not incident to v1. The second kind are in one-to-one cor-
respondence with edge-Kempe chains in KE v2(G2) that are not incident to v2. The
third kind are in one-to-one correspondence with the edge-Kempe chains in KE x(G1)
that are incident to the vertex v1. This shows that the degrees of the vertices are the
same. To see that the edge inclusion holds, note further that (i) and (iii) correspond
to edges in KE x(G1) and (ii) correspond exactly to the edges in KE v2(G2).

Observe that while the degrees are the same for corresponding vertices in
KE x(G1 G2) and KE x(G1)�KE v2(G2), the edges of KE x(G1 G2) do not join cor-
responding pairs of colorings in KE x(G1)�KE v2(G2). Specifically, the second kind
of edge-Kempe chain in the proof changes colors on edges in both G1 and G2 and
that never happens in the edge-Kempe chains represented in KE x(G1)�KE v2(G2).

A similar correspondence occurs with KE (G1 G2).

Proposition 3.4. Let G1, G2 be class-1 cubic graphs. Then

(a) V (KE (G1 G2)) 
 V (KE (G1)�KE v2(G2)) and

(b) E(KE (G1 G2)) ⊇ ∪σE(KE v1(G1)
σ�KE v2(G2)).

The proof is almost identical to that of Proposition 3.3.
Note that G K4 is simply the Δ − � operation. We can now generalize by

considering this product with any uniquely 3-edge colorable graph.

Proposition 3.5. If U is a uniquely 3-edge colorable cubic graph, and G is any
class-1 cubic graph, then KE (G U) = KE (G) and KE v(G U) = KE v′(G), where
v′ := v if v ∈ V (G) is not used in creating the product, and v′ is a vertex remaining
in U otherwise. More generally, if H is cubic with exactly h nonisomorphic 3-edge
colorings, and in every edge-Kempe chain is a Hamiltonian cycle, then KE (G H) =
�hKE (G), and KE v(G H) = �hKE v′(G), with v′ defined as before.

Another product, also introduced in [1], is natural when considering KE graphs.
Let G1, G2 be graphs with edges e1, e2 in G1, G2 respectively. Consider v1, w1 end-
points of e1 and v2, w2 endpoints of e2. Form G1 G2 by removing e1, e2 and adding
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two edges connecting v1 to v2 and w1 to w2. (While in [1] this product was de-
fined only for cubic graphs, it generalizes directly to k-regular graphs.) As with
the product, the choice of edges to cut and the ways to pair them up mean this
construction is not unique. Nonetheless, the following analysis holds for all choices.

We can combine a coloring c of G1 with a coloring d on G2 to get a coloring of
G1 G2 if the colors agree on e1, e2. Note that by parity, in any coloring of G1 G2 the
same color will be assigned to both v1v2 and w1w2. In KE v1(G1 G2) we have fixed
the colors on all edges incident to v1, but only on one edge incident to v2. Therefore,
for each vertex of KE v1(G1) we have |V (KE v2(G2))| copies of each of the (k − 1)!
isomorphic colorings of G2, corresponding to the (k − 1)! permutations of the colors
on the other edges incident to v2. This means that there are (k− 1)!|V (KE v1(G1))| ·
|V (KE v2(G2))| vertices in KE v1(G1 G2). Note that because the edge colors are
fixed at v1, no edge-Kempe chains cross the 2-edge cut formed in the construction
G1 G2; that is, colors change in G1 or in G2 but not both. There are therefore
three types of edges in KE v1(G1 G2): those that correspond to edges in KE v1(G1),
those that correspond to edges in KE v2(G2), and those that connect vertices from
different copies of KE v2(G2)

σ. Extending our notation in a natural way, we now
define KE e(G) to be the subgraph of KE (G) where the color on the edge e is fixed.
Note that if e is incident to v, then KE e(G) ⊇ ∪σKE v(G)σ (with the union taken
over the (k − 1)! permutations that fix the color on e), with additional edges d1d2 if
d1 ∈ V (KE v(G)σ), d2 ∈ V (KE v(G)(ij)σ), and d1, d2 agree on the coloring of all edges
except those on the (i, j) edge-Kempe chain that passes through v and does not use
the edge e. This proves the following.

Lemma 3.6. Let G1, G2 be class-1 k-regular graphs. If vi ∈ V (Gi) and ei ∈ E(Gi)
are the vertices and edges involved in forming G1 G2, then

(a) KE v1(G1 G2) = KE v1(G1)�KE e2(G2) and

(b) KE v2(G1 G2) = KE e1(G1)�KE v2(G2).

The above result requires that vi ∈ V (Gi) are vertices incident to the cut edge.
One might hope that a result for general v would also be possible, at least in the
case of joining a uniquely edge-colorable graph. Unfortunately, Example 2.17 shows
that is not true. That graph is Q3 K4, where Q3 is the cube. As the cube is vertex
transitive, only one graph can occur as KE v(Q3), and K4 is uniquely colorable.
Yet we have seen that there are vi, vj ∈ V (Q3 K4) such that KE vi(Q3 K4) �=
KE vj (Q3 K4).

The result about KE (G1 G2) is similar to that for KE (G1 G2).

Proposition 3.7. Let G1, G2 be class-1 k-regular graphs. If vi ∈ V (Gi) and ei ∈
E(Gi) are the vertices and edges involved in forming G1 G2, then

(a) V (KE (G1 G2)) = V (KE (G1)�KE e2(G2)) and

(b) E(KE (G1 G2)) ⊇ ∪σE(KE e1(G1)
σ�KE e2(G2)).
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Proof. Consider a coloring c of G1. Form G1 G2 and use c for the edges originally
in G1. For the remaining edges, we can use any coloring of G2 up to permutation of
the colors so that the color on e2 matches that of e1 in c. Therefore the vertices of
KE (G1 G2) may be indexed by ordered pairs of colorings from G1 and G2.

An edge-Kempe chain in G1 G2 may be in G1\{e1}, in G2\{e2}, or may involve
the edges formed from e1, e2. The first kind are in one-to-one correspondence with the
edge-Kempe chains in ∪KE e1(G1)

σ, the second kind are in one-to-one correspondence
with the edge-Kempe chains in KE e2(G2), and the third kind do not appear in
∪σE(KE v1(G1)

σ�KE e2(G2)).

Again, even when G2 is uniquely colorable there is no simple description of
KE (G1 G2). Let P and D be defined as in Figure 6. Note that D = P P .
As for any uniquely colorable graph, KE (P ) = K3,3, KE v(P ) = K1 for any vertex
v ∈ V (P ), and KE e(P ) = K2 for any edge e ∈ E(P ). By Proposition 3.7, KE (D)
has 12 vertices. Taking ∪σE(KE v1(P )σ�KE e2(P )) we see that the 12 vertices form
3 disjoint 4-cycles. Each of K1, K2, K3,3 are bipartite and the � product preserves
the property of being bipartite. However, the additional edges of KE (D) not in
∪σE(KE v1(P )σ�KE e2(P )) cause KE (D) to not be bipartite. In Figure 8 a 5-cycle
in KE (D) is shown. The bold 5-cycle edges correspond to edge-Kempe chains that

Figure 8: Five edge-colorings of D that form a 5-cycle in KE (D).

use edges of both copies of P . Note that by Corollary 2.11, an identical analysis
holds for K4 K4, which is a simple planar graph (with triangles).

4 A sample calculation

In this section we consider a specific base graph with nice structure and calculate its
KE v graph. This is evidence that even an example expected to be simple can require
a cumbersome argument.

Definition 4.1. Consider two 2k-cycles with vertices A = {ai : 1 ≤ i ≤ 2k}, B =
{bi : 1 ≤ i ≤ 2k} respectively. For i = 1, . . . k add the edges a2ib2i+1 and b2ia2i+1.
The result is called the crossed prism graph CPrk on 4k vertices.
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Note that CPrk is vertex-transitive; thus, KE v(CPrk) is the same independent
of choice of v.

Theorem 4.2. Let CPrk be the crossed prism graph with 4k vertices.

(a) For k even, KE v(CPrk) is a (k − 1)-cube with 2 leaves on each vertex of one of
the parts (of a bipartition of the cube).

(b) For k odd, KE v(CPrk) is a (k − 1)-cube with one leaf on each vertex.

Proof. Consider the coloring of CPrk shown in Figure 9. The A and B cycles form
dash-solid edge-Kempe chains. Each cross (pair of aibj edges) is colored in gray.
Without loss of generality, fix the colors at the upper-left-most vertex, a1.

Figure 9: A coloring of CPrk.

Since the colors at vertex a1 are fixed, there are now k − 1 gray-dash edge-
Kempe cycles (each of length 4) that can be switched, and one gray-solid cycle.
Note that these edge-Kempe switches are independent, and that making any two
different switches can be done in either order to form a square. Considering only the
gray-dash cycles, we see that KE v(CPrk) contains a (k−1)-cube C. We can represent
each coloring in C by a binary string (x1, . . . , xk) of length k, where 0 represents that
a2i−1a2i, b2i−1b2i are the dash edges, and 1 represents that a2i−1b2i, b2i−1a2i are the
dash edges (so the coloring in Figure 9 is denoted by (0, 0, 0, . . . , 0)). Note that for
ease of exposition we use a k-tuple, but all allowable colorings will have x1 = 0 as
we are considering KE a1(CPrk).

Now consider a gray-solid edge-Kempe cycle starting at b1 on a particular coloring
(x1, . . . xk) ∈ Z

k
2 in C. For each xi = 0 for i = 1, . . . , k, the cycle will cross from an A

vertex to a B vertex (or back). For each xi = 1 the cycle remains on the same part.
Thus, a coloring with an even number of 0s will have two gray-solid edge-Kempe
cycles, one including a1 and the other including b1, and a coloring with an odd
number of of 0s will have a Hamiltonian gray-solid edge-Kempe cycle. The situation
is similar for solid-dash edge-Kempe cycles on the set of colorings of C: a coloring
with an even number of 1s will have two solid-dash edge-Kempe cycles, one including
a1 and the other including b1, and a coloring with an odd number of of 1s will have
a Hamiltonian solid-dash edge-Kempe cycle.
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When k is odd, an even number of 1’s leaves an odd number of 0s. Thus, each
coloring on the (k − 1)-cube has exactly one edge-Kempe cycle that uses solid and
does not use vertex a1.

When k is even, an even number of 1s leaves an even number of 0s. Thus in one
part (of a bipartition) of the (k − 1)-cube, there are no edge-Kempe cycles that use
solid edges and do not use a1, and in the other part each coloring has two edge-Kempe
cycles using solid edges and not using a1, one each of solid-dash and gray-solid.

It remains to show that the colorings resulting from solid-dash and gray-solid
edge-Kempe cycle switches are leaves in KE v(CPrk). (We know from Theorem
4.12 in [1] that KE v(CPrk) has only one component, so this exhausts the possible
vertices.) For any coloring in C, the only allowable switch (if any) using a solid
edge will involve the edge b1b2k. Suppose making the switch results in the edge b1b2k
becoming gray. For each i = 1, . . . k, a gray-dash edge-Kempe chain will traverse all 4
vertices in the set {a2i−1, a2i, b2i−1, b2i} in some order before moving to the next group
of 4. (Precisely, the order is {a2i−1, a2i, b2i−1, b2i} if xi = 0, and {b2i−1, a2i, a2i−1, b2i}
if xi = 1.) This means that any gray-dash edge-Kempe chain will proceed through all
4k vertices before closing. Thus there is only one gray-dash edge-Kempe chain. The
same argument is true for the solid-dash edge-Kempe chains and for the edge-Kempe
chains when the edge b1b2k is dash.

Corollary 4.3. KE v(CPrk) has 2k vertices and is bipartite with girth 4.

The prism graph Prk, is defined similarly to CPrk; start with 2k-cycles with
vertices A = {aj}, B = {bj}, and add the additional edges a2i−1b2i−1 and a2ib2i for
i = 1, . . . k. It is simple to calculate the structure of KE v(Prk) for small k and
almost immediate to conjecture its general structure (according to parity). Despite
the fact that this seems to be a simpler graph, a proof of the exact form of KE v(Prk)
is harder to come by.

5 Open Questions and New Directions

There are a wealth of questions to be addressed about KE (G) and KE v(G). What
properties must KE v(G) have for various restrictions on G such as having maximum
degree 3, or being bipartite? Under what conditions is KE v(G) 2-connected? Or
Hamiltonian? What can its diameter be? How many connected components can it
have? In addition to degree and number of components, which other graph param-
eters must KE v1(G) and KE v2(G) share? For example, if one is k-connected then
is the other as well? Will they have the same girth? Is there a way to characterize
the best choice for v with respect to some property for KE v(G)? For example, which
choice of v gives the highest connectivity or girth?

We suspect that some of these questions will be as confounding as are many issues
in graph edge colorings and in reconfiguration graphs, but others may be attainable.
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