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Abstract

It is known that for any orientable surface Sg other than the sphere,
there exists an optimal 1-planar graph which can be embedded on Sg as
a triangulation. In this paper, we prove that for any orientable surface
Sg with genus g ≥ 3 and any non-orientable surface Nk with genus k ≥
6 (k �= 7), there exists an optimal 1-planar graph which can be embedded
on the surface as a quadrangulation. Furthermore, every optimal 1-planar
graph can quadrangulate a surface.

1 Introduction

We deal with finite and simple graphs unless otherwise noted. For the terminology
and notation used but undefined in this paper, see [2]. A surface is a compact
connected 2-manifold without boundary. The well-known classification theorem of
surfaces states that any surface is homeomorphic to one of the following: the sphere
with g ≥ 0 handles (the orientable surface Sg of genus g) or the sphere with k ≥ 1
crosscaps (the non-orientable surface Nk of genus k). A map on a surface F 2 is a
2-cell embedding of a graph on F 2. A map G on a surface F 2 is a triangulation if
every face of G is bounded by a 3-cycle (a k-cycle is one of length k). A map G on a
surface F 2 is a quadrangulation if every face of G is bounded by a 4-cycle. We focus
on graphs which allow embeddings of specific types on specific surfaces. Lawrencenko
and Negami [4, 5] completely determined the graphs which triangulate both the torus
and the Klein bottle. Nakamoto et al. [7] showed that for any non-spherical surface
F 2, there exists a graph which triangulates the sphere and which quadrangulates F 2.
Suzuki [10, 11] investigated the existence of graphs which triangulate a non-spherical
surface F 2

1 and which quadrangulate another surface F 2
2 .

A graph G drawn on the sphere (possibly with edge crossings) is 1-planar if
every edge of G crosses other edges at most once. A 1-planar graph G is optimal
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if G satisfies |E(G)| = 4|V (G)| − 8. Suzuki [8] proved that for any positive integer
g, there exists an optimal 1-planar graph which triangulates the orientable surface
Sg of genus g. Nagasawa, the author and Suzuki [6] recently proved that for any
positive integer k, there exists no optimal 1-planar graph which triangulates the
non-orientable surface Nk of genus k.

In this paper, we consider optimal 1-planar graphs which quadrangulate a non-
spherical surface. We not only completely determine the surfaces which can be
quadrangulated by an optimal 1-planar graph, but also show that every optimal
1-planar graph can quadrangulate a surface.

THEOREM 1 For an orientable surface Sg of genus g, there exists an optimal 1-
planar graph which quadrangulates Sg if and only if g ≥ 3. For a non-orientable
surface Nk of genus k, there exists an optimal 1-planar graph which quadrangulates
Nk if and only if k = 6 or k ≥ 8.

THEOREM 2 For any g ≥ 3, every optimal 1-planar graph with 2g + 2 vertices
quadrangulates the orientable surface Sg of genus g.

THEOREM 3 For any k ≥ 6 other than 7, every optimal 1-planar graph with k + 2
vertices quadrangulates the non-orientable surface Nk of genus k.

The related topic can be found in [3]. This paper is organized as follows. In
Section 2, we introduce a notion of 4-cycle double covers, which corresponds to a
face set of a quadrangulation on a surface. In Section 3, we prove Theorems 1, 2
and 3.

2 Optimal 1-planar graphs and 4-cycle double covers

Let G be a graph. Assume that G has a family of cycles, denoted by C, such that
each edge of G is contained in exactly two cycles of C. Then we call C a cycle double
cover of G. In particular, C is a 4-cycle double cover if every cycle in C is of length
4. Let v be a vertex of G. We denote a subset of a 4-cycle double cover C including
v by Cv. For any 4-cycle vwxy of Cv, add the edge wy (multiple edges are allowed)
and call the resulting multigraph Hv. Then Cv is good if E(Hv\G) induces a cycle of
length degG(v). The following proposition is easy to show.

PROPOSITION 4 Let G be a graph. G has an embedding on a surface F 2 as a
quadrangulation if and only if G has a 4-cycle double cover such that Cv is good for
every vertex v of G.

To construct optimal 1-planar graphs which quadrangulate other surfaces, the
following lemma is crucial.
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LEMMA 5 If an optimal 1-planar graph G quadrangulates an orientable surface Sg

of genus g (respectively, a non-orientable surface Nk of genus k), then n = |V (G)| is
2g + 2 (respectively, k + 2).

Proof. Let G′ be the resulting quadrangulation on the surface F 2. Then Euler’s
formula

|V (G′)| − |E(G′)|+ |F (G′)| = χ(F 2)

holds, where χ(F 2) is the Euler characteristic of F 2. Now |V (G′)| = |V (G)| and
|E(G′)| = |E(G)| = 4n−8. Since every face of G′ is bounded by a 4-cycle, |F (G′)| =
1
2
|E(G′)| holds. Then χ(F 2) = −n + 4. When F 2 � Sg, χ(Sg) = 2 − 2g and we

obtain n = 2g + 2. When F 2 � Nk, χ(Nk) = 2− k and we obtain n = k + 2.

Let G be an optimal 1-planar graph. It is known (see [9, Theorem 11] for example)
that all non-crossing edges ofG induce a 3-connected plane quadrangulation, denoted
by Q(G). By using this construction, the following lemma follows.

LEMMA 6 (Suzuki [9]) There exists an optimal 1-planar graph with n vertices if
and only if n = 8 or n ≥ 10.

A k-edge cut S of a connected graph G is a subset of E(G) with cardinality k
such that G − S is disconnected. A k-edge cut S is proper if S does not contain a
(k − 1)-edge cut of G.

LEMMA 7 Let G be a quadrangulation on a surface with an even number of faces.
Then the dual G∗ of G has a perfect matching.

Proof. Since G∗ is 4-regular, there is no proper 1- or 3-edge cut of G∗. (Otherwise
there must be a vertex with odd degree.) Furthermore, G∗ does not have either a
proper 2-edge cut or a loop since G is simple. Then G∗ is 4-edge-connected. It is
known (see [1, Theorem 2.37] for example) that (k − 1)-edge-connected k-regular
graph of even order (possibly with multiple edges) has a perfect matching for k ≥ 2.
Then the lemma follows.

3 Proofs of the main theorems

Proof of Theorem 2. For a given positive integer g, we shall construct a 4-cycle
double cover of an optimal 1-planar graph, which corresponds to a quadrangulation
on Sg. By Lemma 5, we must prepare an optimal 1-planar graph G with 2g + 2
vertices. By Lemma 6, g must be greater than 2.

Since the number of faces of Q(G) is 2g by Euler’s formula, there exists a perfect
matching M of the dual (Q(G))∗ of Q(G) by Lemma 7. For each edge wx of the dual
M∗ of M , let f1 = wxuv and f2 = xwyz be two faces of Q(G) so that the orders
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to be clockwise on the sphere. Taking four 4-cycles uvxw, uwyx, vwzx and wxyz,
one can see that these 2|F (Q(G))| 4-cycles form a 4-cycle double cover C of G. The
order of neighbors around u on the resulting surface F 2 is v, w, x, one around x is
u, y, w, v, z, respectively. By symmetry and the construction of C, Cv is good for every
vertex v of G. Now we check the orientability of F 2. Those four 4-cycles cover the
edges uw, vx, wx, wz and xy twice with opposite directions, respectively, and make
a clockwise orientation of uvwyzx on F 2. Then C corresponds to a quadrangulation
on Sg by Proposition 4.

Proof of Theorem 3. For a given positive integer k, we shall construct a 4-cycle
double cover of an optimal 1-planar graph, which corresponds to a quadrangulation
on Nk. By Lemma 5, we must prepare an optimal 1-planar graph G with k + 2
vertices. By Lemma 6, k must be 6 or greater than 7.

For each face f = uvwx of Q(G), take two 4-cycles uvxw and uxvw. One can
see that these 2|F (Q(G))| 4-cycles form a 4-cycle double cover C of G. By the
construction of C, Cv is good for every vertex v of G; the order of neighbors around
v on the resulting surface F 2 coincides with one on the sphere. Now we check the
orientability of F 2. Those two 4-cycles uvxw and uxvw form a Möbius band on F 2,
and then C corresponds to a quadrangulation on Nk by Proposition 4.

Proof of Theorem 1. This follows from the proofs of Theorems 2 and 3.

Remark Roughly speaking, the main idea of the proof of Theorem 2 is as follows:

(i) partition the faces of Q(G) into pairs of adjacent faces,

(ii) for every pair f1 and f2 of adjacent faces, attach a handle (one end of the
handle is attached to f1, and another end of the handle is attached to f2), and

(iii) embed the pairs of the diagonals of f1 and f2 in the two faces with the attached
handle such that the four added edges do not cross and all obtained faces are
quadrangular.

And then the main idea of the proof of Theorem 3 is as follows:

(i) for every face of Q(G), insert a crosscap in the face, and

(ii) embed the two diagonals of the face in the face with the inserted crosscap such
that the two added edges do not cross and all obtained faces are quadrangular.
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