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Abstract

Let G be a simple connected graph. The terminal distance matrix of G
is the distance matrix between all pendant vertices of G. In this paper,
we introduce some general transformations that increase the terminal
distance spectral radius of a connected graph and characterize the ex-
tremal trees with respect to the terminal distance spectral radius among
all trees with a fixed number of pendant vertices. Then we obtain upper
and lower bounds for the terminal distance spectral radius of trees with
fixed number of pendant vertices.

1 Introduction

Let G be a simple connected graph on n vertices, with its vertices labelled by
{v1, v2, . . . , vn}. The distance dG(vi, vj) between two vertices vi and vj of G is equal
to the length (that is, the number of edges) of any shortest path that connects vi and
vj [1]. The distance matrix of G is an n-square matrix whose (i, j)-entry is dG(vi, vj).
Recently, the so-called terminal distance matrix [2, 3] or reduced distance matrix [4]
of graphs has been considered. If G has k pendant vertices (that is, vertices of degree
one), labelled by {v1, v2, . . . , vk}, then its terminal distance matrix, RD(G), is the
square matrix of order k whose (i, j)-entry is dij = dG(vi, vj).

The terminal distance matrix of trees is of special interest, since a tree can be
reconstructed by its terminal distance matrix. Concepts based on the distance matrix
are intensively employed in mathematical chemistry [5–8]. In particular, one of the
oldest topological molecular indices, the Wiener index, is defined as one half of the
sum of all elements of the distance matrix of a graph. Also, the terminal Wiener
index of a graph G is defined by analogy as one half of a sum of the elements of
RD(G).

Spectrum-based indices, which are calculated using the eigenvalues and eigen-
vectors of various graph matrices, form a yet another family of topological indices,
the most famous being the Estrada index. Balaban et al. [9] suggested the distance
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spectral radius (the largest eigenvalue of the distance matrix) as a molecular descrip-
tor giving rise to the extensive QSPR research and to the studies of mathematical
properties of the distance spectral radius (DSR).

Recently, the extremal trees with respect to the distance spectral radius have
been studied by many researchers [10–13]. In this paper we will characterize the
extremal trees on k pendant vertices with respect to their terminal distance spectral
radius. Then the minimum and maximum of the terminal distance spectra radius of
trees with a fixed number of pendant vertices will be computed.

2 Trees with the minimum terminal distance spectral radius

In this section, we introduce a general transformation that increases the terminal
distance spectral radius of a graph, and then we determine the trees on n vertices with
a fixed number of pendant vertices which have the minimum terminal spectral radius.
Let �G denote the spectral radius of RD(G) and let x be a positive eigenvector of
RD(G) corresponding to �G. We will denote by xi the component of x corresponding
to a pedant vertex i of G. The components of x indexed by pendant vertices of G
which are joined to a common parent by a pendant path will be studied in the
following lemma (see Fig. 1).

G

v

i j

Figure 1: The graph of Lemma 2.1.

Lemma 2.1. Let i and j be two pendant vertices which are joined to a common
parent, v, by a pendant path in G. If dG(v, i) ≥ dG(v, j), then xi ≥ xj. In particular
if dG(v, i) = dG(v, j), then xi = xj.

Proof. Let RD(G) = [dij ] denote the terminal distance matrix of G and let x be a
positive eigenvector of RD(G) corresponding to �G. From the eigenvalue equation,
�Gx = RD(G)x at components xi and xj , we obtain

�Gxi =

k∑
r=1

dirxr =

k∑
r �=i=1

(div + dvr)xr. (1)

�Gxj =
k∑

r=1

djrxr =
k∑

r �=j=1

(djv + dvr)xr. (2)
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By subtracting Eq. (2) from Eq. (1) we have (�G + dvj)xi = (�G + dvi)xj , and hence
xi ≥ xj . Therefore the lemma is proved.

Let Pn denote a path on n vertices. We say lengths of Pn and Pm are almost the
same if |n−m| ≤ 1. A tree in which exactly one vertex has degree greater than 2 is
said to be starlike. By Tn,k we denote the starlike tree which is obtained from a star
Sk+1 together with k paths of almost equal lengths by joining each pendant vertex
of Sk+1 to an end vertex of one path (Fig. 2). Also, if Tn,k has r pendant vertices at
distance q + 1 and t = k − r pendant vertices at distance q from its central vertex,
then we will denote this tree by Tq,r,t. Obviously n− 1 = kq + r.

Pq+1

r

Pq

k-r

Figure 2: The graph of Tn,k

Now let G be a simple graph and v ibe one of its vertices. If qi, ri and ti for
i = 1, 2 are non negative integers, then we denote by G(l1, r1, t1, l2, r2, t2) the graph
obtained from G∪Tq1,r1,t1∪Tq2,r2,t2 by joining v to both the central vertices of Tq1,r1,t1

and Tq2,r2,t2 by a path of order l1 − q1 and a path of order l2 − q2, respectively (see
Fig. 3).

Assume that Ḡ = G(l1, r1, t1, l2, r2, t2) and let x be a positive eigenvector of Ḡ
corresponding to �Ḡ. By use of Lemma 2.1, we denote by xri and xti the components
of x corresponding to the further pendant vertices and the closer pendant vertices of
Tqi,ri,ti to its central vertex, respectively, for i = 1, 2. In the following lemma, we will
study the variation of �Ḡ when the distance between the central vertex of Tq1,r1,t1

and v is increased, but the distance between the central vertex of Tq2,r2,t2 and v is
decreased (using the previous notation).

Lemma 2.2. Let G be a simple graph with at least one pendant vertex. If r2xr2 +
t2xt2 ≤ r1xr1 + t1xt1, then �G(l1,r1,t1,l2,r2,t2) < �G(l1+1,r1,t1,l2−1,r2,t2).

Proof. Let RD = [dij ] denote the terminal distance matrix of Ḡ= G(l1, r1, t1, l2, r2, t2)
and RD∗ = [d∗ij] denote the terminal distance matrix of G∗ = G(l1 + 1, r1, t1, l2 −
1, r2, t2). As above, suppose x is an eigenvector of RD corresponding to �Ḡ and xr1

is a component of x corresponding to a pendant vertex of Tr1,r1,t1 in Ḡ. Obviously, if
i is a pendant vertex of G, then d∗r1i > dr1i. Now we consider the following two cases.

In the first case, let x be an eigenvector of RD∗ corresponding to �G∗ . From the
eigenvalue equation �G∗x = RD∗x at xr1 , we obtain

�G∗xr1 =

k∑
j=1

d∗r1jxj >

k∑
j=1

dr1jxj = �Ḡxr1 .
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Thus �G∗ > �Ḡ and lemma is proved in this case.
In the second case, suppose x is not an eigenvector of RD∗ corresponding to �G∗ .

If G1 denotes the pendant vertices of G, then

xTRD∗x− xTRDx = 2r1
∑
u∈G1

(l1 + dvu)xr1xu + 2t1
∑
u∈G1

(l1 − 1 + dvu)xt1xu

+2r2
∑
u∈G1

(l2 − 2 + dvu)xr2xu + 2t2
∑
u∈G1

(l2 − 3 + dvu)xr1xu

−
(
2r1

∑
u∈G1

(l1 − 1 + dvu)xr1xu + 2t1
∑
u∈G1

(l1 − 2 + dvu)xt1xu

+2r2
∑
u∈G1

(l2 − 1 + dvu)xr2xu + 2t2
∑
u∈G1

(l2 − 2 + dvu)xt2xu

)

= 2
∑
u∈G1

(r1xr1 + t1xt1 − r2xr2 − t2xt2)xu.

Hence xTRD∗x ≥ xTRDx. From the Rayleigh quotient we get

�G∗ = sup
y �=0

yTRD∗y
yTy

>
xTRD∗x
xTx

≥ xTRDx

xTx
= �Ḡ.

Therefore the lemma is proved.

vG

Pl1- r1

Pl 2- r2
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Pr1
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Figure 3: The graph of G(l1, p1, q1, l2, p2, q2).

Now the main result of this section can be obtained as an immediate consequence
of Lemma 2.2 in the following theorem.

Theorem 2.3. Among n-vertex trees with a fixed number k of pendant vertices, Tn,k

has minimal terminal distance spectral radius.
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Proof. Let T be a tree with the minimum terminal distance spectral radius among
n-vertex trees with a fixed number k of pendant vertices. If for positive integers
l2 − 1 > l1 > 1, there exist two pendant paths Pl1 and Pl2 at a vertex v of T , then
for G = T − V (Pl1 ∪ Pl2) ∪ {v}, we have T = G(l1 − 1, 1, 0, l2 − 1, 1, 0). By use of
Lemma 2.2, �T > �G(l1,1,0,l2−2,1,0) which contradicts the choice of T . Therefore the
lengths of pendant paths at any vertex of T are almost the same.

Now we show that T must be a starlike tree. If T is not a starlike tree, then T
contains two vertices v1 and v2 with degree greater than two that are furthest from a
center vertex of T with minimal distance from each other. For non negative integers
qi, ri ti, let Tqi,ri,ti denote the induced subtree of T , rooted at vi for i = 1, 2. If vi
is joined by Pni

, a path of order ni, to a vertex (say v) with degree greater than 2,
and G is the connected component of T −V (Pn1 ∪Pn2)∪{v} which contains v, then
T = G(l1, r1, t1, l2, r2, t2) where li = dT (v, vi) + qi + 1 for i = 1, 2. Now by using
Lemma 2.2, we can obtain a new n-vertex tree with k pendant vertices from T with
the terminal distance spectral radius less than �T , contradicting the choice of T .

Thus v1 must be joined to v2 by Pl, a path of order l. Now suppose that Pr1

is one of the pendant paths at v1 and G = T − V (Tq2,r2,t2 ∪ Pr1 ∪ Pl) ∪ {v}; then
T = G(r1−1, 1, 0, l+ r2, r2, t2). By use of Lemma 2.2, �T > �G(r1,1,0,l+r2−1,r2,t2) which
contradicts the choice of T . Therefore T is a starlike tree. Since the lengths of
pendant paths at a vertex of T are almost the same, the theorem is proved.

Corollary 2.3.1. Let T be an n-vertex tree with k pendant vertices and let n− 1 =
kq + r (0 ≤ r < k). Then �T ≥ q(k − 2) + r − 1 +

√
r(k − 2)(2q + 1) + (qk + 1)2.

Proof. Let x be a positive eigenvector of RD(Tn,k) corresponding to � = �Tn,k
. If

x1 and x2 denote the components of x corresponding to the further pendant vertices
and the closer pendant vertices of Tn,k from its central vertex, then the eigenvalue
equation �x = RD(Tn,k)x gives the system

�x1 = 2(q + 1)(r − 1)x1 + (2q + 1)(k − r)x2,

�x2 = (2q + 1)rx1 + 2q(k − r − 1)x2,

which, after eliminating x1 and x2, yields a quadratic equation in �, whose positive
solution is

q(k − 2) + r − 1 +
√

r(k − 2)(2q + 1) + (qk + 1)2.

By use of Theorem 2.3, �T ≥ �Tn,k
. Therefore the corollary is proved.

3 Trees with the maximum terminal distance spectral radius

In this section, first we introduce some general transformations that increase the
terminal distance spectral radius of a graph, and then we determine the n-vertex
trees with k pendant vertices with maximal terminal distance spectral radius. Let
S∗(r, t, l) be the graph obtained from Sr+1 ∪ St+1 by joining the central vertices of
the stars Sr+1 and St+1 by a path of length l (see Fig. 4). In the following lemma,
we study the variation of the terminal distance spectral radius of S∗(r, t, l) when the
number of the pendant vertices adjacent to end vertices of its central path changes.
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Lemma 3.1. If r − 1 > t ≥ 1, then �S∗(r,t,l) < �S∗(r−1,t+1,l).

Proof. Let RD and RD∗ denote the terminal distance matrix of S∗(r, t, l) and S∗(r−
1, t + 1, l), respectively, and let x be a positive eigenvector of RD corresponding to
� = �S∗(r,t,l). If xi and xj denote the components of x corresponding to the pendant
vertices of Sr+1 and St+1 respectively, by using the eigenvalue equation at components
xi and xj , we obtain

�xi = 2(r − 1)xi + t(l + 2)xj . (3)

�xj = 2(t− 1)xj + r(l + 2)xi. (4)

PL

SS
r+1t+1

Figure 4: The graph of S∗(r, t, l).

By subtracting Eq. (4) from Eq. (3) we have

(�+ 2 + rl)xi = (�+ 2 + tl)xj . (5)

Hence xi < xj , and from Eq. (3) we have � + 2 > tl. Thus (r − 1)(� + 2 + lt) >
t(�+ 2 + rl). By using this inequality and Eq. (5) we have

(r − 1)xi > txj . (6)

Recall that x is a positive eigenvector of RD corresponding to � = �S∗(r,t,l). Thus
we get

xTRD∗x− xTRDx = 2(l + 2)(r − 1)xixi + 4txixj − (4(r − 1)xixi + 2t(l + 2)xixj)

= 2lxi((r − 1)xi − txj) > 0.

Hence by using Eq. (7), xTRD∗x > xTRDx. Since x is an eigenvector of S∗(r, t, l),
from the Rayleigh quotient we get

�S∗(r−1,t+1,l) = sup
y �=0

yTRD∗y
yTy

≥ xTRD∗x
xTx

>
xTRDx

xTx
= �S∗(r,t,l).

Therefore the lemma is proved.
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A caterpillar tree is a tree in which there is a (central) path P such that all
vertices are either on P or adjacent to a vertex on P . In the following lemma, the
variation of the terminal distance spectral radius of a graph to which a caterpillar
tree is attached to one of its vertices is studied (see Fig. 5).

Lemma 3.2. Let G be a connected graph of order n with k pendant vertices, and let
v be one of its vertices. If one of the connected components of G− v is a caterpillar
tree with at least one pendant vertex that is not furthest from v, then there exists a
connected graph of order n with k pendant vertices, having terminal distance spectral
radius greater than �G.

Proof. Let T denote the caterpillar tree rooted at v and let Pl denote its central
path. If x is a positive eigenvector of G corresponding to �G, then we denote by xi

the ni equal components of x corresponding to the pendant vertices of T adjacent to
the i-th vertex along Pl, for 1 ≤ i ≤ l.

Let G∗ denote the graph obtained fromG by deleting a pendant vertex adjacent to
the i-th vertex along Pl and adding a new pendant vertex to the (i+1)-th vertex along
Pl for some 1 ≤ i < l. Obviously G∗ is a graph on n vertices with k pendant vertices.
If RD and RD∗ denote the terminal distance matrices of G and G∗ respectively and
G1 denotes the pendant vertices of G− V (T ), then

v x1 x2

G

xl

Figure 5: The graph of Lemma 3.2.

xTRD∗x− xTRDx =
( i−1∑

r=1

ni(r − i+ 3)xrxi + 6(ni − 1)xixi + 4ni+1xi+1xi

+2

l∑
r=i+2

ni(i− r + 1)xixr + 2
∑
u∈G1

(i+ 2 + dvu)xixu

)

−
( i−1∑

r=1

ni(r − i+ 2)xrxi + 4(ni − 1)xixi + 6ni+1xi+1xi

+2
l∑

r=i+2

ni(i− r + 2)xixr + 2
∑
u∈G1

(i+ 1 + dvu)xixu

)

= 2(ni − 1)xixi + 2xi

( i−1∑
r=1

nrxr −
l∑

r=i+1

nrxr −
∑
u∈G1

xu

)
. (7)
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Now let G∗∗ denote the graph obtained from G by deleting a pendant vertex
adjacent to the i-th vertex along Pl and adding a new pendant vertex to the (i− 1)-
th vertex along Pl, for some 1 < i ≤ l. If RD∗∗ denotes the terminal distance matrix
of G∗∗, then

xTRD∗∗x− xTRDx = 2(ni − 1)xixi − 2xi

( i−1∑
r=1

nrxr −
l∑

r=i+1

nrxr −
∑
u∈G1

xu

)
.(8)

If ni > 1 for some 1 ≤ i ≤ l or
∑i−1

r=1 nrxr −
∑l

r=i+1 nrxr −
∑

u∈G1 xu �= 0,
then the right-hand of Eq. (7) or the right-hand of Eq. (8) is positive, and hence
xTRD∗x > xTRDx or xTRD∗∗x > xTRDx. If xTRD∗x > xTRDx, then by use of
the Rayleigh quotient we get

�G∗ = sup
y �=0

yTRD∗y
yTy

≥ xTRD∗x
xTx

>
xTRDx

xTx
= �G.

Similarly, if xTRD∗∗x > xTRDx, we have �G∗∗ > �G. Thus the lemma is proved in
this case.

Otherwise, if ni = 1 for each 1 ≤ i ≤ l and
∑i−1

r=1 nrxr−
∑l

r=i+1 nrxr−
∑

u∈G1 xu =
0, then xTRD∗x = xTRD∗∗x = xTRDx, and from the Rayleigh quotient we have
�G∗ , �G∗∗ ≥ �G. By repeating the processes which are used to construct G∗ or G∗∗

for enough numbers, a new graph on n vertices with k pendant vertices, denoted by
G′, is obtained from G such that ni > 1 for some 1 ≤ i ≤ l and �G ≤ �G′ .

Now, if G′ is used instead of G in the above argument, the right-hand of Eq. (7)
or the right-hand of Eq. (8) is positive, and hence xTRD∗x > xTRDx or xTRD∗∗x >
xTRDx for G′. By using the Rayleigh quotient we get �G∗ > �G or �G∗∗ > �G.
Therefore the lemma is proved.

Pn-k

[(k-1)/2] [(k+1)/2]

Figure 6: The graph of T ∗
n,k

We now begin the search for trees with k pendant vertices and maximal terminal
distance spectral radius. For this purpose we introduce a special case of caterpillar
trees. Denote by T ∗

n,k an n-vertex tree obtained from the path Pn−k by attaching to

one of its terminal vertices �k
2
� new pendant vertices and to another terminal vertex

�k
2
	 new pendant vertices (see Fig. 6). We will show that T ∗

n,k has maximal terminal
distance spectral radius.

Theorem 3.3. Among n-vertex trees with a fixed number k of pendant vertices, T ∗
n,k

has maximal terminal distance spectral radius.
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Proof. Let T be an n-tree with k pendant vertices with maximum terminal distance
spectral radius. If for positive integers l1 ≥ l2 > 2 there exist two pendant paths
Pl1 and Pl2 at a vertex v of T , then for G = T − V (Pl1 ∪ Pl2) ∪ {v} we have
T = G(l1 − 1, 1, 0, l2 − 1, 1, 0). By use of Lemma 2.2, �T < �G(l1,1,0,l2−2,1,0) which
is a contradiction with the choice of T . Thus all the pendant paths of T are pendant
edges.

Suppose T is not a caterpillar tree. Since all of the pendant paths at each vertex
of T are pendant edges, there exists a vertex v with T − v containing at least two
disjoint caterpillar trees denoted by T1 and T2. By using Lemma 3.2, the pendant
vertices of Ti must be adjacent to vi, the furthest vertex on its central path from
v, for i = 1, 2. Thus for G = T − V (T1 ∪ T2) ∪ {v}, T = G(l1, r1, 0, l2, r2, 0), where
li = d(v, vi) + 1 and ri = deg(vi) − 1 for i = 1, 2. By using Lemma 2.2, we can
obtain a tree with the terminal distance spectral radius greater than �T , which is a
contradiction with the choice of T . Hence T must be a caterpillar tree such that its
pendant vertices are adjacent to the end vertices on its central path.

Thus T = S∗(r, t, l) where r+ s is the number of pendant vertices of T and l+ 2
is the diameter of T . If r− s > 1, from Lemma 3.1 we have �T < �S∗(r+1,t−1,l), which
is a contradiction with the choice of T . So T = T ∗

n,k and the theorem is proved.

In what follows, the maximum terminal distance spectra radius of an n-vertex
tree with k pendant vertices will be computed. For this purpose we assume that
δ = 1 if k is an even integer, and δ = 0 otherwise.

Corollary 3.3.1. Let T be an n-vertex tree with k pendant vertices. Then

�T ≤ k − 2 +

√
δ +

k2 − δ

4
(n− k + 1).

Proof. Let x be a positive eigenvector of RD(T ∗
n,k) corresponding to � = �T ∗

n,k
. By

use of Lemma 2.1, x has two distinct components, so we denote by x1 and x2 these
components of x. Put α = �k

2
� and β = �k

2
	. Thus the eigenvalue equations at x1

and x2 give the system

�x1 = 2(α− 1)x1 + β(n− k + 1)x2,

�x2 = α(n− k + 1)x1 + 2(β − 1)x2,

which, after eliminating x1 and x2, yields a quadratic equation in �, whose positive
solution is

k − 2 +

√
δ +

k2 − δ

4
(n− k + 1);

by use of Theorem 3.3, �T ≤ �Tn,k
. Therefore the corollary is proved.
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Graphs, MATCH Commun. Math. Comput. Chem. 60 no. 493 (2008), 493–512.
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[7] I. Gutman, B. Furtula and M. Petrović, Terminal Wiener index, J. Math. Chem.
46 (2009), 522–531.

[8] A. Heydari, On the spectra of reduced distance matrix of dendrimers, Trans.
Comb. 2 no. 2 (2013), 41–46.

[9] A.T. Balaban, D. Ciubotariu and M. Medeleanu, Topological indices and real
number vertex invariants based on graph eigenvalues or eigenvectors, J. Chem.
Inf. Comput. Sci. 31 (1991), 517–523.

[10] A. Ilic and M. Ilic, Generalizations of Wiener Polarity Index and Terminal
Wiener Index, Graphs Combin. 29 (2013), 1403–1416.

[11] Z. Du, A. Ilic and L. Feng, Further results on the distance spectral radius of
graphs, Linear Multilin. Algebra 61 (2013), 1287–1301.

[12] B. Zhou and A. Ilic, On distance spectral radius and distance energy of graphs,
MATCH Commun. Math. Comput. Chem. 64 (2010), 261–280.

[13] B. Zhou, On the largest eigenvalue of the distance matrix of a tree, MATCH
Commun. Math. Comput. Chem. 58 (2007), 657–662.

(Received 16 Dec 2016; revised 29 Apr 2017, 25 July 2017)


