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Abstract

In this paper, we prove that there is no r-regular graph (r ≥ 2) with a
unique perfect matching. Also we show that a 2r-regular graph of order

n has at least
(

(r−k)r−k

(r−k+1)r−k−1

)n

2k-factors, where k ≤ r. We investigate

graphs with a unique [a, b]-factor and among other results, we prove that
a connected graph with minimum degree at least 2 and a unique [1, 2]-
factor with regular components is an odd cycle.

1 Introduction

Throughout this paper all graphs are finite and simple. For a graph G, V (G) and
E(G) denote the vertex set and the edge set of G, and their cardinalities are called
the order and the size of G, respectively. For a vertex v of G, NG(v) denotes the
set of neighbors of v and dG(v) is the degree of v. By δ(G) and Δ(G) we denote
the minimum and the maximum degree of G, respectively. For a subset A of V (G),
E(A) denotes the set of edges whose end vertices are in A. The edge e is called a cut
edge if c(G− e) > c(G), where c(G) is the number of components of G. A connected
graph G is called 2-edge-connected if it has no cut edge.

A factor of a graph G, is a spanning subgraph of G. If f is a function assigning a
non-negative integer to each vertex of G, then a factor F of G is called an f -factor,
if dF (v) = f(v) for all v ∈ V (G). Also, a parity f -factor of G is a factor F of G such
that for every v ∈ V (G), dF (v) and f(v) have the same parity. An even-factor (resp
odd-factor) is a factor such that all of its degrees are even (respectively odd).
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An [a, b]-factor of G is a factor of G such that for each v ∈ V (G), a ≤ dF (v) ≤ b.
A [k, k]-factor is simply called a k-factor. The following well-known result due to
Petersen, guarantees the existence of an edge decomposition of a regular graph of
even degree into 2-factors (see [2, Theorem 3.1]).

Theorem 1.1. Let r ≥ 2 be an even integer and G be an r-regular graph. Then the
edges of G can be partitioned into 2-factors of G.

A perfect matching is a 1-factor. A perfect [a, b]-factor is an [a, b]-factor whose
components are regular.

If a bipartite graph has a perfect matching, then there are some lower bounds for
the number of its perfect matchings which are stated in the following theorem.

Theorem 1.2. Let G be a bipartite graph. Then the following hold:

(i) [18, Theorem 1.6.1] If G has a perfect matching, then G has at least δ(G)!
perfect matchings.

(ii) [15] If G is r-regular of order 2n, then G has at least
(

(r−1)r−1

rr−2

)n

perfect match-

ings.

The next result due to Kötzig which was proved in [4, 11, 13, 14], shows that
there is no 2-edge-connected graph with a unique perfect matching.

Theorem 1.3. A connected graph with a unique perfect matching has a cut edge
belonging to its unique perfect matching.

Jackson and Whitty proved the following result which is a generalization of The-
orem 1.3.

Theorem 1.4. [8] Let G be a 2-edge-connected graph and f : V (G) → Z
+ be a

function. If G has a unique f -factor, then there exists a vertex v such that dG(v) =
f(v).

The following corollary which was proved in [16] may be useful when the 2-edge
connectivity condition is removed.

Corollary 1.5. Let G be a graph with a unique f -factor F , where f : V (G) → Z
+

is a function such that f(x) ≥ 2 for all x ∈ V (G). Then some vertex x of G satisfies
dG(x) = f(x) or there exist at least two vertices u1 and u2 such that dG(ui) = f(ui)+1
for i = 1, 2.

Theorems 1.1 and 1.2 are used in Section 2 to find lower bounds for the number
of k-factors for an even k. Also using Theorem 1.3, we provide an upper bound for
the number of edges of a graph with a unique perfect matching. Indeed, we prove
the following.
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Theorem 1.6. Let G be a graph of order n and size m. If G has a unique perfect
matching, then m ≤ (n−2

2
)Δ(G) + 1. In particular, for r > 1, there is no r-regular

graph with a unique perfect matching.

In Section 3, we investigate graphs with a unique [a, b]-factor and graphs with a
unique perfect [a, b]-factor. In particular, we characterize all graphs with a unique
perfect [1, 2]-factor and prove the following.

Theorem 1.7. A connected graph with minimum degree at least 2 and a unique
perfect [1, 2]-factor is an odd cycle.

Section 4 deals with graphs which have a unique parity f -factor. We prove the
following theorem about the graphs which have a unique even-factor with no isolated
vertices.

Theorem 1.8. If G has a unique even-factor with no isolated vertices, then δ(G) = 2.

2 Unique k-Factors

There are some upper bounds for the size of a graph with a unique k-factor. Hetyei
in 1964 proved that a graph of order n with a unique perfect matching cannot have
more than n2

4
edges (see [12, Corollary 1.6]). Also in [17], these kind of graphs are

investigated. In [6, 9, 16], the maximum size of a graph with a unique k-factor, for
some values of k was determined. In the following theorem, we present an upper
bound for the size of a graph with a unique perfect matching depending on the
maximum degree of the graph. Notice that when the maximum degree is at most
n
2
+ 1, our bound is better than the bound given by Hetyei.

Theorem 2.1. Let G be a graph of order n and size m. If G has a unique perfect
matching, then m ≤ (n−2

2
)Δ(G) + 1. In particular, for r > 1, there is no r-regular

graph with a unique perfect matching.

Proof. Clearly, it suffices to prove the theorem for connected graphs. The proof is
by induction on n. Obviously, the result holds for n = 1, 2. Now, assume that n > 2.
By Theorem 1.3, there is a cut edge e = xy which is contained in the unique perfect
matching of G. Let H1 and H2 be the two subgraphs of G− e such that x ∈ V (H1)
and y ∈ V (H2). Now, consider the graphs G1 = H1−x and G2 = H2−y. Since each
Gi has a unique perfect matching, by the induction hypothesis on each component
of Gi, we find that |E(Gi)| ≤ ( |V (Gi)|−2

2
)Δ(Gi) + 1, for i = 1, 2. Thus,

m ≤ 2Δ(G)− 1 +
2∑

i=1

|E(Gi)|

≤ 2Δ(G)− 1 +
2∑

i=1

(
(
|V (Gi)| − 2

2
)Δ(G) + 1

)

= (
n− 2

2
)Δ(G) + 1,



S. AKBARI ET AL. /AUSTRALAS. J. COMBIN. 69 (1) (2017), 63–73 66

which completes the proof.

Now, considering the following problem is notable.

Problem 2.2. Improve the upper bound for the size of a graph with a unique perfect
matching given in Theorem 2.1.

Next, we consider graphs with a unique k-factor for k ≥ 2. In the following
corollary, a necessary condition for a graph to have a unique k-factor is stated.

Corollary 2.3. Let G be a graph and k be a positive integer.

(i) If k ≥ 2 and δ(G) ≥ k + 2, then G cannot have a unique k-factor.

(ii) If G is r-regular and r ≥ k + 1, then G cannot have a unique k-factor.

Proof. The first part is an immediate consequence of the Corollary 1.5. We prove
the second part. If r ≥ k+2, then by the first part, G cannot have a unique k-factor.
Hence assume that r = k+1. On the contrary, assume that F is the unique k-factor
of G. Thus G \ F is the unique perfect matching of G. But by Theorem 2.1, G
cannot have a unique perfect matching, a contradiction.

Remark 2.4. The graph in Figure 1(a) shows that Part (i) of Corollary 2.3 does not
hold for k = 1. Also notice that the lower bound in Part (i) of Corollary 2.3 cannot
be reduced to k + 1. For example, the graph in Figure 1(b) has minimum degree 3
and a unique 2-factor.

(a) (b)

Figure 1: (a) A graph with minimum degree 3 and a unique 1-factor. (b) A graph
with minimum degree 3 and a unique 2-factor.

Next we propose the following problem.

Problem 2.5. Is there a graph G with δ(G) = k + 1 and a unique k-factor, for
k ≥ 3?

In [1], some upper bounds for the number of 2-factors in a family of directed complete
bipartite graphs are obtained. For a given positive even integer k, we would like to
find a lower bound for the number of k-factors of a graph which has at least one
k-factor. Our main tool is Theorem 1.2 and a construction which relates 2-factors of
a graph to the perfect matchings of a bipartite graph.
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Theorem 2.6. Let G be a graph and k be a positive integer.

(i) If G has a 2k-factor, then the number of 2k-factors of G is at least � δ(G)−2k+2
2

�!.
(ii) If G is 2r-regular of order n and k ≤ r, then G has at least

(
(r − k)r−k

(r − k + 1)r−k−1

)n

2k-factors.

Proof. (i) First assume that k = 1 and F is a 2-factor of G. Construct a directed
graph D with the underlying graph G as follows. Choose the orientation of the edges
of F in such a way that F becomes a union of directed cycles. Next, choose an
orientation for the edges of G \ F , such that the out-degree and the in-degree of
each vertex differ by at most one (such orientation always exists, see for example
[3, Theorem 11.5.4]). Let V (D) = {v1, . . . , vn} and H be a bipartite graph with
bipartition X = {x1, . . . , xn}, Y = {y1, . . . , yn} in which xi is adjacent to yj if and
only if there is an arc in D from vi to vj. Note that the directed 2-factors of D are

in one-to-one corresponding to the perfect matchings of H . Since δ(H) ≥ � δ(G)
2
�,

Part(i) of Theorem 1.2 implies that H has at least � δ(G)
2

�! perfect matchings. So the

number of 2-factors of G is at least � δ(G)
2

�!, as desired. If k ≥ 2, then let F be a
2k-factor of G and let F1, . . . , Fk be 2-factors of G which partition F (by Theorem
1.1 such 2-factors exist). Since G \ (F2 ∪ · · · ∪ Fk) has a 2-factor, it has at least

� δ(G)−2k+2
2

�! 2-factors, each of which gives a 2k-factor of G.

(ii) Let F1, . . . , Fr be 2-factors of G which partition E(G). Let G′ = G \ (F1 ∪
· · · ∪ Fk−1). Since G′ is (2r− 2k + 2)-regular, it has an orientation D′ such that the
in-degree and the out-degree of each vertex is r − k + 1. Let V (D′) = {v1, . . . , vn}
and H ′ be a bipartite graph with bipartition X = {x1, . . . , xn}, Y = {y1, . . . , yn} in
which xi is adjacent to yj if and only if there is an arc in D′ from vi to vj. Clearly,
H ′ is (r − k + 1)-regular, thus Part (ii) of Theorem 1.2 implies that H ′ has at least(

(r−k)r−k

(r−k+1)r−k−1

)n

perfect matchings, each of which yields a 2-factor of G′. The union

of every such 2-factor with F1 ∪ · · · ∪ Fk−1 gives a 2k-factor of G.

3 Unique [a, b]-Factors

In this section, we obtain some results on graphs with a unique [a, b]-factor or a
unique perfect [a, b]-factor. First, we obtain a result similar to Theorem 1.4 for
graphs which have a unique [a, b]-factor.

Theorem 3.1. Let G be a graph and a < b be two positive integers. If G has a
unique [a, b]-factor containing a vertex of degree a, then G has a vertex of degree a.
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Proof. Let F be the unique [a, b]-factor of G. Let A = {v ∈ V (G)|dF (v) = a} and
B = V (G)\A. By uniqueness of the [a, b]-factor, E(A)∩(E(G)\F ) = E(B)∩F = ∅.
Now, assume on the contrary that δ(G) > a. Let v1 ∈ A. Since dF (v1) = a < dG(v1),
there is an edge v1v2 ∈ E(G) \ F such that v2 ∈ B. Also, since dF (v2) > 0, there is
an edge v2v3 ∈ F such that v3 ∈ A. By continuing this procedure, we obtain a walk
whose edges are alternately in E(G) \ F and F . Since the order of G is finite, after
some steps we find a cycle C whose edges are alternately in E(G) \ F and F . Now,
(F \ E(C)) ∪ (E(C) \ F ) is another [a, b]-factor of G, a contradiction. The proof is
complete.

In [7], it is proved that if a graph G has a unique perfect [1, k]-factor F , then
F is a perfect [1, 2]-factor of G. In the next corollary we generalize this result.
Before giving the proof, we state the following theorem on the existence of perfect
[k − 1, k]-factors of regular graphs.

Theorem 3.2. [2, Theorem 4.37] Let r ≥ 3 be an odd integer and k an integer such
that 1 ≤ k ≤ 2r

3
. Then every r-regular graph has a perfect [k − 1, k]-factor.

Corollary 3.3. Let G be a graph, a ≤ b be two positive integers and F be the unique
perfect [a, b]-factor of G. Then F is a perfect [a, 
3a+1

2
�]-factor of G, all of its even

degrees are at most a+ 1.

Proof. Assume on the contrary that F has an r-regular component H , where r ≥
3(a+1)

2
. If r is even, then H has an (r − 2)-factor which gives another perfect [a, b]-

factor of G, a contradiction. If r is odd, then by Theorem 3.2, H has a perfect
[a, a + 1]-factor which contradicts the uniqueness of F . Also, if F has an r-regular
component H , where r is an even integer more than a+1, then by removing a 2-factor
from H , we construct another perfect [a, b]-factor of G which is impossible and the
proof is complete.

As a consequence of the previous corollary, one can see that if a graph has a
unique perfect [1, k]-factor (respectively [2, k]-factor) F , then F is a perfect [1, 2]-
factor (respectively [2, 3]-factor).

In the sequel, we determine all graphs with a unique perfect [1, 2]-factor. We
require the next simple lemma and we omit its proof.

Lemma 3.4. Each of the following graphs has at least two perfect [1, 2]-factors:
(i) Two odd cycles connected by a path.
(ii) Two odd cycles whose intersection is a path.
(iii) An odd cycle with a chord.

A subgraph H of a graph G is called a forbidden subgraph, if H has at least two
perfect [1, 2]-factors and G \V (H) has a perfect [1, 2]-factor. Note that a graph with
a unique perfect [1, 2]-factor cannot have a forbidden subgraph.

Theorem 3.5. A connected graph with minimum degree at least 2 and a unique
perfect [1, 2]-factor is an odd cycle.
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Proof. Let G be a graph with δ(G) ≥ 2 and let F be the unique perfect [1, 2]-factor of
G. Clearly, the cycle components of F are odd cycles. We claim that each component
of F is a cycle. Assume on the contrary that F has a 1-regular component and let
M = {x1y1, . . . , xkyk} be the edges of all 1-regular components of F . Let P be an
M-alternating path of maximum length which is started and terminated with the
edges of M . Without the loss of generality, assume that P = x1y1x2y2 · · ·xryr. Since
dG(x1), dG(yr) ≥ 2, x1 and yr should be adjacent to a vertex other than y1 and xr,
respectively. Note that (NG(x1) ∪NG(yr)) ∩ {xr+1, . . . , xk, yr+1, . . . , yk} = ∅. Now,
consider the following cases. In each case, we construct a forbidden subgraph of G,
a contradiction.

Case 1. For some i ∈ {2, . . . , r}, x1yi ∈ E(G), or for some j ∈ {1, . . . , r − 1}
yrxj ∈ E(G). If x1yi ∈ E(G), then x1y1 · · ·xiyix1 is an even cycle which is a
forbidden subgraph of G. If yrxj ∈ E(G), then the proof is similar.

Case 2. For some i, j ∈ {1, . . . , r}, x1xi, yryj ∈ E(G). Let H be the subgraph of G
consisting two odd cycles x1y1 · · ·xi−1yi−1xix1, yrxr · · · yj+1xj+1yjyr. If i > j, then
the intersection of these two cycles is the path {yjxj+1yj+1 · · ·xi−1yi−1xi}. If i ≤ j,
then add the path xiyi · · ·xjyj to H . Now, Lemma 3.4 implies that H is a forbidden
subgraph of G.

In the sequel, let x1 be adjacent to a vertex z in an odd cycle C of F .

Case 3. Suppose that yryj ∈ E(G) for some j ∈ {1, . . . , r − 1}. Let H be the
subgraphG consisting two odd cycles C and yjxj+1yj+1 · · ·xryryj which are connected
by the path zx1y1 · · ·xjyj. By Part (i) of Lemma 3.4, H is a forbidden subgraph
of G.

Case 4. Assume that yr is adjacent to a vertex w in an odd cycle C ′ of F different
from C. Let H be the subgraph of G consisting C, C ′ and the path zx1y1 . . . xryrw.
By Part (i) of Lemma 3.4, H is a forbidden subgraph of G.

Case 5. Assume that yr is adjacent to a vertex w in C. If w = z, let H be the
subgraph G consists of two odd cycles C and zx1y1 . . . xryrz which have a vertex z
in common. By Part (ii) of Lemma 3.4, H is a forbidden subgraph of G. Now, let
w �= z. Let Q be a wz-path in C of even length. Assume that H is the subgraph G
consisting two odd cycles C and zx1y1 . . . xryrwQz whose intersection is Q. By Part
(ii) of Lemma 3.4, H is a forbidden subgraph of G.

Thus every component of F is an odd cycle. Note that by Part(i) of Lemma 3.4,
there is no edge between two cycles of F . Since G is connected, it has a Hamilton
cycle of odd length. Now, Part (iii) of Lemma 3.4 implies that this Hamilton cycle
has no chord and so G is an odd cycle.

Remark 3.6. Let G be a graph with a unique perfect [1, 2]-factor. If G has a vertex
of degree one, say u, whose neighbor is v, then G \ {u, v} is a graph with a unique
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perfect [1, 2]-factor. By repeating this procedure, we reach the empty graph or a graph
which is a disjoint union of finitely-many odd cycles.

The next theorem provides an upper bound for the size of a graph with a unique
perfect [1, 2]-factor.

Theorem 3.7. Let G be a graph of order n with a unique perfect [1, 2]-factor F .
Then |E(G)| ≤ n(k + 1)− k(k + 2), where k is the number of 1-regular components
of F .

Proof. Let H1, . . . , Hk be the 1-regular components and C1, . . . , Ct be the cycle com-
ponents of F . Since G has a unique perfect [1, 2]-factor, it has no forbidden subgraph.
So by Parts (ii) and (iii) of Lemma 3.4, all of the cycle components of F are induced
odd cycles of G and there is no edge between these components. Let u ∈ V (Ci).
If u is adjacent to two vertices of Hj , say x, y, then, using Part (ii) of Lemma 3.4,
Ci ∪ uxy is a forbidden subgraph of G, which is impossible. Thus each vertex of a
cycle in F is adjacent to at most one vertex of Hi, for i = 1, . . . , k. Also, note that
the induced subgraph on V (H1) ∪ · · · ∪ V (Hk) has a unique perfect matching. So

by the Corollary 1.6 in [12], it has at most (2k)2

4
= k2 edges. Therefore we find the

following,

|E(G)| ≤ k2 + (n− 2k) + k(n− 2k) = n(k + 1)− k(k + 2)

as desired.

Note that for an odd cycle, the equality holds in the previous theorem. The
following corollary was first proved in [7]. It is not hard to see that it is a consequence
of Theorem 3.7.

Corollary 3.8. Let G be a graph of order n and size m with a unique perfect [1, 2]-

factor. Then, m ≤
{

n2

4
; if n is even

n2

4
+ 3

4
; if n is odd

.

4 Unique Parity Factors

In this section, we investigate parity f -factors of graphs. Note that if M is the
incidence matrix of G and the rows and columns of M are indexed by V (G) and
E(G), respectively, then parity f -factors of G are in one-to-one correspondence to
the solutions of the equation Mx = f̄ in Z2, where f̄ is the vector corresponding
to f .

Theorem 4.1. Let G be a graph of order n and size m which has c components and
let f : V (G) → Z be a function. If G has a parity f -factor, then G has 2m−n+c parity
f -factors. In particular, G has a unique parity f -factor if and only if G is a forest
and it has at least one parity f -factor.
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Proof. Since the rank of M over Z2 is n − c (see [5, Proposition 14.15.1]), the null
space of M has 2m−n+c vectors. So the number of solutions of the non-homogeneous
equation Mx = f̄ in Z2 is zero or 2m−n+c.

As a consequence of Theorem 4.1 and the fact that a connected graph G has
an odd-factor if and only if its order is even (see [10, Lemma 16.4]), we have the
following corollary.

Corollary 4.2. The only graphs with a unique odd-factor are forests whose compo-
nents have even number of vertices.

Lovász proved that every 2-edge-connected graph with minimum degree at least
3 has one even-factor with no isolated vertices (see [18, Theorem 2.4.7]). We close
this paper with the following result, in which we prove that there is no graph with
minimum degree at least 3 which has a unique even-factor with no isolated vertices.

Theorem 4.3. If G has a unique even-factor with no isolated vertices, then δ(G) = 2.

Proof. By induction on
∑

v∈V (G) |dG(v) − 3|, we prove that if δ(G) ≥ 3 and G has
an even-factor with no isolated vertices, then G has at least two such factors. If G is
cubic, then even-factors of G with no isolated vertices are 2-factors of G and Part(ii)
of Corollary 2.3 yields the result. Now, let F be an even-factor of G with no isolated
vertices and v ∈ V (G) has degree at least 4. First, suppose that dF (v) ≥ 4. Split v
into two vertices v1 and v2. Join v1 to two vertices u1, u2 ∈ NF (v) and join v2 to every
vertex in NG(v)\{u1, u2}. Also add an edge e = v1v2, and denote the resulting graph
by G′. Clearly, δ(G′) ≥ 3. Let F ′ be a factor of G′ that contains the edges of F which
are not incident with v, together with v1u1, v1u2 and {v2x : vx ∈ F \ {vu1, vu2}}.
Obviously, F ′ is an even-factor for G′ with no isolated vertices. Thus by the induction
hypothesis it has at least two such factors. By contracting e in G′, these two factors
give two distinct even-factors of G with no isolated vertices. Next, suppose that
dF (v) = 2 and let NF (v) = {u1, u2}. Split v into two vertices v1 and v2. Let
w ∈ NG(v)\{u1, u2}. Join v1 to u1 and w, and join v2 to all vertices inNG(v)\{u1, w}.
Also add an edge e = v1v2, and denote the resulting graph by G′. Note that F yields
a factor F ′ of G′, all of its degrees are even integers except dF ′(v1) and dF ′(v2) which
are 1. Now, F ′ + e is an even factor of G′ with no isolated vertices. Thus by the
induction hypothesis, G′ has at least two such factors. By contracting e in G′, these
two factors yield two distinct even-factors of G with no isolated vertices.
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