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Abstract

In this paper, we consider graphs having a unique minimum independent
dominating set. We first discuss the effects of deleting a vertex, or the
closed neighborhood of a vertex, from such graphs. We then discuss five
operations which, in certain circumstances, can be used to combine two
graphs, each having a unique minimum independent dominating set, to
produce a new graph also having a unique minimum independent domi-
nating set. Using these operations, we characterize the set of trees having
a unique minimum independent dominating set.

1 Introduction

In this paper, we consider graphs having a unique minimum independent dominating
set. Unique minimum dominating sets, both independent and otherwise, have been
much studied. For example, unique minimum vertex dominating sets were first
considered in [7] where trees were the class of graphs primarily considered. Since then,
unique minimum dominating sets have been studied in block graphs, cactus graphs,
and Cartesian products (see [1, 3, 9, 10]). The maximum number of edges contained
in a graph having a unique minimum dominating set of a specified cardinality was
considered in [2] and [6].

Graphs containing a unique minimum independent dominating set have received
less attention. In [5], the authors discussed a hereditary class of graphs containing all
graphs G for which every induced subgraph of G has a unique minimum independent
dominating set if and only if it has a unique minimum dominating set. Unique
minimum independent dominating sets were also considered in trees T satisfying
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γ(T ) = i(T ). In [11], the maximum number of edges in a graph having a unique
minimum independent dominating set of cardinality 2 was considered. We note that
minimum independent dominating sets can also be viewed as maximal independent
sets of minimum cardinality. Quite a bit of work has been done on graphs having
a unique maximum independent set, and, in general, the total number of maximal
independent sets in a given graph. We direct the reader towards [4, 12–15] for just
a few examples of such work.

Subsequently, we begin in Section 3 by discussing the effects of deleting a vertex,
or the closed neighborhood of a vertex, from a graph having a unique minimum in-
dependent dominating set. We then turn our attention to trees in Section 4, where
we strengthen some of our earlier results. In Section 5, we consider a collection of
operations which can be used to combine two graphs having a unique minimum in-
dependent dominating set to produce a new graph also having a unique minimum
independent dominating set. Finally, in Section 6, we use these operations to char-
acterize those trees having a unique minimum independent dominating set.

2 Notation and Definitions

In this paper, we consider only finite, simple graphs. Given a graph G, we let V (G)
denote the vertex set of G and E(G) denote the edge set of G. If v ∈ V (G), the
open neighborhood of v, denoted N(v), is defined by N(v) = {u : vu ∈ E(G)}
while the closed neighborhood of v, denoted N [v], is defined by N [v] = N(v) ∪ {v}.
When required, we may write NG[v] to indicate the closed neighborhood of v in G.
Given S ⊆ V (G), the open and closed neighborhoods of S, denoted N(S) and N [S]
respectively, are defined by N(S) =

⋃
v∈S N(v) and N [S] = N(S) ∪ {S}. We say

that S dominates every vertex in its closed neighborhood. If S ⊆ V (G) with v ∈ S,
a private neighbor of v with respect to S is any vertex u such that N [u] ∩ S = {v}.
We note that it is possible for v to be a self-private neighbor. An external private
neighbor of v with respect to S is any vertex belonging to the set {u ∈ V (G) − S :
N [u] ∩ S = {v}}. We let epn(v, S) denote the set of external private neighors of
v with respect to S. A subset of vertices D is a dominating set if N [D] = V (G).
The minimum cardinality of a dominating set in G, called the domination number
of G, is denoted γ(G), and any dominating set whose cardinality equals γ(G) is a
γ-set. A subset of vertices I is independent if no two vertices in I share an edge. The
minimum cardinality of an independent dominating set in G is called the independent
domination number of G, and is denoted by i(G). Any independent dominating set
of cardinality i(G) is an i-set. As notational conventions, we let UI represent the
class of graphs having a unique minimum independent dominating set. If G ∈ UI,
we let I(G) denote the unique i-set of G. For other terminology and notation not
explicitly mentioned, we follow [8].
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3 Deleting vertices and closed neighborhoods

In [5], the authors prove the following.

Lemma 1. [5] If any graph G has a unique i-set I(G), then every vertex in I(G)
fullfills either |epn(x, I(G))| = 0 or |epn(x, I(G))| ≥ 2.

We are thus motivated to make the following definitions.

Definition 1. Given a graph G ∈ UI and its unique i-set I(G), we define the
following sets.

A(I(G)) = {v ∈ I(G) : |epn(v, I(G))| ≥ 2}
B(I(G)) = {v ∈ I(G) : |epn(v, I(G))| = 0}

We see that if G ∈ UI, then V (G) can be partitioned as V (G) = A(I(G))∪B(I(G))∪
(V (G)− I(G)). Bearing this is mind, we now consider the implications of deleting a
vertex, or the closed neighborhood of a vertex, chosen from each of these sets.

We begin with the following.

Lemma 2. Let G ∈ UI. For any v ∈ V (G)− I(G), i(G− v) = i(G).

Proof. Since v 6∈ I(G), we see that I(G) dominates G− v. Hence, i(G− v) ≤ i(G).
Suppose that i(G− v) < i(G), and let D be an i-set for G− v. Consider then D in
G. If D dominates G, then we arive at a contradiction since this implies that I(G)
is not a minimum independent dominating set. Thus, D fails to dominate v. In this
case, D ∪ {v} is an independent dominating set of cardinality at most |I(G)|. This
contradicts the uniqueness of I(G). Our result is shown.

We briefly note that if G ∈ UI and we delete a vertex v ∈ V (G) − I(G), it is not
guaranteed that G− v ∈ UI. For example, P3 ∈ UI, but if we delete a leaf from P3,
the resulting graph, P2, is not in UI.

We note here that the conditions in Lemma 1, while necessary, are not sufficient
to imply that a general graph G is a member of UI (take C6 for example). They
are, however, sufficient for trees T satisfying γ(T ) = i(T ) as illustrated in [5]. For an
arbitrary graph G, the following conditions are necessary and sufficient for G ∈ UI.

Lemma 3. For an arbitrary graph G, G ∈ UI if and only if there exists an i-set D
of G such that for all v ∈ V (G)−D, i(G−N [v]) ≥ i(G).

Proof. First, suppose that G ∈ UI. In this case, let D = I(G), and consider
v ∈ V (G) − D. Observe that N [v] 6= V (G) since otherwise {v} is a minimum
independent dominating set distinct from D, a contradiction. Thus, we may assume
that V (G−N [v]) is nonempty. Suppose, then, that i(G−N [v]) < i(G) and let D′ be
an i-set for G−N [v]. We see that D′ ∪ {v} is an independent dominating set for G
of cardinality at most |I(G)|, a contradiction. Thus, i(G−N [v]) ≥ i(G) as claimed.
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Now suppose that G has an i-set D such that for all v ∈ V (G)−D, i(G−N [v]) ≥
i(G). For the sake of contradiction, suppose that G 6∈ UI. Let D′ be an i-set of G
distinct from D, and let v ∈ D′ −D. We see that D′ − {v} is an i-set for G−N [v].
Thus, i(G − N [v]) = |D′ − {v}| = |D′| − 1 = |D| − 1 < i(G). This, however,
contradicts the assumed property of D.

We now consider deleting a vertex from I(G).

Lemma 4. Let G ∈ UI. For any v ∈ A(I(G)), i(G− v) ≥ i(G).

Proof. For the sake of contradiction, suppose that i(G − v) < i(G), and let D be
an i-set for G − v. Consider D in G. Since v ∈ A(I(G)), v has at least two
external private neighbors in G with respect to I(G). Thus, D dominates every
vertex in epn(v, I(G)). If D dominates G, then I(G) is not a minimum independent
dominating set, a contradiction. Hence, D fails to dominate v. In this case, D ∪ {v}
is an independent dominating set of cardinality at most |I(G)|. Furthermore, since
epn(v,D ∪ {v}) 6= epn(v, I(G)), we see that D ∪ {v} is distinct from I(G). Thus,
the uniqueness of I(G) has been contradicted.

We briefly note that it is possible for i(G − v) = i(G) for some v ∈ A(I(G)) as the
following example illustrates.

y

v

z x

Figure 1: i(G− v) = i(G)

In this example, i(G) = 2, I(G) = {v, z}, and i(G − v) = 2 with an i-set given by
{x, y}. We also note that if v ∈ A(I(G)), then G− v is not guaranteed to be in UI.
This is in contrast to the following result.

Lemma 5. Let G ∈ UI. For any v ∈ B(I(G)), G − v ∈ UI, and I(G − v) =
I(G)− {v}.

Proof. Since v ∈ B(I(G)), v has no external private neighbors with respect to I(G).
Thus, I(G)− {v} dominates G− v. Hence, i(G− v) ≤ i(G)− 1. By similar logic as
applied in the proof of Lemma 4, we see that i(G− v) = i(G)− 1.

Moreover, we also see that I(G)− {v} is an i-set for G− v. Suppose G− v has
another i-set, call it D′. Note that D′ dominates G−v but does not dominate G, else
we would have i(G) = i(G) − 1. Thus, in G, D′ fails to dominate v. In particular,
this implies that no neighbor of v is in D′. Hence, D′ ∪ {v} is an independent
dominating set of G of cardinality at most |I(G)|. Since D′ 6= I(G)−{v} we see that
D′∪{v} 6= I(G), a contradiction. Thus, G−v ∈ UI with I(G−v) = I(G)−{v}.
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The sets A(I(G)) and B(I(G)) are similar in the following respect.

Lemma 6. Let G ∈ UI. For any v ∈ I(G), i(G−N [v]) = i(G)−1, G−N [v] ∈ UI,
and I(G−N [v]) = I(G)− {v}.

Proof. First note that I(G) − {v} is an independent dominating set for G − N [v].
Thus, i(G − N [v]) ≤ i(G) − 1. Assuming i(G − N [v]) < i(G) − 1 results in a
contradiction as in the proof of Lemma 4. Thus, we have i(G−N [v]) = i(G)− 1. If
G−N [v] has an i-set distinct from I(G)− {v}, call it D′, then D′ ∪ {v} is an i-set
of G distinct from I(G), a contradiction. Thus, we see that G − N [v] ∈ UI with
I(G−N [v]) = I(G)− {v}.

Our last lemma in this section does not concern deleting a vertex or a private
neighbor. Since we use these techniques when proving the result, we present it here.
We will make use of this result in Theorem 1 to come.

Lemma 7. If T ∈ UI is a tree with v ∈ V (G)− I(G), then N [v] ∩ A(I(G)) 6= ∅.

Proof. Note that since I(T ) is a dominating set, |N(v) ∩ I(T )| ≥ 1. For the
sake of contradiction, suppose that (N(v) ∩ I(T )) ⊆ B(I(T )) with N(v) ∩ I(T ) =
{b1, b2, . . . , bk}. Consider then T −N [v]. Since T is a tree, bi and bj have no common
neighbors when i 6= j. This, together with the fact that each bj has no external
private neighbors with respect to I(T ), implies that I(T )−{b1, b2, . . . , bk} is an inde-
pendent dominating set for T −N [v]. Thus, i(T −N [v]) ≤ i(T )− k for some k ≥ 1.
This, however, contradicts Lemma 3. Thus, v has a neighor in A(I(T )).

4 Trees

In this section, we seek to improve upon Lemma 4 in the case when G is a tree.
Our proofs will take advantage of rooted trees. Thus, for notational convenience,
given a rooted tree T , we let Tv denote the subgraph of T induced by v and all of its
descendants.

We begin with the following.

Lemma 8. Let T ∈ UI be a tree rooted at a vertex v ∈ A(I(T )) with epn(v, I(T )) =
{p1, p2, . . . , pk}. For 1 ≤ j ≤ k, i(Tpj) = |I(T )∩V (Tpj)|+1 and {pj}∪(I(T )∩V (Tpj))
is a a minimum independent dominating set for Tpj .

Proof. For j ∈ {1, 2, . . . , k}, consider Tpj , the subtree of T induced by pj and all
of its descendants. By Lemma 6, T − N [v] ∈ UI with I(T − N [v]) = I(T ) − {v}.
This implies that Tpj − pj ∈ UI with I(Tpj − pj) = V (Tpj) ∩ I(T ). Notice that
V (Tpj)∩ I(T ) does not dominate pj in Tpj since pj is an external private neighbor of
v with respect to I(T ) in T . In particular, this implies that none of the descendants
of pj are contained in I(T ). Thus, let D be an i-set of Tpj . There are two cases to
consider.
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• First, suppose that pj 6∈ D. In this case, some descendant of pj is contained in
D, and D is an independent dominating set for Tpj−pj. Since Tpj−pj ∈ UI and
no descendant of pj is contained in I(Tpj−pj), we see that |D| > |I(Tpj−pj)| =
|I(T ) ∩ V (Tpj)|.

• Now, suppose that pj ∈ D. In this case, no descendant of pj is contained in
D. Let d1, d2, . . . , dn denote the descendants of pj. Observe that if we delete pj
from Tpj , we are left with a forest whose components, namely Td1 , Td2 , . . . , Tdn ,
are found in T − N [v]. Hence, by Lemma 6, the components of Tpj − pj are
each graphs in UI. Thus, we see that

|D| = 1 + |D ∩ V (Tpj − pj)|

= 1 +
n∑

m=1

|D ∩ V (Tdm)|

= 1 +
n∑

m=1

|I(T ) ∩ V (Tdm)| by Lemma 2

= 1 + |I(T ) ∩ V (Tpj − pj)|
= 1 + |I(T ) ∩ V (Tpj)|.

Thus, in either case, we see that i(Tpj) > |I(T )∩V (Tpj)|. Moreover, we also see that
{pj} ∪ (I(T )∩ V (Tpj)) is a minimum independent dominating set for Tpj . Thus, our
result is proven.

This lemma is particularly nice since it implies the following.

Proposition 1. Let T ∈ UI be a tree. For all v ∈ A(I(T )), i(T − v) > i(T ).

Proof. Root T at v. Let epn(v, I(T )) = {p1, p2, . . . , pk} and let N(v)−epn(v, I(T )) =
{n1, n2, . . . , nm}. If we delete v from T , we are left with k +m components, namely

Tp1 , Tp2 , . . . , Tpk , Tn1 , Tn2 , . . . , Tnm .

Thus, we see that

i(T − v) =
k∑

s=1

i(Tps) +
m∑
t=1

i(Tnt).

By Lemma 8, {ps} ∪ (I(T ) ∩ V (Tps)) is an i-set for Tps for 1 ≤ s ≤ k. Let F denote
the subforest of T −v given by Tn1∪Tn2∪· · ·∪Tnm . Let α = |I(T )∩V (F )|. Consider
i(F ). We see that if i(F ) ≥ α− k + 1, then our result is shown.

Thus, suppose that i(F ) ≤ α− k and let D be an i-set for F . We see that

D ∪
k⋃

s=1

({ps} ∪ (I(T ) ∩ V (Tps)))

is an independent dominating set of T of cardinality at most |I(T )| distinct from
I(T ), a contradiction.

Thus, we see that i(F ) ≥ α− k + 1, in which case i(T − v) > i(T ).
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Thus, we see that when we consider trees in UI, the result of Lemma 4 can be
improved upon.

Continuing on, our next result will be used in Section 5.

Lemma 9. If T ∈ UI is a tree with v ∈ V (T ) − I(T ) a shared neighbor of at least
two vertices in I(T ), then T − v ∈ UI with I(T − v) = I(T ).

Proof. Let T1, T2, . . . , Tk be the components of T − v, and let Ij = I(T ) ∩ V (Tj) for
1 ≤ j ≤ k. Note that for each j, Ij is an independent dominating set for Tj. Since v
has at least two neighbors in I(T ), we can alter the minimum dominating set I(T )
on one of the components, say Tj, and create an independent dominating set for all
of T . That is, if D is any i-set for Tj, then

D ∪
⋃
s6=j

Is

is an independent dominating set for T . This observation implies that Ij is, in fact,
an i-set for Tj, and that each Tj ∈ UI. Since each Tj ∈ UI, T − v ∈ UI as well.
Our result is shown.

5 Operations

Using our observations above, we now illustrate a collection of operations which allow
us to construct a new graph in UI by combining two graphs in UI. In particular,
throughout this section, G1 and G2 are assumed to both be graphs in UI. We let Ij
denote the unique i-set of Gj for j = 1, 2.

Operation 1. For j = 1, 2, choose uj ∈ V (Gj) − Ij. If G is the graph defined by
G = (G1 ∪G2) + u1u2, then G has the unique i-set I1 ∪ I2.

Proof. First, observe that I1 ∪ I2 is an independent dominating set for G. Thus,
i(G) ≤ |I1 ∪ I2| = |I1| + |I2|. Suppose that i(G) < |I1| + |I2|, and let D be an
i-set of G. In particular, this implies that D 6= I1 ∪ I2. Let D1 = D ∩ V (G1) and
D2 = D ∩ V (G2). Note that if D1 = I1, then D2 = I2 since u1 6∈ I1 and G2 ∈ UI.
Similarly, if D2 = I2, then D1 = I1 since u2 6∈ D2 and G1 ∈ UI. Thus, we have
D1 6= I1 and D2 6= I2.

Without loss of generality, suppose that |D1| ≤ |I1|. First note that D1 does not
dominate G1, since otherwise I1 is not the unique i-set of G1. Since the only vertex
of V (G1) that can be dominated from outside of V (G1) by D is u1, we see that D1

fails to dominate u1. Hence, u2 ∈ D2. This implies each of the following.

• D2 independently dominates V (G2). Since I2 is the unique i-set of G2, and
since u2 6∈ I2, we see that |D2| > |I2|.

• D1 independently dominates G− u1. Thus, by Lemma 2, |D1| ≥ |I1|.
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Hence, we see that |D| = |D1|+ |D2| > |I1|+ |I2|, a contradiction.

Thus, we see that i(G) = |I1 ∪ I2|. By the logic applied above, if D is any i-set
of G containing one of u1 or u2, then |D| > |I1 ∪ I2|. This implies that I1 ∪ I2 is the
unique i-set of G.

Operation 2. For j = 1, 2, let vj ∈ A(Ij). Let u be a new vertex that is neither
in G1 nor G2. If G is the graph defined by V (G) = V (G1) ∪ V (G2) ∪ {u} and
E(G) = E(G1) ∪ E(G2) ∪ {v1u, uv2}, then G has the unique i-set I1 ∪ I2.

Proof. First, observe that I1 ∪ I2 is an independent dominating set for G. Thus,
i(G) ≤ |I1∪I2| = |I1|+ |I2|. Let D be an i-set for G. Once again, let D1 = D∩V (G1)
and let D2 = D ∩ V (G2). There are two cases to consider.

• First, suppose that u ∈ D. Since D is independent, this implies that v1 6∈ D
and that v2 6∈ D. Hence, D1 is an independent dominating set for G1− v1 and
D2 is an independent dominating set for G2 − v2. By Lemma 4, this implies
that |D1| ≥ |I1| and |D2| ≥ |I2|. Hence, we see that |D| = |D1 ∪D2 ∪ {u}| =
|D1|+ |D2|+ 1 ≥ |I1|+ |I2|+ 1 > |I1|+ |I2|, a contradiction.

• Now suppose that u 6∈ D. In this case, D1 is an independent dominating set for
G1 and D2 is an independent dominating set for G2. This implies that D1 = I1
and D2 = I2. Thus, D = I1 ∪ I2.

Hence, we see that G has a unique i-set given by I1 ∪ I2.

Operation 3. Let G1 ∈ UI be a tree and let G2 ∈ UI. Let v1 ∈ A(I1) and
v2 ∈ B(I2). Let u be a new vertex that is neither in G1 nor G2. If G is the graph
defined as in Operation 2, then G has the unique i-set I1 ∪ I2.

Proof. First, observe that I1 ∪ I2 is an independent dominating set for G. Thus,
i(G) ≤ |I1 ∪ I2| = |I1|+ |I2|. Let D be an i-set for G. Let D1 = D ∩ V (G1) and let
D2 = D ∩ V (G2). Once again, we consider two cases.

• First, suppose that u ∈ D. Since D is independent, this implies that v1 6∈ D
and that v2 6∈ D. Hence, D1 is an independent dominating set for G1 − v1
and D2 is an independent dominating set for G2 − v2. By Proposition 1 and
Lemma 5, we see that

|D| = 1 + |D1|+ |D2|
≥ 1 + |D1|+ |I2| − 1

= |D1|+ |I2|
> |I1|+ |I2|
= |I1 ∪ I2|.

Thus, we have arrived at a contradiction. Hence, u is not a member of any
i-set of G.
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• Now suppose that u 6∈ D. In this case, D1 is an independent dominating set for
G1 and D2 is an independent dominating set for G2. This implies that D1 = I1
and D2 = I2. Thus, D = I1 ∪ I2.

Thus, we see that G has a unique i-set given by I1 ∪ I2.

We note that if G1 is not a tree, then Operation 3 is not guaranteed to produce a
graph in UI. For example, if we let G1 be the graph from Figure 1 with v1 = v, and
let G2 = K1, then Operation 3 will produce the graph below, which does not have a
unique i-set.

Figure 2: Operation 3 requires G1 to be a tree

Operation 4. Let G1 ∈ UI be a tree and let G2 ∈ UI. Let v1 ∈ V (G1) − I1 be a
common neighbor of at least two vertices in I1, and let v2 ∈ A(I2). If G is the graph
formed by joining G1 and G2 with the new edge v1v2, then G has the unique i-set
I1 ∪ I2.

Proof. Once again, we see that I1 ∪ I2 is an independent dominating set for G.
Thus, i(G) ≤ |I1| + |I2|. Let D be an i-set for G. Let D1 = D ∩ V (G1) and let
D2 = D ∩ V (G2). We consider two cases.

• First, suppose that v1 ∈ D. In this case, D1 is an independent dominating set
for G1. Since v1 6∈ I1, this implies that |D1| > |I1|. Additionally, if v1 ∈ D then
v2 6∈ D. Hence, D2 is an independent dominating set for G2−v2. By Lemma 4,
we see that |D2| ≥ |I2|. Hence, we see that |D| = |D1| + |D2| > |I1| + |I2|, a
contradiction.

• Now suppose that v1 6∈ D. This implies that D2 is a minimum independent
dominating set for G2. Thus, D2 = I2. This implies that D1 is a minimum
independent dominating set for G1 − v1. By Lemma 9, we see that D1 = I1
and thus D = I1 ∪ I2.

Hence, we see that G ∈ UI and that I(G) = I1 ∪ I2.

In the operation above, if v2 ∈ B(I2), then the resulting graph G is not guaranteed
to have a unique i-set. For example, in the figure below, if we add in the dashed
edge, the resulting graph will not have a unique i-set.
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G2

v2

G1

v1

Figure 3: Operation 4 requires v2 ∈ A(I2)

The reason Operation 4 failed to produce a graph in UI in the example above is
that i(G1−N [v1]) = i(G1). In an attempt to circumvent this problem, we make the
following definition. Given a graph G ∈ UI, let

C(G) = {v ∈ V (G)− I(G) : |N(v) ∩ I(G)| ≥ 2 and i(G−N [v]) > i(G)}.

With this notation established, we present the following operation.

Operation 5. Let G1 ∈ UI be a tree and let G2 ∈ UI. Let v1 ∈ C(G1) and let
v2 ∈ B(I2). If G is formed by joining G1 and G2 with the new edge v1v2, then G has
the unique i-set I1 ∪ I2.

Proof. Let D be an i-set for G. Let D1 = D ∩ V (G1) and let D2 = D ∩ V (G2). We
consider two cases.

• First, suppose that v1 ∈ D. In this case, D1 is an independent dominating
set for G1. Note that |D1| = 1 + |D1 − {v1}|. Since D1 − {v1} independently
dominates G1−N [v], and since v1 ∈ C(G1), we see that |D1−{v}| > i(G) = |I1|.
Thus, |D1| ≥ |I1| + 2. Additionally, if v1 ∈ D, then v2 6∈ D. Hence, D2 is an
independent dominating set for G2 − v2. By Lemma 5, we see that |D2| ≥
|I2| − 1. Hence, we see that |D| = |D1|+ |D2| ≥ |I1|+ 2 + |I2| − 1 > |I1|+ |I2|,
a contradiction.

• Now suppose that v1 6∈ D. This implies that D2 is a minimum independent
dominating set for G2. Thus, D2 = I2. This implies that D1 is a minimum
independent dominating set for G1 − v1. Lemma 9 then implies that D1 = I1.
Thus, D = I1 ∪ I2.

Hence, we see that G ∈ UI and that I(G) = I1 ∪ I2.

Note that after performing each of these five operations, A(I(G)) = A(I1) ∪ A(I2)
and that B(I(G)) = B(I1) ∪ B(I2).
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6 Characterizing Trees

In this section, we utilize the operations discussed in the previous section to charac-
terize the trees T having a unique minimum independent dominating set.

Theorem 1. Let T be a tree. T ∈ UI if and only if T can be constructed from a
disjoint union of isolated vertices and stars, each with at least two leaves, by a finite
sequence of Operations 1 through 5.

Proof. Given our work in the previous section, if T can be constructed from a disjoint
union of isolated vertices and stars, each with at least two leaves, by a finite sequence
of Operations 1 through 5, then T ∈ UI. Thus, it remains to show that if T ∈ UI,
then T can be constructed in this manner.

We proceed by induction on i(T ). If i(T ) = 1, then, by Lemma 1, T is either K1

or a star with at least 2 leaves. In either case, the result holds.

Assume the result holds for all trees T in UI satisfying i(T ) < k, k ≥ 2. Let
T ∈ UI be a tree satisfying i(T ) = k. We consider two cases, each with two subcases.

Case One: T has a leaf in I(T ).

Suppose that T has a leaf, call it l, in I(T ). Notice that l ∈ B(I(T )). Let v
denote the single neighbor of l. Since I(T ) is independent, v 6∈ I(T ). Additionally, by
Lemma 7, some neighbor of v, distinct from l, is inA(I(T )). Let a1 ∈ N(v)∩A(I(T )).
We consider the following two subcases.

Subcase One: |N(v) ∩ I(T )| = 2.

First suppose that |N(v) ∩ I(T )| = 2. Let N(v) = {l, a1, o1, o2, . . . , ok}. Ob-
serve that o1, o2, . . . , ok are not in I(T ). Root T at v. By Lemma 9, each of Ta1 ,
To1 , To2 , . . . , Tok has a unique i-set. Thus, by our induction hypothesis, each of these
subtrees can be constructed from a disjoint union of isolates and stars by a finite se-
quence of Operations 1 through 5. To construct T , first note that since a1 ∈ A(I(T )),
we also have a1 ∈ A(I(Ta1)). Thus, we can connect l, v and Ta1 by applying Opera-
tion 3. Call this resulting graph F . From there, we can reconstruct T by connecting
To1 , To2 , . . . , Tok to F by performing Operation 1 k-times.

Subcase Two: |N(v) ∩ I(T )| > 2.

Once again, root T at v. Let

N(v) = {l, a1, a2, . . . , aj, b1, b2, . . . , bk, o1, o2, . . . , om}

where a1, a2, . . . , aj ∈ A(I(T )), b1, b2, . . . , bk ∈ B(I(T )) and o1, o2, . . . , om ∈ V (T ) −
I(T ). Let T ′ = T − l. Recall that since T ∈ UI, Lemma 3 implies that i(T −N [v]) ≥
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i(T ). Thus, in particular, we have that

i(T ′ −NT ′ [v]) = i(T −N [v])

≥ i(T )

> i(T )− 1

= i(T − l)
= i(T ′).

Thus, we see that i(T ′ − NT ′ [v]) > i(T ′). Thus, v ∈ C(T ′). Recall that T ′ ∈ UI by
Lemma 5. Thus, by our induction hypothesis, T ′ can be constructed from a disjoint
union of isolated vertices and stars by a finite sequence of Operations 1 through 5.
We can then reconstruct T from T ′ and l by applying Operation 5.

Case Two: No leaf of T is in I(T ).

Consider a diametral path v1v2 · · · vk−2vk−1vkvk+1 in T . Since i(T ) ≥ 2, and since
no leaf of T is in I(T ), we see that k ≥ 4. Observe that vk+1 6∈ I(T ) in which case
vk ∈ I(T ). This further implies that vk ∈ A(I(T )). We once again consider two
subcases.

Subcase One: vk−1 ∈ epn(vk, I(T )).

In this case, observe that N(vk−1) = {vk−2, vk} since otherwise either I(T )
contains a leaf or v1v2 · · · vk+1 is not a diametral path. Moreover, since vk−1 ∈
epn(vk, I(T )), we see that vk−2 6∈ I(T ). Thus, consider T − N [vk]. By Lemma 6,
T − N [vk] ∈ UI and i(T − N [vk]) = i(T ) − 1. Thus, we can apply our induction
hypothesis to T−N [vk]. We can then reconstruct T from T−N [vk] and the subgraph
induced by N [vk] by applying Operation 1.

Subcase Two: vk−1 6∈ epn(vk, I(T )).

Since vk ∈ A(I(T )), this implies that vk has at least two leaf neighbors. Consider
N(vk−1). We see that |N(vk−1) ∩ I(T )| ≥ 2, and that vk−1 has no leaf neighbors.

First suppose N(vk−1) = {vk−2, vk}. In this case, vk−2 ∈ I(T ). Since T −N [vk] ∈
UI by Lemma 6, we can apply our induction hypothesis to T −N [vk]. We can then
reconstruct T from T − N [vk], vk−1, and {vk} ∪ epn(vk, I(T )) by applying either
Operation 2 or Operation 3.

Suppose now that N(vk−1) = {vk−2, vk, o1, o2, . . . , or}. Since I(T ) contains no
leaves, we see that o1, o2, . . . , or are each in A(I(T )). In particular, this implies that
each has at least two leaf neighbors. Root T at vk−1. By Lemma 9, Tvk−2

∈ UI in
which case we can apply the induction hypothesis to construct it from Operations 1
through 5. We can then reconstruct T as follows. First, combine {vk}∪epn(vk, I(T )),
{o1}∪epn(o1, I(T )), . . . , {or}∪epn(or, I(T )) through one Operation 2 followed by Op-
eration 4 (r−1)-times. From there, we can reconstruct T by performing Operation 5
if vk−2 ∈ B(I(T )), Operation 4 if vk−2 ∈ A(I(T )), or Operation 1 if vk−2 6∈ I(T ).
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