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Abstract

We continue our study of burn-off chip-firing games on graphs initiated in
[Discrete Math. Theor. Comput. Sci. 15 (2013), no. 1, 121–132]. Here we
introduce randomness by choosing each successive seed uniformly from
among all possible nodes. The resulting stochastic process—a Markov
chain (Xn)n≥0 with state space the set R of relaxed legal chip configu-
rations C : V → N on a connected graph G = (V,E)—has the property
that, with high probability, each state appears equiproportionally in a
long sequence of burn-off games. This follows from our main result that
(Xn) has a doubly stochastic transition matrix. As tools supporting our
main proofs, we establish several properties of the chip addition operator
E(·)(·) : V ×R → R that may be of independent interest. For example, if
V = {v1, . . . , vn}, then C ∈ R if and only if C is fixed by the composition
Ev1 ◦ · · · ◦ Evn ; this property eventually yields the irreducibility of (Xn).
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1 Introduction

This article continues our study in [23] of a variant of chip-firing games—burn-off
games—in which each iteration simulates the loss of energy from a complex system.
Our point of departure is to introduce randomness to burn-off games by choosing each
successive ‘seed’ uniformly at random from among all possible nodes. The resulting
stochastic process turns out to have the property that, with high probability, each
‘relaxed legal configuration’ appears equiproportionally in a long sequence of burn-off
games. This follows from our main result (Theorem 3.2) that the transition matrix
for the underlying Markov chain is doubly stochastic. The uniform visitation of states
(configurations) is at once expected (as the seed choices are uniform) and surprising
(as it does not depend on the underlying graph).

We are not the first authors to bring a stochastic component to chip-firing games;
see, e.g., [33], which studies a Markov chain different from the one in the present ar-
ticle. However, as far as we can tell, when we introduced (in [29]) the chain studied
here, it was novel. By now, it is an example of the Markov chain on the so-called
‘recurrent states’ of a more abstract process called ‘abelian networks’, examined, e.g.,
in [10, Section 3.2]. A similar continuous process was studied in [21], where, interest-
ingly, the uniform measure on the ‘allowed configurations’ also made an appearance.
We also point the reader to [31], which—though it makes no explicit mention of chip
firing—we cannot help feeling ought to be related to the present work through the
shared thread of spanning tree enumeration; cf. [2–5, 20, 23].

The remainder of this introduction is an abbreviated version of the one in [23],
from which we borrow heavily.

Chip-firing games attracted attention in part thanks to their ability to mimic the
behaviour of complex real-world systems of individuals that interact primarily with
their neighbours. For example, these games have been used to predict the frequencies
of earthquakes [1], the volume of avalanches in sandpiles [14], the extent of traffic
jams [28], and the intensity of bursts of brain activity [34]. (Some recent, more
theoretical, work on these games appears, e.g., in [2,3,18–20,26,27,30]; [25] provides
a wonderfully succinct overview.) Because such behaviours typically involve the loss
of energy (heat loss via friction, for example), we introduced in [29] a variant in
which a chip is lost from the game each time a node fires. We called such variants
‘burn-off games’ (and will carefully define them in Section 1.1).

The published account of [29] started with [22] and continued in [23], the latter
providing a foundation for the present article. In [23], following a characterization of
the ‘relaxed legal’ configurations for general (connected) graphs and an enumeration
of the ‘legal’ ones for complete graphs, we re-established the by now well-known
connection between chip-firing games and spanning tree enumeration, specifically,
a link between our burn-off games and Cayley’s tree enumeration theorem [12] (or,
e.g., [11]). Other articles exposing this connection are (nonexhaustively) listed at
the end of the second paragraph above.

The present paper begins (§1.1) with the definition of a burn-off game (and the
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supporting terminology) and a handful of results imported from our earlier arti-
cle [23] and from the survey [20] by Holroyd et al. Section 1.2 also contains one new
(to us) result—Proposition 1.9—that greatly simplified two of our original proofs
in Section 2. There, we establish three essential properties of the ‘chip addition
operator’—defined in (1.3) below—which sets the stage for Section 3, where we draw
our main conclusions about the Markov chain underlying a sequence of burn-off
games.

Notation and terminology

We mainly follow usual graph theory conventions as found, for instance, in [11]. A
graph theory reference that addresses chip firing is [17]. For probability background,
see the classic [16].

1.1 Description of a burn-off game

A chip-firing game plays on a connected graph G = (V,E) with no loops or parallel
edges. We initiate a game by distributing ‘chips’ onto the nodes; i.e., each v ∈ V
begins with a nonnegative number C(v) of chips, and we call the function C : V → N

a configuration.

To each v ∈ V we assign a critical number. Early chip-firing games (e.g. [4–7])
typically set the critical number of a node equal to its degree, but our variant tweaks
this, as we explain in the next paragraph. Should C(v) exceed the critical number
of v, we say that v can fire. A configuration in which no node can fire is relaxed, and
to start a chip-firing game, we add a chip to some selected node (called a seed) in a
relaxed configuration. This may allow the seed to fire. A node that fires sends a chip
to each of its neighbours, which may allow a new node to fire. The game proceeds
in this way until the resulting configuration is relaxed. The length of a game equals
the number of node firings in passing from an unrelaxed configuration to a relaxed
one.

These rules may trigger games of infinite length, as Björner et al. [7] observed.
To eliminate this possibility, we modified the rules: in our burn-off game variant, the
critical number of each v ∈ V is degG (v)+1, and when v fires, one of its chips is lost
from the game. Formally, when v fires, C is modified to a successor configuration
C ′ such that

C ′(u) =

⎧⎨
⎩

C(v)− degG(v)− 1 if u = v,
C(u) + 1 if uv ∈ E(G),
C(u) if v �= u �∼ v.

(1.1)

In [23], we noted that chip firing according to this rule is equivalent to the ‘dollar
game’ of Biggs [5] in the particular case when his ‘government’ node is adjacent to
every other node in the underlying graph; see also [4]. More recently, we noticed
that burn-off chip firing on (undirected) graphs is a special case of conventional chip
firing on directed graphs (initiated in [6]). Given one of our graphs G, replace each
edge by a pair of oppositely oriented arcs, and add a new node s, to which every
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node of G is joined by an arc headed to s. In the language of the recent survey [20],
the resulting digraph is ‘bidirected’ with s as its ‘global sink’ and so falls within the
class of digraphs considered there and elsewhere. A still more general (and abstract)
process—abelian networks—is introduced and studied in the important sequence of
articles [8–10].

In a graph G with configuration C, we say that a node v is critical when
C(v) = degG (v), i.e., when v will fire with the addition of a single chip. It is
sometimes convenient to denote such an addition algebraically, so we write 1v for
the configuration with one chip on v and zero chips on every other node. The action
of passing from C to C + 1v is called seeding C at v or sometimes just seeding v;
we do not require v to be critical before doing this. A supercritical node v is one
for which C(v) > degG (v), i.e., one that must fire before a game in this state can
end. During a burn-off game, it is possible for any of a number of nodes to become
supercritical, but the decision of which of these to fire first has no bearing on the final
relaxed configuration. This property of chip firing, first established in [13], was also
proved by several other people, including this article’s first author; see, e.g., [7], [15],
or [29]. A formal statement of this result appears as Lemma 1.4 below.

We arrive at the notion of a ‘legal’ configuration by typifying those that are
encountered in a long game sequence. Let us start by calling a configuration su-
percritical if every node is supercritical. As in [23], we follow [1] and focus on the
configurations that can result from relaxing supercritical ones. To understand these,
first consider what happens when a burn-off game is played in reverse. Looking at
(1.1), we see that to reverse-fire a node v (each of whose neighbours u necessarily
satisfies C ′(u) ≥ 1) means to modify C ′ to a configuration C such that

C(u) =

⎧⎨
⎩

C ′(v) + degG(v) + 1 if u = v,
C ′(u)− 1 if uv ∈ E(G),
C ′(u) if v �= u �∼ v.

The requirement that C ′(u) ≥ 1 for neighbours u of v ensures that C is a configura-
tion. Now a configuration C is legal if there exists a reverse-firing sequence starting
with C and ending with a supercritical configuration.

1.2 Preliminaries

Legal configurations

Our first three tools concern legal configurations. They were proved originally in [29],
followed by published proofs in [23]. The first characterizes the relaxed legal config-
urations on general graphs G. In its statement, NG denotes the ‘earlier neighbour’
set; i.e., given an ordering (w1, . . . , wn) of V (G), define NG(wi) := {wj : wiwj ∈
E(G) and j < i}.
Lemma 1.1 ([29]) A relaxed configuration C : V → N is legal if and only if it is
possible to label V as w1, . . . , wn so that

C(wi) ≥ |NG(wi)| for 1 ≤ i ≤ n. (1.2)
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We next restate our algorithm for determining the legality of a given configura-
tion.

Algorithm 1.2 ([29])

Input: a graph G = (V,E) and a chip configuration C : V → N on G

Output: an answer to the question ‘Is C legal?’

(1) Let G∗ = G.
(2) If C(v) < degG∗(v) for all v ∈ V (G∗), then stop. Output ‘No.’
(3) Choose any v ∈ V (G∗) with C(v) ≥ degG∗(v).
(4) Delete v and all incident edges from G∗ to create a graph G−.
(5) If V (G−) = ∅, then stop. Output ‘Yes.’
(6) Let G∗ = G− and go to step 2.

The following basic result establishes that containing a legal configuration is an
inherited property for graphs.

Lemma 1.3 ([29]) For a configuration C : V (G) → N and a subgraph H of G, if C
is legal on G, then C|V (H) is legal on H.

Firing order independence and the abelian property

The next result actually holds in the more general setting of chip firing on digraphs,
where the existence of a global sink is not even required. For our purposes, we need
only this version for burn-off games on connected graphs G (but connectivity is not
needed for its proof).

Lemma 1.4 ([13, 15]) If C0, C1, . . . , C� is a sequence of configurations on G, each
a successor of the one before and C ′

0, C
′
1, . . . , C

′
k is another such sequence such that

C ′
0 = C0 and both of C�, C

′
k are relaxed, then k = �, each node fires the same number

of times in both sequences, and C ′
� = C�.

Thus, in a burn-off game, the nodes can be fired in any order without affecting the
length or final configuration of the game. As noted in Section 1.1, Lemma 1.4 has
appeared in several works; [20] contains a particularly succinct proof.

In concert with Corollary 1.10 below, the result implies that starting a burn-off
game in a configuration C leads unambiguously to a unique relaxed configuration,
which we call the relaxation of C and denote by C◦ (the notation here and in (1.3)
borrowed from [20]). Now the seed/relax action of a burn-off game can be written
in terms of the chip addition operator Ev, defined as the map on configurations C
that seeds a node v and then allows the system to relax; i.e.,

Ev(C) := (C + 1v)
◦. (1.3)
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It turns out that in burn-off games (and also some more general chip-firing settings),
the chip addition operators commute. This ‘abelian property’ gave rise to the name
‘abelian sandpile model’ for a system introduced by Dhar [13] equivalent to chip-firing
games. The abelian property admits the following strengthening, a consequence of
which we use in the proof of Proposition 1.9.

Proposition 1.5 ([20]) Applying a sequence of chip addition operators to a config-
uration yields the same result as adding all the associated chips simultaneously, then
relaxing.

Given two configurations C, C ′, we call C reachable from C ′ if there exists a
configuration D such that C = (C ′ +D)◦. Notice that in this case, C is necessarily
relaxed. Proposition 1.5 shows that the reachability of C from C ′ can also be viewed
as the possibility of passing from C ′ to C via a sequence of individual chip addition
operators, i.e., via a sequence of seeding nodes and firing supercritical ones. A
moment’s reflection shows that we can strengthen Proposition 1.5 still further.

Corollary 1.6 Applying a sequence of chip addition operators to a configuration
yields the same result as any sequence of seeding all the associated nodes and firing
all the eventual supercritical ones, including sequences interspersing the seeding and
firing operations.

Recurrence

A relaxed configuration is recurrent if it is reachable from every configuration.
As noted by Holroyd et al. [20], several notions of ‘recurrent’ appear in the chip-
firing/abelian sandpile literature, and their Lemma 2.17 establishes the equivalence
of the various definitions for digraphs with a global sink. Phrased in our language,
the slice of their lemma needed in Section 3 is

Lemma 1.7 ([20]) In a burn-off game on a connected graph G, a configuration C
is recurrent if and only if G contains a node v such that C is reachable from Ev(C).

For the remainder of this article, R denotes the set of all relaxed legal con-
figurations on a given connected graph. Using Lemma 1.7, we shall establish in
Proposition 3.1 that configurations C ∈ R are recurrent; and indeed, the converse
is also true. Though we do not make use of this equivalence, we note it here for
completeness.

Proposition 1.8 In a burn-off game on a connected graph G, a configuration C is
recurrent if and only if C ∈ R.

As we just noted, the sufficiency in Proposition 1.8 is addressed by Proposition 3.1
below; see [24, Proposition 1.1] for a proof of the necessity.
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In our proofs of Propositions 2.2 and 2.3, we find one further characterization of
recurrence to be particularly fruitful. For a graph G with subgraph F and a node
x ∈ V (G), we denote by ΓF (x) the set of neighbours of x lying in V (F ).

Proposition 1.9 In a burn-off game on a connected graph with V = {v1, . . . , vn},
a configuration C lies in R if and only if

Evn ◦ Evn−1 ◦ · · · ◦ Ev2 ◦ Ev1(C) = C. (1.4)

In a disguised form, Proposition 1.9 first appeared in [5, Lemma 3.6]; we include our
own proof here for completeness.

Proof. To see the sufficiency of the condition (1.4) for C ∈ R, first note that
Evn ◦ · · · ◦ Ev1(C) is, by definition, relaxed. To verify that C is also legal, apply
Corollary 1.6 to obtain a deletion sequence—per Algorithm 1.2—confirming that
legality. We omit the details and turn to the necessity of (1.4) for C ∈ R.

It will suffice to show that when Evn ◦ · · · ◦ Ev1 is applied to C, every node
x ∈ V fires exactly once. For then, the final chip count on x will be its initial
chip count C(x), plus the degG(x)-many chips received from its neighbours, plus one
for the seed chip associated with Ex (in the sequence Evn ◦ · · · ◦ Ev1), and less the
(degG(x) + 1)-many chips lost when x itself fires. That is, x will contain

C(x) + degG(x) + 1− (degG(x) + 1) = C(x)

chips under Evn ◦ · · · ◦Ev1(C), which shows that Evn ◦ · · · ◦Ev1 fixes C. So we shall
complete the proof by establishing the following two claims.

Claim 1. When Evn ◦ · · · ◦ Ev1 is applied to C, every x ∈ V fires at least once.

Claim 2. When Evn ◦ · · · ◦ Ev1 is applied to C, every x ∈ V fires at most once.

Proof of Claim 1. By Corollary 1.6, we may reorder the sequence in

Evn ◦ · · · ◦ Ev1 (1.5)

without changing its function. Without loss of generality, let us suppose that it
is already in the order of a deletion sequence establishing the legality of C, per
Lemma 1.1. For an x ∈ V , we consider the moment when it is seeded in (1.5);
say x = vi and v1, . . . , vi−1 were seeded prior to x. Before any further relaxing, let
F = {v1, . . . , vi−1} and H = {vi, vi+1, . . . , vn}. We may now see by induction on i
that each node in F ∪ {x} can be fired as soon as it is seeded in the sequence (1.5).
First note that because of our arranged seeding order and the legality of C (cf. (1.2)),
we have

C(vi) ≥ degH(vi) (1.6)

for i = 1, 2, . . . , n. Now when i = 1, so that F = ∅, the relation (1.6) gives
C(x) ≥ degG(x), which implies that x can fire if it is the first seeded node; this
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establishes the basis for our induction. Now fix i > 1, and assume that each node
in F can be fired at the moment it is seeded. For convenience, we assume that
these nodes do indeed fire when they can. By this hypothesis, aside from the chips
on x = vi guaranteed by (1.6), x will also have gained (at least) one chip from
each of its neighbours in F . Thus its chip count at the moment of seeding is at
least degH(x) + |ΓF (x)| = degG(x), and so seeding x makes it supercritical. This
completes the induction and hence the proof of Claim 1. �

Proof of Claim 2. By contradiction. If the claim is false, we may consider a node
w ∈ V as the first one to fire a second time. Let there be c chips on w at the outset
(prior to the global seeding of (1.5)). As C is relaxed, we know that

c = C(w) ≤ degG(w). (1.7)

Let k denote the number of neighbours of w that have fired once before w fires for
the first time. Just before w fires for the first time, it contains c+ k + 1 > degG(w)
chips (accounting for the seed chip). For it to fire again, w must regain the threshold
and so must gain at least

t := degG(w) + 1− (c+ k + 1− (degG(w) + 1))

chips from its neighbours. But

t = (degG(w)− k) + (degG(w)− c) + 1 > degG(w)− k,

by (1.7). Now degG(w)− k is precisely the number of neighbours of w that did not
fire before w fired for the first time. So before w can gain t > degG(w) − k chips,
one of its neighbours must fire for a second time. This contradicts our assumption
that w is the first node to fire a second time. �

As we noted before the statements of the claims, their veracity suffices to establish
Proposition 1.9. �

The paper [35] contains an idea similar to the one in our proof of Claim 2. As
burn-off games seed one node at a time, Claim 2 leads to the following

Corollary 1.10 ([29]) During a burn-off game that starts with a relaxed configura-
tion, no node fires more than once.

Corollary 1.10 formalizes our remark before (1.1) concerning the finiteness of burn-off
games. In addition, it shows that for a given graph G = (V,E), the length � of a
burn-off game on G satisfies 0 ≤ � ≤ |V |. In our main application of this result—in
the proof of Proposition 2.1—the configurations are legal as well as relaxed, but it
is worth noting that legality is not needed to establish the corollary. We close this
section with a lemma taking aim at the distribution of chips on the � nodes that fire
in a game of length two or more. It leans on Lemma 1.4 and Corollary 1.10 and is
invoked in the proof of Proposition 2.1.
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Lemma 1.11 ([29]) Let C be a relaxed configuration on a connected graph G. Con-
sider a burn-off game of length at least two that results in the configuration C ′. Let
H be the subgraph induced on the nodes that fire during the game. After relaxation,
only the seed v will be critical in H.

Proof. The seed v must fire because the game length is at least two. When v fires,
it loses all its chips. Each of its neighbours in H fires, sending a chip back to v. By
Corollary 1.10, none of these nodes may fire a second time. Thus, at the end of the
game, C ′(v) = degH(v); that is, v is critical in H .

Now consider u ∈ V (H)� v. We know that C(u) ≤ degG(u) as the game begins
because C is relaxed. By Corollary 1.10, each node in H fires exactly once. Thus,
each of the degH(u) neighbours of u in H fires and adds one chip to u. By Lemma 1.4,
the firing order has no effect on C ′. Thus,

C ′(u) = C(u) + degH(u)− (degG(u) + 1) < degH(u).

�

2 Key properties of the chip addition operator

With the lemmas of Section 1.2 in hand, we now prove three results that together
will allow us to derive our main theorems in Section 3. Recall that R denotes the
set of all relaxed legal configurations on a given connected graph G = (V,E).

Proposition 2.1 If C ∈ R is fixed, then the function E(·)(C) : V → R mapping
v �→ Ev(C) is injective.

For readers pondering the legality of Ev(C), notice that this configuration can be
reverse-fired to C + 1v by following (in reverse) the sequence of relaxing C + 1v

to (C + 1v)
◦; then, because C is legal, so too is C + 1v, and hence Ev(C) can be

reverse-fired to a supercritical configuration.

Proof. For a node v ∈ V , let us abbreviate Ev(C) by Rv. We wish to show that for
u, v ∈ V , with u �= v, we have Ru �= Rv. Suppose, for a contradiction, that Ru = Rv.
If u is the seed and does not fire, then Ru(u) = C(u) + 1. If v is the seed and does
not fire, then Rv(u) = C(u). Thus, Ru �= Rv, which contradicts our assumption.
Thus, at least one of u, v must fire when chosen as the seed.

Suppose first (without loss of generality) that if G is seeded at u, then u fires,
while if G is seeded at v, then v does not fire. Since v is not critical in G and we
have assumed that Ru = Rv, then C(u) = Rv(u) = Ru(u). If u is chosen as the seed,
it fires and loses all of its chips. Because Ru(u) = Rv(u), the node u must regain
deg(u) chips. This happens only if every neighbour of u fires after u itself fires. Now
for every neighbour of u to fire, at least one of those neighbours must itself be critical
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in G. Suppose that w is such a neighbour. In the game where v is the seed and does
not fire, we thus know that w is critical in G. Because Ru(w) = Rv(w), it must be
true that w again becomes critical, after it fires, in the game where u is the seed.
But this is impossible by Lemma 1.11.

Now we may suppose that both u and v fire if chosen as the seed. First, we show
that if v is the seed (without loss of generality), then u must also fire. Suppose,
again for a contradiction, that u does not fire, so Rv(u) = deg(u). If u and v are
neighbours, then clearly u must fire if v is the seed; we therefore assume for the
remainder of the proof that u and v are not neighbours. Then in the game where u
is the seed, every neighbour of u must also fire so that Ru(u) = deg(u). Therefore,
at least one neighbour w of u must be critical in G. By Lemma 1.11, we know that
Ru(w) < C(w). But Ru = Rv implies that w must also fire in the game where v is
the seed. Since u is critical in G, it too will fire when w fires. This contradicts our
assumption. Thus, if either u or v is the seed, then the other node must fire during
the game.

So in the game where v is the seed, at least one neighbour of v must also fire so
that u will fire. Suppose that k neighbours of v fire. After v fires, it contains zero
chips, so Rv(v) = k. Because Ru = Rv, we must have Ru(v) = k as well. In the
game where u is the seed, at least one neighbour of v must fire in order to allow v
to fire. Say that w is such a neighbour. Now after v fires, it contains zero chips, so
k of its neighbours must now fire to achieve Ru(v) = k. Since w has already fired in
this game, it may not be one of these k neighbours (by Corollary 1.10). So at least
k + 1 neighbours of v fire in the game that starts with u as the seed.

Thus, we have k neighbours of v firing in the game where v is the seed and at
least k+ 1 neighbours of v firing in the game where u is the seed. There is therefore
a node z that is adjacent to v and that fires when u is the seed but not when v is
the seed. The number of chips on z at the end of the game in which it does not fire
must be at least C(z). But the number of chips on z at the end of a game in which
it does fire must be at most

C(z) + deg(z)− (deg(z) + 1) < C(z).

Thus, Ru(z) < Rv(z), contradicting our assumption that Ru = Rv. �

Proposition 2.1 establishes that for a given relaxed legal configuration, the choice
of different seeds necessarily results in games that relax to distinct configurations.
Our next result addresses the origin of a relaxed legal configuration, arguing that
each one may be generated by the choice of a seed in some other relaxed legal
configuration.

Proposition 2.2 If v ∈ V is fixed, then the function Ev(·) : R → R mapping C∗ �→
Ev(C

∗) is surjective.
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Proof. For C ∈ R, we need a configuration C∗ ∈ R such that Ev(C
∗) = C. Let

vn = v and V = {v1, . . . , vn}. With

C∗ := Evn−1 ◦ Evn−2 ◦ · · · ◦ Ev2 ◦ Ev1(C),

we have, by Proposition 1.9, that

Ev(C
∗) = Evn(Evn−1 ◦ · · · ◦ Ev1(C)) = C.

�

Our final result in this section establishes the key (cf. Lemma 1.7) to showing
that each relaxed legal configuration is recurrent, which we formalize in the proof of
Proposition 3.1.

Proposition 2.3 If C ∈ R and v is critical in G, then C is reachable from Ev(C).

Proof. Let v1 = v and V = {v1, . . . , vn}. As C ∈ R, Proposition 1.9 applies, and
we can thus restate (1.4) in the form

Evn ◦ Evn−1 ◦ · · · ◦ Ev2(Ev(C)) = C,

wherein the leftmost (n−1) composition factors point out the chip operations leading
from Ev(C) back to C. �

3 Uniformity of the stationary distribution

Now we are prepared to present our main results. The state space of our Markov
chain (Xn)n≥0 is the set R of relaxed legal configurations on a connected graph G.
Each transition is determined by seeding a node—via a uniform, random selection—
and relaxing the resulting configuration; to be precise, given Xn ∈ R, the next state
is determined by choosing v ∈ V uniformly at random and setting Xn+1 = Ev(Xn).
Because V is finite and relaxed configurations C satisfy C(x) ≤ degG(x) for every
x ∈ V , so too is R finite; we take r := |R|. Let D be the digraph representing the
Markov chain and P its transition probability matrix.

Recall that a Markov chain is irreducible if all of its states communicate with one
another. We proved Proposition 2.3 as a tool for deducing the following result.

Proposition 3.1 The Markov chain (Xn) is irreducible.

Proof. In chip-firing language, we need only argue that any given configuration
C ∈ R is recurrent. With C being legal on G, this graph must contain a critical
node v (cf. Algorithm 1.2), so Proposition 2.3 shows that C is reachable from Ev(C).
Therefore, Lemma 1.7 guarantees that C is recurrent. �
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The next result—our main theorem—provided the motivation for proving Propo-
sitions 2.1 and 2.2.

Theorem 3.2 The matrix P is doubly stochastic.

Proof. Starting in a state C ∈ R, when we initiate a burn-off game on G by seeding
one of its nodes v, our Markov chain transitions to Ev(C), a uniquely determined
relaxed legal configuration. Consequently, we see that

outdegD(C) ≤ |V | for all C ∈ R. (3.1)

Summing over all relaxed legal configurations, we have∑
C∈R

outdegD(C) ≤ r|V |. (3.2)

In Proposition 2.2 we saw that for any configuration C ∈ R and node v there is at
least one configuration C∗ ∈ R such that Ev(C

∗) = C. In Proposition 2.1 we found
that different choices of v correspond to different such configurations C∗. Together,
these results imply that

indegD(C) ≥ |V | for all C ∈ R. (3.3)

Summing over all relaxed legal configurations, we have∑
C∈R

indegD(C) ≥ r|V |. (3.4)

Inequalities (3.2) and (3.4) together give

r|V | ≥
∑
C∈R

outdegD(C) =
∑
C∈R

indegD(C) ≥ r|V |,

which establishes the identity∑
C∈R

outdegD(C) =
∑
C∈R

indegD(C) = r|V |. (3.5)

Taking (3.5) along with (3.1) and (3.3) respectively, we conclude that

outdegD(C) = |V | = indegD(C) for all C ∈ R. (3.6)

In pursuing (Xn), subsequent seeds are chosen uniformly at random, so every nonzero
entry in P is 1/|V |. Because indegD(C) = |V | for all C ∈ R, the theorem follows. �

Corollary 3.3 The stationary distribution of (Xn) is uniform.

Proof. It is well known (see, e.g., [16]) that for an irreducible Markov chain with a
finite state spaceR and a doubly stochastic transition matrix, the (unique) stationary
distribution is uniform (over R). �

We denote the stationary distribution of (Xn) by π = (πC)C∈R, which we have
just proved to satisfy

πC =
1

r
for all C ∈ R. (3.7)
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Limiting behaviour and future directions

Let us begin by reminding the reader of a few basic Markov chain notions. For each
state C ∈ R, the mean recurrence time μC is the expected number of transitions
needed to return from the state C to itself. With our state space R being finite and
(Xn) being irreducible, there are no issues with ‘transience’ or ‘null-recurrency’, so
each μC is finite (i.e. (Xn) is ‘positive recurrent’). For integers m ≥ 1, the number of
visits of (Xn) to state C during the first m transition epochs is denoted by Nm(C).
Recall also that the powers Pm of the transition matrix give the matrices of m-step
transition probabilities for (Xn).

In our penultimate result, we summarize the conclusions about this stochastic
process that can be drawn from Proposition 3.1, the relation (3.7), and the basic
theory of finite Markov chains (see, e.g., [16] or [36]).

Theorem 3.4 The entities μC, Nm(C), and P satisfy the following conclusions:

μC = r for all C ∈ R;

Pr

{
lim

m→∞
Nm(C)

m
=

1

r

}
= 1 for all C ∈ R (irrespective of the initial state); (3.8)

and

lim
m→∞

1

m

m∑
k=1

Pm
C′C =

1

r
for all pairs C ′, C ∈ R. (3.9)

The statement (3.8) has the appealing interpretation that, with high probability,
the long-term proportion of time that our Markov chain spends in any given state is
equally spread across the states. In the general theory, (3.8) is often used to derive
(3.9). This is a weaker conclusion than, say,

lim
m→∞

Pm
C′C =

1

r
for all pairs C ′, C ∈ R, (3.10)

which would determine the individual limiting m-step transition probabilities as op-
posed to just their limiting mean. Though we have not been able to prove (3.10), we
take some consolation in knowing at least that the Cesaro limit version (3.9) holds.

The barrier keeping us from (3.10) is our inability to determine the ‘periodicity’
of (Xn). Recall that a state s of a Markov chain (with transition matrix Q) has period
d ≥ 1 if Qn

ss > 0 implies that d divides n and d is the largest positive integer with
this property. Periodicity is a ‘class property’, and since our chain is irreducible, all
states have the same period d. When d > 1, such a Markov chain is called periodic
(with period d) and otherwise is aperiodic.

Our final result articulates the dichotomy inherent in the unknown periodicity of
(Xn). Like Theorem 3.4, it interprets the well-known theory of finite Markov chains
(see, e.g., [16] or [32]) in the context of our stochastic chip-firing process.
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Theorem 3.5 If (Xn) is aperiodic, then all pairs C ′, C ∈ R satisfy

lim
m→∞

Pm
C′C =

1

r
,

i.e., (3.10) holds; if (Xn) is periodic with period d, then for all pairs C ′, C ∈ R, there
exists a nonnegative integer k ≤ d− 1 such that

lim
m→∞

Pmd+k
C′C =

d

r
and P n

C′C = 0 whenever n �≡ k (mod d). (3.11)

Whether the limiting behaviour of Pm
C′C is described by (3.10) or (3.11), uniformity

in the nonzero limiting values is observed; however, we must leave it as an open
problem to investigate the periodicity of the Markov chain (Xn).

We intend to present further results on burn-off games from [29] in a future paper,
for which the present article will form a foundation.
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