On the existence of $\left(K_{1,3}, \lambda\right)$-frames of type g^{u}

Fen Chen Haitao Cao*
Institute of Mathematics
Nanjing Normal University
Nanjing 210023
China

Abstract

A $\left(K_{1,3}, \lambda\right)$-frame of type g^{u} is a $K_{1,3}$-decomposition of a complete u partite graph with u parts of size g into partial parallel classes each of which is a partition of the vertex set except for those vertices in one of the u parts. In this paper, we completely solve the existence of a ($K_{1,3}, \lambda$)-frame of type g^{u}.

1 Introduction

In this paper, the vertex set and edge set (or edge-multiset) of a graph G (or multigraph) are denoted by $V(G)$ and $E(G)$ respectively. For a graph G, we use λG to represent the multi-graph obtained from G by replacing each edge of G with λ copies of it. A graph G is called a complete u-partite graph if $V(G)$ can be partitioned into u parts $M_{i}, 1 \leq i \leq u$, such that two vertices of G, say x and y, are adjacent if and only if $x \in M_{i}$ and $y \in M_{j}$ with $i \neq j$. We use $\lambda K\left(m_{1}, m_{2}, \ldots, m_{u}\right)$ for the λ-fold of the complete u-partite graph with m_{i} vertices in the group M_{i}.

Given a collection of graphs \mathcal{H}, an \mathcal{H}-decomposition of a graph G is a set of subgraphs (blocks) of G whose edge sets partition $E(G)$, and each subgraph is isomorphic to a graph from \mathcal{H}. When $\mathcal{H}=\{H\}$, we write \mathcal{H}-decomposition as H-decomposition for the sake of brevity. A parallel class of a graph G is a set of subgraphs whose vertex sets partition $V(G)$. A parallel class is called uniform if each block of the parallel class is isomorphic to the same graph. An \mathcal{H}-decomposition of a graph G is called (uniformly) resolvable if the blocks can be partitioned into (uniform) parallel classes. Recently, a lot of results have been obtained on uniformly resolvable \mathcal{H}-decompositions of K_{v}, especially on uniformly resolvable \mathcal{H}-decompositions with $\mathcal{H}=\left\{G_{1}, G_{2}\right\}([6,7,11,15,18-21,23-26])$ and with $\mathcal{H}=\left\{G_{1}, G_{2}, G_{3}\right\}$ ([8]). For the graphs related to this paper, the reader is referred to $[3,17]$.

[^0]A (resolvable) \mathcal{H}-decomposition of $\lambda K\left(m_{1}, m_{2}, \ldots, m_{u}\right)$ is called a (resolvable) group divisible design, denoted by $(\mathcal{H}, \lambda)-(\mathrm{R}) \mathrm{GDD}$. When $\lambda=1$, we usually omit λ in the notation. The type of an \mathcal{H}-GDD is the multiset of group sizes $\left|M_{i}\right|, 1 \leq i \leq u$, and we usually use the "exponential" notation for its description: type $1^{i} 2^{j} 3^{k} \ldots$ denotes i occurrences of groups of size $1, j$ occurrences of groups of size 2 , and so on. In this paper, we will use $K_{1,3}$-RGDDs as input designs for recursive constructions. There are some known results on the existence of $K_{1,3^{-}}$RGDDs. For example, $K_{1,3^{-}}$ RGDDs of types 2^{4} and 4^{4} have been constructed in [17], and the existence of a $K_{1,3}$-RGDD of type 12^{u} for any $u \geq 2$ has been solved in [3].

Let K be a set of positive integers. If $\mathcal{H}=\left\{K_{1}, K_{2}, \ldots, K_{t}\right\}$ with $\left|V\left(K_{i}\right)\right| \in K$ $(1 \leq i \leq t)$, then \mathcal{H}-GDD is also denoted by K-GDD, and an K-GDD of type 1^{v} is called a pairwise balanced design, denoted by $(K, v)-\mathrm{PBD}$. It is usual to write k rather than $\{k\}$ when $K=\{k\}$ is a singleton.

A set of subgraphs of a complete multipartite graph covering all vertices except those belonging to one part M is said to be a partial parallel class missing M. A partition of an (\mathcal{H}, λ)-GDD of type g^{u} into partial parallel classes is said to be a (\mathcal{H}, λ)-frame. Frames were firstly introduced in [1]. Frames are important combinatorial structures used in graph decompositions. Stinson [27] solved the existence of a $\left(K_{3}, 1\right)$-frame of type g^{u}. For the existence of a ($\left.K_{4}, \lambda\right)$-frame of type g^{u}, see [10, 12-14, 22, 28, 29]. Cao et al. [5] started the research of a $\left(C_{k}, 1\right)$-frame of type g^{u}. Buratti et al. [2] have completely solved the existence of a $\left(C_{k}, \lambda\right)$-frame of type g^{u} recently. Here we focus on the existence of a ($K_{1,3}, \lambda$)-frame of type g^{u} which can be used in uniformly resolvable \mathcal{H}-decompositions with $K_{1,3} \in \mathcal{H}$ in [3]. It is easy to see that the number of partial parallel classes missing a specified group is $\frac{2 g \lambda}{3}$. So we have the following necessary conditions for the existence of a ($K_{1,3}, \lambda$)-frame of type g^{u}.

Theorem 1.1. The necessary conditions for the existence of a $\left(K_{1,3}, \lambda\right)$-frame of type g^{u} are $\lambda g \equiv 0(\bmod 3), g(u-1) \equiv 0(\bmod 4), u \geq 3$ and $g \equiv 0(\bmod 4)$ when $u=3$.

Not many results have been known for the existence of a ($K_{1,3}, \lambda$)-frame of type g^{u}.
Theorem 1.2. [3] There exists a $K_{1,3}$-frame of type 12^{u} for $u \geq 3$.
In this paper, we will prove the following main result.
Theorem 1.3. The necessary conditions for the existence of a $\left(K_{1,3}, \lambda\right)$-frame of type g^{u} are also sufficient with the definite exception of $(\lambda, g, u)=(6 t+3,4,3), t \geq 0$.

2 Recursive constructions

For brevity, we use I_{k} to denote the set $\{1,2, \ldots, k\}$, and use $(a ; b, c, d)$ to denote the 3 -star $K_{1,3}$ with vertex set $\{a, b, c, d\}$ and edge set $\{\{a, b\},\{a, c\},\{a, d\}\}$. Now we state two basic recursive constructions for $\left(K_{1,3}, \lambda\right)$-frames. Similar proofs of these constructions can be found in [9] and [27].

Construction 2.1. If there exists a $\left(K_{1,3}, \lambda\right)$-frame of type $g_{1}^{u_{1}} g_{2}^{u_{2}} \ldots g_{t}^{u_{t}}$, then there is a $\left(K_{1,3}, \lambda\right)$-frame of type $\left(m g_{1}\right)^{u_{1}}\left(m g_{2}\right)^{u_{2}} \ldots\left(m g_{t}\right)^{u_{t}}$ for any $m \geq 1$.

Construction 2.2. If there exist $a(K, v)$-GDD of type $g_{1}^{t_{1}} g_{2}^{t_{2}} \ldots g_{m}^{t_{m}}$ and $a\left(K_{1,3}, \lambda\right)$ frame of type h^{k} for each $k \in K$, then there exists a $\left(K_{1,3}, \lambda\right)$-frame of type $\left(h g_{1}\right)^{t_{1}}\left(h g_{2}\right)^{t_{2}} \ldots\left(h g_{m}\right)^{t_{m}}$.

Definition 2.1. Let G be a λ-fold complete u-partite graph with u groups M_{1}, M_{2}, \ldots, M_{u} such that $\left|M_{i}\right|=g$ for each $1 \leq i \leq u$. Suppose $N_{i} \subset M_{i}$ and $\left|N_{i}\right|=h$ for any $1 \leq i \leq u$. Let H be a λ-fold complete u-partite graph with u groups (called holes) $N_{1}, N_{2}, \ldots, N_{u}$. An incomplete resolvable $\left(K_{1,3}, \lambda\right)$-group divisible design of type g^{u} with a hole of size h in each group, denoted by $\left(K_{1,3}, \lambda\right)$-IRGDD of type $(g, h)^{u}$, is a resolvable $\left(K_{1,3}, \lambda\right)$-decomposition of $G-E(H)$ in which there are $\frac{2 \lambda(g-h)(u-1)}{3}$ parallel classes of G and $\frac{2 \lambda h(u-1)}{3}$ partial parallel classes of $G-H$.
Lemma 2.3. There exists a ($K_{1,3}, 3$)-IRGDD of type $(12,4)^{2}$.
Proof: Let the vertex set be $Z_{16} \cup\left\{a_{0}, a_{1}, a_{2}, a_{3}\right\} \cup\left\{b_{0}, b_{1}, b_{2}, b_{3}\right\}$, and let the two groups be $\{0,2, \ldots, 14\} \cup\left\{a_{0}, a_{1}, a_{2}, a_{3}\right\}$ and $\{1,3, \ldots, 15\} \cup\left\{b_{0}, b_{1}, b_{2}, b_{3}\right\}$. The required 8 partial parallel classes can be generated from two partial parallel classes Q_{1}, Q_{2} by $+4 j(\bmod 16), j=0,1,2,3$. The required 16 parallel classes can be generated from four parallel classes $P_{i}, i=1,2,3,4$, by $+4 j(\bmod 16), j=0,1,2,3$. The blocks in Q_{1}, Q_{2} and P_{i} are listed below.

Q_{1}	$(4 ; 1,3,5)$	$(9 ; 0,6,8)$	$(12 ; 7,11,15)$	$(13 ; 2,10,14)$		
Q_{2}	$(0 ; 5,7,11)$	$(3 ; 6,10,14)$	$(12 ; 1,9,15)$	$(13 ; 2,4,8)$		
P_{1}	$(0 ; 3,7,15)$	$(1 ; 2,10,14)$	$\left(a_{0} ; 5,9,13\right)$	$\left(b_{0} ; 4,8,12\right)$	$\left(11 ; a_{1}, a_{2}, a_{3}\right)$	$\left(6 ; b_{1}, b_{2}, b_{3}\right)$
P_{2}	$(6 ; 3,7,15)$	$(9 ; 2,10,12)$	$\left(a_{1} ; 1,5,13\right)$	$\left(b_{1} ; 0,4,8\right)$	$\left(11 ; a_{0}, a_{2}, a_{3}\right)$	$\left(14 ; b_{0}, b_{2}, b_{3}\right)$
P_{3}	$(14 ; 3,7,15)$	$(1 ;, 8,8,10)$	$\left(a_{2} ; 5,9,13\right)$	$\left(b_{2} ; 0,4,12\right)$	$\left(11, a_{0}, a_{1}, a_{3}\right)$	$\left(2 ; ;_{0}, b_{1}, b_{3}\right)$
P_{4}	$(4 ; 5,11,15)$	$(3 ; 2,6,14)$	$(a 3 ; 1,9,13)$	$\left(b_{3} ; 0,8,12\right)$	$\left(7 ; a_{0}, a_{1}, a_{2}\right)$	$\left(10 ; b_{0}, b_{1}, b_{2}\right)$

A k-GDD of type n^{k} is called a transversal design, denoted by $\operatorname{TD}(k, n)$. A $\mathrm{TD}(k, n)$ is idempotent if it contains a parallel class of blocks. A resolvable $\mathrm{TD}(k, n)$ is denoted by $\operatorname{RTD}(k, n)$. If we can select a block from each parallel class of an $\operatorname{RTD}(k, n)$, and all these n blocks form a new parallel class, then this $\operatorname{RTD}(k, n)$ is denoted by RTD* (k, n).

Construction 2.4. Suppose there exist an $\operatorname{RTD}^{*}(u, n)$, a $\left(K_{1,3}, \lambda\right)$-IRGDD of type $(g+h, h)^{u}$, a $\left(K_{1,3}, \lambda\right)-R G D D$ of type g^{u}, and a $\left(K_{1,3}, \lambda\right)$-RGDD of type $(g+h)^{u}$, then there exists a $\left(K_{1,3}, \lambda\right)-R G D D$ of type $(g n+h)^{u}$.

Proof: We start with an RTD* (u, n) with n parallel classes $P_{i}=\left\{B_{i 1}, B_{i 2}, \ldots, B_{i n}\right\}$, $1 \leq i \leq n$, and a parallel class $Q=\left\{B_{11}, B_{21}, \ldots, B_{n 1}\right\}$. Give each vertex weight g. For each block $B_{i j}$ in $P_{i} \backslash Q$, place a $\left(K_{1,3}, \lambda\right)$-RGDD of type g^{u} whose $t=\frac{2 \lambda g(u-1)}{3}$ parallel classes are denoted by $F_{i j}^{s}, 1 \leq s \leq t$. For each block $B_{i 1}$ in Q with $1 \leq i \leq$ $n-1$, place a $\left(K_{1,3}, \lambda\right)$-IRGDD of type $(g+h, h)^{u}$ on the vertices of the weighted block $B_{i 1}$ and $h u$ new common vertices (take them as u holes). Denote its t parallel classes by $F_{i 1}^{s}, 1 \leq s \leq t$, and its $w=\frac{2 \lambda h(u-1)}{3}$ partial parallel classes by $Q_{i 1}^{s}, 1 \leq s \leq w$.

Further, place on the vertices of the weighted block $B_{n 1}$ and these $h u$ new vertices a $\left(K_{1,3}, \lambda\right)$-RGDD of type $(g+h)^{u}$ whose $t+w$ parallel classes are denoted by $F_{n 1}^{s}$, $1 \leq s \leq t+w$.

Let $F_{i}^{s}=\cup_{j=1}^{n} F_{i j}^{s}, 1 \leq s \leq t, 1 \leq i \leq n$, and $T_{j}=F_{n 1}^{t+j} \cup\left(\cup_{i=1}^{n-1} Q_{i 1}^{j}\right), 1 \leq j \leq w$. It is easy to see F_{i}^{s} and T_{j} are parallel classes of the required ($K_{1,3}, \lambda$)-RGDD of type $(g n+h)^{u}$.

Construction 2.5. If there is a $\left(K_{1,3}, \lambda\right)-R G D D$ of type g^{2}, then there exists a ($K_{1,3}, \lambda$)-frame of type $g^{2 u+1}$ for any $u \geq 1$.

Proof: We start with a K_{2}-frame of type $1^{2 u+1}$ in [4]. Suppose its vertex set is $I_{2 u+1}$. Denote its $2 u+1$ partial parallel classes by $F_{i}\left(i \in I_{2 u+1}\right)$ which is with respect to the group $\{i\}$. The required $\left(K_{1,3}, \lambda\right)$-frame of type $g^{2 u+1}$ will be constructed on $I_{2 u+1} \times I_{g}$. For any $B=\{a, b\} \in F_{i}$, place on $B \times I_{g}$ a copy of a $\left(K_{1,3}, \lambda\right)$-RGDD of type g^{2}, whose $\frac{2 \lambda g}{3}$ parallel classes are denoted by $P_{j}(B), 1 \leq j \leq \frac{2 \lambda g}{3}$. Let $P_{i}^{j}=\bigcup_{B \in F_{i}} P_{j}(B), i \in I_{2 u+1}, 1 \leq j \leq \frac{2 \lambda g}{3}$. Then each P_{i}^{j} is a partial parallel class with respect to the group $\{i\} \times I_{g}$. Thus we have obtained a ($K_{1,3}, \lambda$)-frame of type $g^{2 u+1}$ for any $u \geq 1$.

Note that if there exists a $\left(K_{1,3}, \lambda\right)$-frame of type g^{3}, then it is easy to see that these $2 \lambda g / 3$ partial parallel classes missing the same group form a ($K_{1,3}, \lambda$)-RGDD of type g^{2}. Combining with Construction 2.5, we have the following conclusion.

Lemma 2.6. The existence of a $\left(K_{1,3}, \lambda\right)$-frame of type g^{3} is equivalent to the existence of a $\left(K_{1,3}, \lambda\right)-R G D D$ of type g^{2}.

Construction 2.7. If there exist a $\left(K_{1,3}, \lambda\right)$-frame of type $\left(m_{1} g\right)^{u_{1}}\left(m_{2} g\right)^{u_{2}} \ldots\left(m_{t} g\right)^{u_{t}}$ and a $\left(K_{1,3}, \lambda\right)$-frame of type $g^{m_{i}+\varepsilon}$ for any $1 \leq i \leq t$, then there exists a $\left(K_{1,3}, \lambda\right)$ frame of type $g^{\sum_{i=1}^{t} m_{i} u_{i}+\varepsilon}$, where $\varepsilon=0,1$.

Proof: If there exists a $\left(K_{1,3}, \lambda\right)$-frame of type $\left(m_{1} g\right)^{u_{1}}\left(m_{2} g\right)^{u_{2}} \ldots\left(m_{t} g\right)^{u_{t}}$, there are $\frac{2 \lambda\left|G_{j}\right|}{3}$ partial parallel classes missing $G_{j}, 1 \leq j \leq u_{1}+u_{2}+\ldots u_{t}$. Add $g \varepsilon$ new common vertices (if $\varepsilon>0$) to the vertex set of G_{j} and form a new vertex set G_{j}^{\prime}. Then break up G_{j}^{\prime} with a ($K_{1,3}, \lambda$)-frame of type $g^{\left|G_{j}\right| / g+\varepsilon}$ with groups $G_{j}^{1}, G_{j}^{2}, \ldots, G_{j}^{\left|G_{j}\right| / g}, M$, where the $g \varepsilon$ common vertices (if $\varepsilon>0$) are viewed as a new group M. It has $\frac{2 \lambda\left|G_{j}\right|}{3}+\frac{2 \lambda g \varepsilon}{3}$ partial parallel classes.

Next match up the $\frac{2 \lambda\left|G_{j}\right|}{3}$ partial parallel classes missing G_{j} with $\frac{2 \lambda\left|G_{j}^{i}\right|}{3}$ partial parallel classes missing G_{j}^{i} to get the required partial parallel classes with respect to the group $G_{j}^{i}\left(\right.$ note that $\left.\frac{2 \lambda\left|G_{j}\right|}{3}=\sum_{i=1}^{\left|G_{j}^{i}\right| / g} \frac{2 \lambda\left|G_{j}^{i}\right|}{3}\right), 1 \leq i \leq\left|G_{j}\right| / g$.

Finally, combine these $\frac{2 \lambda g \varepsilon}{3}$ partial parallel classes (if $\varepsilon>0$) from all the groups to get $\frac{2 \lambda g \varepsilon}{3}$ partial parallel classes missing M.
$3 \lambda=1$
By Theorem 1.1, it is easy to see that the two cases $\lambda=1$ and $\lambda=3$ are crucial for the whole problem. In this section we first consider the case $\lambda=1$.

Lemma 3.1. For each $u \equiv 1(\bmod 4), u \geq 5$, there exists a $K_{1,3}$-frame of type 3^{u}.
Proof: For $u=5,9$, let the vertex set be $Z_{3 u}$, and let the groups be $M_{i}=\{i, i+$ $u, i+2 u\}, 0 \leq i \leq u-1$. The required 2 partial parallel classes with respect to the group M_{i} are $\left\{Q_{1}+i, Q_{1}+i+u, Q_{1}+i+2 u\right\}$ and $\left\{Q_{2}+i, Q_{2}+i+u, Q_{2}+i+2 u\right\}$. The blocks in Q_{1} and Q_{2} are listed below.

$$
\begin{array}{lllllll}
u=5 & Q_{1} & (1 ; 2,3,4) & Q_{2} & (2 ; 6,8,9) & & \\
u=9 & Q_{1} & (1 ; 2,3,4) & (5 ; 15,16,17) & Q_{2} & (1 ; 5,6,7) & (4 ; 11,12,17)
\end{array}
$$

For $u \geq 13$, we start with a $K_{1,3}$-frame of type $12^{(u-1) / 4}$ from Theorem 1.2 and apply Construction 2.7 with $\varepsilon=1$ to get the required $K_{1,3}$-frame of type 3^{u}, where the input design, a $K_{1,3}$-frame of type 3^{5}, is constructed above.

Lemma 3.2. For each $u \equiv 1(\bmod 2), u \geq 5$, there exists a $K_{1,3}$-frame of type 6^{u}.
Proof: For $u \equiv 1(\bmod 4)$, apply Construction 2.1 with $m=2$ to get a $K_{1,3}$-frame of type 6^{u}, where the input design a $K_{1,3}$-frame of type 3^{u} exists by Lemma 3.1.

For $u \equiv 3(\bmod 4)$, when $u=7,11,15$, let the vertex set be $Z_{6 u}$, and let the groups be $M_{i}=\{i+j u: 0 \leq j \leq 5\}, 0 \leq i \leq u-1$. Three of the four required partial parallel classes P_{0}, P_{1}, P_{2} with respect to the group M_{0} can be generated from an initial partial parallel class P by $+i(\bmod 6 u), i=0,2 u, 4 u$. The last partial parallel class missing M_{0} is $P_{3}=Q \cup\{Q+2 u\} \cup\{Q+4 u\}$. All these required partial parallel classes can be generated from $P_{0}, P_{1}, P_{2}, P_{3}$ by $+2 j(\bmod 6 u), 0 \leq j \leq u-1$. For each u, the blocks in P and Q are listed below.

$u=7$	P	($1 ; 2,3,4$)	$(5 ; 9,10,11)$	$(6 ; 8,12,15)$	$(13 ; 22,23,24)$	$(16 ; 17,19,20)$
		$(18 ; 29,34,36)$	$(25 ; 33,37,41)$	$(26 ; 31,38,39)$	$(40 ; 27,30,32)$	
	Q	$(1 ; 16,19,23)$	(3; 20, 22, 26)	$(10 ; 25,27,32)$		
$u=11$	P	($41 ; 60,61,65)$	($5 ; 9,10,12$)	(6;7, 8,13)	$(14 ; 17,18,19)$	$(15 ; 21,23,24)$
		$(16 ; 25,26,28)$	$(20 ; 34,35,36)$	$(27 ; 37,39,40)$	$(29 ; 43,45,46)$	(30; 38, 47, 48)
		($31 ; 52,54,56)$	(3; 1, 50, 51)	($32 ; 53,57,59$)	($42 ; 2,4,62$)	(64; 49, 58, 63)
	Q	(1; 4, 27, 28)	($2 ; 15,25,38)$	$(7 ; 36,39,43)$	$(18 ; 42,52,53)$	$(19 ; 54,56,57)$
$u=15$	P	$(66 ; 79,83,86)$	($2 ; 1,58,70$)	$(69 ; 11,67,74)$	($73 ; 8,10,12$)	$(14 ; 17,18,19)$
		(16; 23, 24, 25)	$(26 ; 36,37,38)$	$(27 ; 39,40,41)$	($28 ; 42,44,46)$	(29; 47, 48, 49)
		($31 ; 52,53,54$)	($32 ; 51,55,56$)	($33 ; 43,50,57)$	(34; 59, 61, 62)	$(35 ; 63,71,81)$
		(3; 64, 77, 89)	$(4 ; 6,87,88)$	(13; 5, 7, 82)	($20 ; 9,68,84)$	(21; $72,78,85)$
		$(22 ; 65,76,80)$				
	Q	$(1 ; 4,10,32)$	$(3 ; 36,37,38)$	$(5 ; 42,43,53)$	(9; 48, 49, 50)	$(14 ; 51,52,58)$
		$(16 ; 17,56,57)$	$(24 ; 55,59,71)$			

For $u=19$, apply Construction 2.1 with $m=3$ to get a $K_{1,3}$-frame of type 36^{3}, where the input design a $K_{1,3}$-frame of type 12^{3} exists by Lemma 1.2. Further, applying Construction 2.7 with $\varepsilon=1$ and a $K_{1,3}$-frame of type 6^{7} constructed above, we can obtain a $K_{1,3}$-frame of type 6^{19}.

For $u=23$, start with a $\mathrm{TD}(4,3)$ in [16]. Delete a vertex from the last group to obtain a $\{3,4\}$-GDD of type $3^{3} 2^{1}$. Give each vertex weight 12 , and apply Construction 2.2 to get a $K_{1,3}$-frame of type $36^{3} 24^{1}$. Applying Construction 2.7 with $\varepsilon=1$, we can obtain a $K_{1,3}$-frame of type 6^{23}.

For $u=35$, apply Construction 2.1 with $m=5$ to obtain a $K_{1,3}$-frame of type 30^{7}. Then apply Construction 2.7 with $\varepsilon=0$ to get a $K_{1,3}$-frame of type 6^{35}.

For $u=47$, start with a $\operatorname{TD}(5,5)$ in [16]. Delete two vertices from the last group to obtain a $\{4,5\}$-GDD of type $5^{4} 3^{1}$. Give each vertex weight 12 , and apply Construction 2.2 to get a $K_{1,3}$-frame of type $60^{4} 36^{1}$. Applying Construction 2.7 with $\varepsilon=1$, we can obtain a $K_{1,3}$-frame of type 6^{47}.

For all other values of u, we can always write u as $u=2 t+6 n+1$ where $0 \leq t \leq n$, $t \neq 2, n \geq 4$ and $n \neq 6$. From [16], there is an idempotent $\operatorname{TD}(4, n)$ with n blocks $B_{1}, B_{2}, \ldots, B_{n}$ in a parallel class. Delete $n-t$ vertices in the last group that lie in $B_{t+1}, B_{t+2}, \ldots, B_{n}$. Taking the truncated blocks $B_{1}, B_{2}, \ldots, B_{n}$ as groups, we have formed a $\{t, n, 3,4\}$-GDD of type $4^{t} 3^{n-t}$ when $t \geq 3$, or a $\{n, 3,4\}$-GDD of type $4^{t} 3^{n-t}$ when $t=0,1$. Then give each vertex weight 12, and use Construction 2.2 to get a $K_{1,3}$-frame of type $48^{t} 36^{n-t}$. Further, we use Construction 2.7 with $\varepsilon=1$ to obtain a $K_{1,3}$-frame of type 6^{u}. The proof is complete.

$4 \quad \lambda=3$

In this section we continue to consider the case $\lambda=3$.
Lemma 4.1. For each $u \equiv 1(\bmod 4), u \geq 5$, there is a $\left(K_{1,3}, 3\right)$-frame of type 1^{u}.
Proof: For $u=5,9,13,17,29,33$, let the vertex set be Z_{u}, and let the groups be $M_{i}=\{i\}, i \in Z_{u}$. The two partial parallel classes are $P_{1}+i$ and $P_{2}+i$ with respect to the group M_{i}. The blocks in P_{1} and P_{2} are listed below.

$u=5$	P_{1}	$(1 ; 2,3,4)$			
	P_{2}	$(2 ; 1,3,4)$			
$u=9$	P_{1}	$(1 ; 2,3,4)$	$(5 ; 6,7,8)$		
	P_{2}	$(1 ; 2,4,6)$	$(3 ; 5,7,8)$	$(9 ; 10,11,12)$	
$u=13$	P_{1}	$(1 ; 2,3,4)$	$(5 ; 6,7,8)$	$(12 ; 3,4,6)$	
	P_{2}	$(1 ; 5,7,9)$	$(2 ; 8,10,11)$	$(12 ; 13,15,16)$	
$u=17$	P_{1}	$(1 ; 2,3,4)$	$(5 ; 6,7,8)$	$(9 ; 10,12,14)$	$(11 ; 12)$
	P_{2}	$(1 ; 5,6,7)$	$(2 ; 8,9,10)$	$(3 ; 11,13,16)$	$(4 ; 12,14,15)$
$u=29$	P_{1}	$(1 ; 2,3,4)$	$(5 ; 6,7,8)$	$(9 ; 10,11,12)$	$(13 ; 17,18,19)$
		$(14 ; 20,21,22)$	$(15 ; 23,24,25)$	$(16 ; 26,27,28)$	
	P_{2}	$(1 ; 5,6,7)$	$(2 ; 9,10,11)$	$(3 ; 8,13,16)$	$(4 ; 19,20,21)$
		$(12 ; 23,24,26)$	$(18 ; 22,25,27)$	$(28 ; 14,15,17)$	
$u=33$	P_{1}	$(1 ; 2,3,4)$	$(5 ; 6,7,8)$	$(9 ; 10,11,12)$	$(13 ; 17,18,19)$
		$(14 ; 20,21,22)$	$(15 ; 23,24,25)$	$(16 ; 27,28,29)$	$(26 ; 30,31,32)$
	P_{2}	$(1 ; 5,6,8)$	$(2 ; 9,10,11)$	$(3 ; 12,13,14)$	$(4 ; 17,21,22)$
		$(7 ; 23,24,26)$	$(15 ; 25,29,30)$	$(16 ; 27,28,31)$	$(32 ; 18,19,20)$

For all other values of u, apply Construction 2.2 with a $(\{5,9,13,17,29,33\}, u)$ PBD from [4] to obtain the conclusion.

Lemma 4.2. For each $u \in\{7,11,15,23,27\}$, there is a ($K_{1,3}, 3$)-frame of type 2^{u}.
Proof: Let the vertex set be $Z_{2 u}$, and let the groups be $M_{i}=\{i, i+u\}, 0 \leq i \leq u-1$. The 4 partial parallel classes missing the group M_{i} are $P_{j}+i, 1 \leq j \leq 4$. For each u, the blocks in P_{j} are listed below.

$u=7$	P_{1}	$(1 ; 2,3,4)$	($5 ; 6,8,9$)	(10; 11, 12, 13)		
	P_{2}	$(1 ; 2,3,4)$	$(5 ; 9,10,11)$	$(8 ; 6,12,13)$		
	P_{3}	($1 ; 3,5,6$)	$(2 ; 4,10,12)$	$(8 ; 9,11,13)$		
	P_{4}	(2; 5, 10, 11)	($9 ; 1,3,4$)	$(12 ; 6,8,13)$		
$u=11$	P_{1}	$(1 ; 2,3,4)$	$(5 ; 6,7,8)$	$(9 ; 10,12,13)$	$(14 ; 15,16,17)$	(18; 19, 20, 21)
	P_{2}	$(1 ; 3,5,6)$	($2 ; 4,7,8$) ($(9 ; 13,14,15)$	$(10 ; 16,17,18)$	(12; 19, 20, 21)
	P_{3}	$(1 ; 6,7,8)$	$(2 ; 3,5,9)$	$(4 ; 12,17,19)$	$(14 ; 10,18,20)$	$(21 ; 13,15,16)$
	$P_{4} \quad(1 ; 8,9,13)$		(3; 12, 16, 20)	$(6 ; 10,15,18)$	$(7 ; 17,19,21)$	$(14 ; 2,4,5)$
$u=15$	P_{1}	$\begin{aligned} & (1 ; 2,3,4) \\ & (22 ; 23,24,25) \end{aligned}$	$\begin{aligned} & (5 ; 6,7,8) \\ & (26 ; 27,28,29) \end{aligned}$) $(9 ; 10,11,12)$	$(13 ; 17,18,19)$	$(14 ; 16,20,21)$
	P_{2}	(1; 5, 6, 7)	$(2 ; 3,8,9)$) $(4 ; 10,11,12)$	$(13 ; 17,18,19)$	$(14 ; 22,23,24)$
		$(16 ; 21,26,27)$	(20; 25, 28, 29)			
	P_{3}	($1 ; 8,9,10$)	(2; 5, 6, 7)) $(3 ; 11,12,13)$	$(4 ; 14,22,23)$	$(16 ; 20,25,27)$
		(17; 24, 26, 28)	(29; 18, 19, 21)			
	P_{4}	$(1 ; 8,11,12)$	$(2 ; 6,14,16)$	$(5 ; 17,18,19)$	(9; 21, 22, 26)	$(10 ; 23,24,28)$
		(13; $25,27,29)$	$(20 ; 3,4,7)$			
$u=23$	P_{1}	$(18 ; 8,21,38)$	(19; 24, 39, 44)) $(14 ; 2,7,20)$	$(4 ; 29,37,45)$	$(15 ; 31,34,41)$
		$(36 ; 1,17,28)$	$(33 ; 11,22,32)$) $(13 ; 9,10,40)$	$(30 ; 6,26,27)$	$(16 ; 3,5,42)$
		$(43 ; 12,25,35)$				
	P_{2}	$(8 ; 29,40,43)$	(22; 6, 20, 36)	(2; 26, 28, 45)	$(25 ; 11,39,42)$) $(21 ; 10,13,31)$
		$(17 ; 15,27,32)$	$(12 ; 5,16,30)$	$(4 ; 33,38,44)$	$(35 ; 9,18,41)$	$(7 ; 19,24,37)$
		($3 ; 1,14,34$)				
	P_{3}	$(24 ; 16,37,45)$	(12; 11, 30, 34)) $(18 ; 5,8,9)$	$(27 ; 3,20,39)$	$(6 ; 22,38,42)$
		$(41 ; 28,32,35)$	$(44 ; 7,40,43)$	$(21 ; 25,29,33)$) $(2 ; 14,15,17)$	(19; 1, 4, 10)
		(31; 13, 26, 36)				
	P_{4}	$(31 ; 6,14,41)$	$(33 ; 3,26,42)$	(28; 1, 27, 36)	$(4 ; 7,22,43)$	$(21 ; 16,24,25)$
		$(17 ; 12,19,39)$	$(10 ; 8,11,40)$	$(32 ; 13,34,38)$) $(9 ; 2,15,30)$	$(37 ; 5,18,20)$
		$(44 ; 29,35,45)$				
$u=27$	P_{1}	$(35 ; 13,18,24)$	($52 ; 40,46,49$)) $(28 ; 11,17,26)$) $(41 ; 15,31,47)$) $(42 ; 3,6,48)$
		($10 ; 2,8,34$)	$(7 ; 19,30,32)$	$(4 ; 12,16,29)$	$(45 ; 14,25,38)$) $(36 ; 1,50,51)$
		$(44 ; 22,23,37)$	(20; 5, 9, 43)	(39; 21, 33, 53)		
	P_{2}	$(35 ; 32,36,42)$	(19; 10, 12, 52)) $(9 ; 13,34,39)$	(1; 20, 21, 48)	$(25 ; 11,14,43)$
		$(45 ; 8,44,46)$	$(2 ; 38,47,50)$	$(40 ; 6,24,53)$	$(3 ; 23,26,31)$	$(15 ; 16,17,37)$
		$(49 ; 28,30,33)$	(5; 7, 22, 29)	$(18 ; 4,41,51)$		
	P_{3}	($39 ; 17,23,52$)	($28 ; 29,44,50)$) $(19 ; 6,18,30)$	(43; 5, 34, 53)	$(2 ; 31,32,46)$
		$(22 ; 13,14,33)$	(1; 9, 42, 47)	$(24 ; 20,36,38)$	(37; 25, 41, 51)	(7; 3, 4, 12)
		(11; 16, 21, 40)	$(10 ; 8,15,49)$	$(48 ; 26,35,45)$		
	P_{4}	$(16 ; 13,36,39)$	($50 ; 12,37,46$)) $(51 ; 15,25,32)$	$\begin{aligned} & (20 ; 1,10,35) \\ & (31 ; 6,19,22) \end{aligned}$	$\begin{aligned} & (33 ; 9,40,41) \\ & (44 ; 7,23,49) \end{aligned}$
		($5 ; 3,11,42)$	($48 ; 18,52,53)$) $(8 ; 34,43,47)$		
		$(24 ; 4,14,45)$	$(2 ; 28,30,38)$	(26; 17, 21, 29)		

Lemma 4.3. There exists a $\left(K_{1,3}, 3\right)$-frame of type 2^{u} for each $u \equiv 1(\bmod 6)$ and $u \geq 19$.

Proof: For each u, we start with a $K_{1,3}$-frame of type $12^{\frac{u-1}{6}}$ by Lemma 1.2, and
apply Construction 2.7 with $\varepsilon=1$ to get a ($K_{1,3}, 3$)-frame of type 2^{u}, where the input design a ($K_{1,3}, 3$)-frame of type 2^{7} comes from Lemma 4.2.

Lemma 4.4. There exists a $\left(K_{1,3}, 3\right)$-RGDD of type $g^{2}, g=8,20,52$.
Proof: Let the vertex set be $Z_{2 g}$, and let the groups be $\{0,2, \ldots, 2 g-2\}$ and $\{1,3, \ldots, 2 g-1\}$. The required $2 g$ parallel classes can be generated from P by $+1(\bmod 2 g)$. The blocks in P are listed below.

$g=8$	$(0 ; 1,3,5)$	$(2 ; 7,9,13)$	$(11 ; 4,8,10)$	$(15 ; 6,12,14)$	
$g=20$	$(0 ; 1,3,5)$	$(2 ; 7,9,11)$	$(4 ; 13,15,17)$	$(6 ; 19,21,23)$	$(8 ; 25,27,29)$
	$(31 ; 10,18,20)$	$(33 ; 22,24,26)$	$(35 ; 28,30,32)$	$(37 ; 12,34,36)$	$(39 ; 14,16,38)$
$g=52$	$(89 ; 68,84,102)$	$(15 ; 14,46,96)$	$(37 ; 56,60,72)$	$(26 ; 59,67,77)$	$(4 ; 3,61,73)$
	$(43 ; 0,6,10)$	$(12 ; 19,51,57)$	$(50 ; 1,7,53)$	$(86 ; 11,99,101)$	$(74 ; 9,25,69)$
	$(16 ; 71,93,103)$	$(23 ; 30,44,82)$	$(95 ; 32,52,90)$	$(62 ; 5,33,81)$	$(34 ; 41,47,85)$
	$(87 ; 42,88,98)$	$(58 ; 29,31,35)$	$(39 ; 22,36,92)$	$(91 ; 8,18,76)$	$(2 ; 49,65,97)$
	$(24 ; 13,21,63)$	$(55 ; 20,40,80)$	$(75 ; 38,66,100)$	$(45 ; 28,64,78)$	$(79 ; 48,54,70)$
	$(94 ; 17,27,83)$				

Lemma 4.5. There exists a $\left(K_{1,3}, 3\right)$-frame of type l^{3} for any $l>4$ and $l \equiv 0$ $(\bmod 4)$.

Proof: We distinguish two cases.

1. $l \equiv 0(\bmod 8)$. Applying Construction 2.5 with a $\left(K_{1,3}, 3\right)$-RGDD of type 8^{2} from Lemma 4.4, we can obtain a ($K_{1,3}, 3$)-frame of type 8^{3}. Then apply Construction 2.1 with $m=l / 8$ to get a $\left(K_{1,3}, 3\right)$-frame of type l^{3}.
2. $l \equiv 4(\bmod 8)$. Let $l=8 k+4, k \geq 1$. For $l=12$, take a $K_{1,3}$-frame of type 12^{3} from Theorem 1.2 and repeat each block 3 times to get a ($K_{1,3}, 3$)-frame of type 12^{3}. For $l=20,52$, the conclusion comes from Lemmas 2.6 and 4.4. For all other values of l, applying Construction 2.4 with $u=2, n=k, g=8$ and $h=4$, we can obtain a $\left(K_{1,3}, 3\right)$-RGDD of type $(8 k+4)^{2}$, where the input designs an $\operatorname{RTD}^{*}(2, k)$ can be obtained from an idempotent $\mathrm{TD}(3, k)$ in [16], a ($K_{1,3}, 3$)-IRGDD of type $(12,4)^{2}$ exists by Lemma 2.3, a ($K_{1,3}, 3$)-RGDD of type 8^{2} comes from Lemma 4.4, and a $K_{1,3}$-RGDD of type 12^{2} comes from Lemma 1.2. Then apply Construction 2.5 to get a $\left(K_{1,3}, 3\right)$-frame of type $(8 k+4)^{3}$.

Lemma 4.6. For any $t \geq 0, a\left(K_{1,3}, 6 t+3\right)$-frame of type 4^{3} can not exist.
Proof: By Lemma 2.6 we only need to prove there doesn't exist a ($K_{1,3}, 6 t+3$)-RGDD of type 4^{2}. Assume there exists a $\left(K_{1,3}, 6 t+3\right)$-RGDD of type 4^{2}. Without lose of generality, we suppose the vertex set is Z_{8}, and the two groups are $\{0,2,4,6\}$ and $\{1,3,5,7\}$. There are $16 t+8$ parallel classes. For each vertex v, suppose there are exactly x parallel classes in which the degree of v is 3 . Then we have $3 x+(16 t+8-$ $x)=4(6 t+3)$. So $x=4 t+2$.

Now we consider two vertices 0 and 1 . The edge $\{0,1\}$ appears exactly in $3+6 t$ parallel classes. Suppose there are exactly a parallel classes in which the degree of 0
is 3 , and b parallel classes in which the degree of 0 is 1 . Then the vertex 1 has degree 3 in the later b parallel classes. So there are $4 t+2-b$ parallel classes in which 0 and 1 are not adjacent and the degree of 1 is 3 . Thus in these $4 t+2-b$ parallel classes the degree of 0 is 3 . So we have $4 t+2-b+a \leq 4 t+2$. That is $a \leq b$. Similarly, we can prove $b \leq a$. Now we have $a=b$. Note that $a+b=6 t+3$. Thus we obtain a contradiction.

Lemma 4.7. There exists a ($\left.K_{1,3}, 6 t\right)$-frame of type $4^{3}, t \geq 1$.
Proof: We first construct a ($K_{1,3}, 6$)-RGDD of type 4^{2}. Let the vertex be Z_{8}, and let the two groups be $\{0,2,4,6\}$ and $\{1,3,5,7\}$. The required 16 parallel classes are $P_{i j}=\{(0+i ; 1+j, 3+j, 5+j),(7+j ; 2+i, 4+i, 6+i)\}, i=0,2,4,6, j=0,2,4,6$. By Lemma 2.6 there exists a ($K_{1,3}, 6$)-frame of type 4^{3}. Repeat each block t times to get the conclusion.

Lemma 4.8. For each $u \geq 4$, there exists a ($K_{1,3}, 3$)-frame of type 4^{u}.
Proof: For $u=5,9$, apply Construction 2.1 with $m=4$ to get a ($K_{1,3}, 3$)-frame of type 4^{u}, where the input design a ($K_{1,3}, 3$)-frame of type 1^{u} exists by Lemma 4.1.

For $u=7,11,15,19,23$, apply Construction 2.1 with $m=2$ to get a $\left(K_{1,3}, 3\right)$ frame of type 4^{u}, where the input designs ($K_{1,3}, 3$)-frames of type 2^{u} exist by Lemmas 4.2 and 4.3 .

When $u=4,6,8,10,14$, let the vertex set be $4 u$, and let the groups be $M_{i}=$ $\{i, i+u, i+2 u, i+3 u\}, 0 \leq i \leq u-1$. With respect to the group $M_{i}, 0 \leq i \leq u-1$, the 8 partial parallel classes are $P_{j}+i+u k, j=1,2,0 \leq k \leq 3$. The blocks in P_{1} and P_{2} are listed below.

$u=4$	P_{1}	$(1 ; 2,3,6)$	$(5 ; 7,10,11)$	$(14 ; 9,13,15)$		
	P_{2}	$(1 ; 7,10,14)$	$(2 ; 5,9,15)$	$(13 ; 3,6,11)$		
$u=6$	P_{1}	$(1 ; 2,3,4)$	$(5 ; 7,8,9)$	$(10 ; 11,13,14)$	$(15 ; 19,20,22)$	$(16 ; 17,21,23)$
	P_{2}	$(1 ; 3,8,9)$	$(2 ; 7,10,11)$	$(4 ; 14,15,17)$	$(13 ; 21,22,23)$	$(5 ; 16,19,20)$
$u=8$	P_{1}	$(1 ; 2,3,4)$	$(5 ; 6,7,9)$	$(10 ; 11,12,13)$	$(14 ; 17,18,19)$	
		$(15 ; 20,21,26)$	$(23 ; 28,29,30)$	$(31 ; 22,25,27)$		
	P_{2}	$(1 ; 10,11,12)$	$(2 ; 9,13,14)$	$(3 ; 15,17,18)$	$(4 ; 19,22,23)$	
$u=10$	P_{1}	$(6 ; 25,28,31)$	$(1 ; 21,26,27)$	$(5 ; 6,7,8)$	$(20 ; 5,29,30)$	
		$(17 ; 24,25,26)$	$(27 ; 31,33,36)$	$(29 ; 35,37,38)$	$(39 ; 28,32,34)$	
	P_{2}	$(1 ; 9,12,13)$	$(2 ; 14,15,16)$	$(3 ; 17,18,19)$	$(4 ; 21,22,23)$	$(5 ; 24,26,28)$
		$(6 ; 29,31,34)$	$(8 ; 32,35,37)$	$(11 ; 27,33,36)$	$(25 ; 7,38,39)$	
$u=14$	P_{1}	$(4 ; 19,38,52)$,	$(5 ; 27,32,36)$	$(10 ; 33,34,55)$	$(11 ; 6,9,18)$	$(13 ; 7,12,17)$
		$(21 ; 15,25,26)$	$(23 ; 8,16,20)$	$(24 ; 37,51,54)$	$(39 ; 29,45,49)$	$(40 ; 22,31,35)$
		$(46 ; 1,30,48)$	$(47 ; 2,3,50)$	$(53 ; 41,43,44)$		
	P_{2}	$(2 ; 1,11,36)$	$(3 ; 18,19,20)$,	$(4 ; 21,22,23)$	$(5 ; 24,25,26)$	$(6 ; 27,29,30)$
		$(7 ; 31,32,33)$	$(8 ; 34,35,45)$	$(9 ; 17,52,53)$	$(12 ; 47,48,55)$	$(13 ; 15,46,49)$
		$(41 ; 10,40,44)$	$(43 ; 39,50,51)$	$(54 ; 16,37,38)$		

For $u=12,18$, apply Construction 2.1 with $m=\frac{u}{6}$ and a ($K_{1,3}, 3$)-frame of type 8^{3} from Lemma 4.5 to get a $\left(K_{1,3}, 3\right)$-frame of type $\left(\frac{4 u}{3}\right)^{3}$. Applying Construction 2.7 with $\varepsilon=0$ and a ($K_{1,3}, 3$)-frame of type $4^{\frac{u}{3}}$, we can get a ($K_{1,3}, 3$)-frame of type 4^{u}.

For all other values of u, take a $(\{4,5,6,7,8,9,10,11,12,14,15,18,19,23\}, u)$ PBD from [4], then apply Construction 2.2 to obtain the conclusion.

Lemma 4.9. For each $u \equiv 1(\bmod 2), u \geq 5$, there is a $\left(K_{1,3}, 3\right)$-frame of type 2^{u}.
Proof: For $u \equiv 1(\bmod 4)$, apply Construction 2.1 with $m=2$ to get a $\left(K_{1,3}, 3\right)$-frame of type 2^{u}, where the input design a ($K_{1,3}, 3$)-frame of type 1^{u} exists by Lemma 4.1.

For $u \equiv 3(\bmod 4)$, when $u \in\{7,11,15,19,23,27,31,55\}$, a ($\left.K_{1,3}, 3\right)$-frame of type 2^{u} exists by Lemmas 4.2 and 4.3 .

For $u=35,63$, we start with a $\left(K_{1,3}, 3\right)$-frame of type 1^{5} or 1^{9} from Lemma 4.1, and apply Construction 2.1 with $m=14$ to get a ($K_{1,3}, 3$)-frame of type 14^{5} or 14^{9}. Applying Construction 2.7 with $\varepsilon=0$ and a ($K_{1,3}, 3$)-frame of type 2^{7}, we can get a ($K_{1,3}, 3$)-frame of type 2^{u}.

For $u=39$, start with a $\operatorname{TD}(5,4)$ in [16]. Delete a vertex from the last group to obtain a $\{4,5\}$-GDD of type $3^{1} 4^{4}$. Give each vertex weight 4 , and apply Construction 2.2 to get a ($K_{1,3}, 3$)-frame of type $12^{1} 16^{4}$, where the input design $\left(K_{1,3}, 3\right)$-frames of type 4^{4} and 4^{5} exist by Lemma 4.8. Applying Construction 2.7 with $\varepsilon=1$ and $\left(K_{1,3}, 3\right)$-frames of type 2^{7} and 2^{9}, we can obtain a ($K_{1,3}, 3$)-frame of type 2^{39}.

For $u=47$, start with a $\operatorname{TD}(5,5)$ in [16]. Delete 2 vertices from the last group to obtain a $\{4,5\}$-GDD of type $3^{1} 5^{4}$. Give each vertex weight 4 , and apply Construction 2.2 to get a ($K_{1,3}, 3$)-frame of type $12^{1} 20^{4}$. Applying Construction 2.7 with $\varepsilon=1$, we can obtain a ($K_{1,3}, 3$)-frame of type 2^{47}.

For $u=95$, we start with a ($K_{1,3}, 3$)-frame of type 1^{5} from Lemma 4.1, and apply Construction 2.1 with $m=38$ to get a ($K_{1,3}, 3$)-frame of type 38^{5}. Applying Construction 2.7 with $\varepsilon=0$ and a ($K_{1,3}, 3$)-frame of type 2^{19}, we can get a $\left(K_{1,3}, 3\right)$ frame of type 2^{95}.

For all other values of u, we can always write u as $u=2 t+8 n+1$ where $0 \leq t \leq n$, $t \neq 2,3, n \geq 4$ and $n \neq 6,10$. We start with an idempotent $\mathrm{TD}(5, n)$ in [16] with n blocks $B_{1}, B_{2}, \cdots, B_{n}$ in a parallel class. Delete $n-t$ vertices in the last group that lie in $B_{t+1}, B_{t+2}, \cdots, B_{n}$. Taking the truncated blocks $B_{1}, B_{2}, \cdots, B_{n}$ as groups, we have formed a $\{t, n, 4,5\}$-GDD of type $5^{t} 4^{n-t}$ when $t \geq 4$, or a $\{n, 4,5\}$-GDD of type $5^{t} 4^{n-t}$ when $t=0,1$. Give each vertex weight 4 , and apply Construction 2.2 to get a ($K_{1,3}, 3$)-frame of type $20^{t} 16^{n-t}$. Applying Construction 2.7 with $\varepsilon=1$ and $\left(K_{1,3}, 3\right)$-frames of types 2^{9} and 2^{11}, we can obtain a ($K_{1,3}, 3$)-frame of type 2^{u}. The proof is complete.

5 Proof of Theorem 1.3

Now we are in the position to prove our main result.
Proof of Theorem 1.3: We distinguish two cases.

1. $\lambda \equiv 1,2(\bmod 3)$. In this case we have three subcases.
(1) $g \equiv 3(\bmod 12)$. By Theorem 1.1 we have $u \equiv 1(\bmod 4), u \geq 5$. There exists a $K_{1,3}$-frame of type 3^{u} by Lemma 3.1. Repeat each block λ times to get a ($K_{1,3}, \lambda$)frame of type 3^{u}. Apply Construction 2.1 with $m=g / 3$ to get a ($K_{1,3}, \lambda$)-frame of type g^{u}.
(2) $g \equiv 6(\bmod 12)$. By Theorem 1.1 we have $u \equiv 1(\bmod 2), u \geq 5$. Similarly we can obtain a ($K_{1,3}, \lambda$)-frame of type 6^{u} from a $K_{1,3}$-frame of type 6^{u} which exists by Lemma 3.2. Then we apply Construction 2.1 with $m=g / 6$ to get a ($K_{1,3}, \lambda$)-frame of type g^{u}.
(3) $g \equiv 0(\bmod 12)$. By Theorem 1.1 we have $u \geq 3$. Similarly we can use Construction 2.1 with $m=g / 12$ and a $K_{1,3}$-frame of type 12^{u} from Lemma 1.2 to obtain a ($K_{1,3}, \lambda$)-frame of type g^{u}.
2. $\lambda \equiv 0(\bmod 3)$. In this case we also have three subcases.
(1) $g \equiv 1,3(\bmod 4)$. By Theorem 1.1 we have $u \equiv 1(\bmod 4), u \geq 5$. Similarly we can use Construction 2.1 with $m=g$ and a ($K_{1,3}, 3$)-frame of type 1^{u} from Lemma 4.1 to obtain a ($K_{1,3}, \lambda$)-frame of type g^{u}.
(2) $g \equiv 2(\bmod 4)$. By Theorem 1.1 we have $u \equiv 1(\bmod 2), u \geq 5$. Similarly we can use Construction 2.1 with $m=g / 2$ and a ($K_{1,3}, 3$)-frame of type 2^{u} from Lemma 4.9 to obtain a ($K_{1,3}, \lambda$)-frame of type g^{u}.
(3) $g \equiv 0(\bmod 4)$. Let $g=4 s, s \geq 1$. By Theorem 1.1 we have $u \geq 3$. When $u=3$ and $s=1$, by Lemma 4.6 a ($\left.K_{1,3}, 6 t+3\right)$-frame of type 4^{3} can not exist for any $t \geq 0$, and by Lemma 4.7 there exists a ($K_{1,3}, 6 t$)-frame of type 4^{3} for any $t \geq 1$. When $u=3$ and $s>1$, a ($K_{1,3}, \lambda$)-frame of type g^{u} can be obtained from a ($K_{1,3}, 3$)-frame of type g^{u} which exists by Lemma 4.5 . When $u \geq 4$, there exists a ($K_{1,3}, 3$)-frame of type 4^{u} by Lemma 4.8. Apply Construction 2.1 with $m=s$ to get a ($K_{1,3}, \lambda$)-frame of type g^{u}.

Acknowledgments

We would like to thank the anonymous referees for their careful reading and many constructive comments which greatly improved the quality of this paper.

References

[1] B. Alspach, P. J. Schellenberg, D. R. Stinson and D. Wagner, The Oberwolfach problem and factors of uniform odd length cycles, J. Combin. Theory Ser. A 52 (1989), 20-43.
[2] M. Buratti, H. Cao, D. Dai and T. Traetta, A complete solution to the existence of (k, λ)-cycle frames of type g^{u}, J. Combin. Des. 25 (2017), 197-230.
[3] F. Chen and H. Cao, Uniformly resolvable decompositions of K_{v} into K_{2} and $K_{1,3}$ graphs, Discrete Math. 339 (2016), 2056-2062.
[4] C. J. Colbourn and J.H. Dinitz, Handbook of Combinatorial Designs, 2nd Ed. Chapman \& Hall/CRC, 2007.
[5] H. Cao, M. Niu and C. Tang, On the existence of cycle frames and almost resolvable cycle systems, Discrete Math. 311 (2011), 2220-2232.
[6] J. H. Dinitz, A. C. H. Ling and P. Danziger, Maximum uniformly resolvable designs with block sizes 2 and 4, Discrete Math. 309 (2009), 4716-4721.
[7] P. Danziger, G. Quattrocchi and B. Stevens, The Hamilton-Waterloo problem for cycle sizes 3 and 4, J. Combin. Des. 12 (2004), 221-232.
[8] G. Lo Faro, S. Milici and A. Tripodi, Uniformly resolvable decompositions of K_{v} into paths on two, three and four vertices, Discrete Math. 338 (2015), 22122219.
[9] S. Furino, Y. Miao and J. Yin, Frames and resolvable designs: Uses, Constructions and Existence, CRC Press, Boca Raton, FL, 1996.
[10] S. Furino, S. Kageyama, A. C. H. Ling, Y. Miao and J. Yin, Frames with block size four and index three, Discrete Math. 106 (2002), 117-124.
[11] M. Gionfriddo and S. Milici, On the existence of uniformly resolvable decompositions of K_{v} and $K_{v}-I$ into paths and kites, Discrete Math. 313 (2013), 2830-2834.
[12] G. Ge, Uniform frames with block size four and index one or three, J. Combin. Des. 9 (2001), 28-39.
[13] G. Ge and A. C. H. Ling, A symptotic results on the existience of 4-RGDDs and uniform 5-GDDs, J. Combin. Des. 13 (2005), 222-237.
[14] G. Ge, C. W.H. Lam and A. C.H. Ling, Some new uniform frames with block size four and index one or three, J. Combin. Des. 12 (2004), 112-122.
[15] P. Hell and A. Rosa, Graph decompositions, handcuffed prisoners and balanced P-designs, Discrete Math. 2 (1972), 229-252.
[16] R. Julian R. Abel, C. J. Colbourn and J. H. Dintz, in: Handbook of Combinatorial Designs, 2nd Ed. (C.J. Colbourn and J.H. Dinitz, Eds.), Chapman \& Hall/CRC, 2007.
[17] S. Küçükçifçi, G. Lo Faro, S. Milici and A. Tripodi, Resolable 3-star designs, Discrete Math. 338 (2015), 608-614.
[18] S. Küçükçifçi, S. Milici and Z. Tuza, Maximum uniformly resolvable decompositions of K_{v} and $K_{v}-I$ into 3-stars and 3-cycles, Discrete Math. 338 (2015), 1667-1673.
[19] S. Milici, A note on uniformly resolvable decompositions of K_{p} and $K_{v}-I$ into 2-stars and 4-cycles, Australas. J. Combin. 56 (2013), 195-200.
[20] S. Milici and Z. Tuza, Uniformly resolvable decompositions of K_{v} into P_{3} and K_{3} graphs, Discrete Math. 331 (2014), 137-141.
[21] R. Rees, Uniformly resolvable pairwise balanced designs with block sizes two and tree, J. Combin. Theory Ser. A 5 (1987), 207-225.
[22] R. Rees and D. R. Stinson, Frames with block size four, Canad. J. Math. 44 (1992), 1030-1049.
[23] E. Schuster, Uniformly resolvable designs with index one and block sizes three and four-with three or five parallel classes of block size four, Discrete Math. 309 (2009), 2452-2465.
[24] E. Schuster, Uniformly resolvable designs with index one and block sizes three and five and up to five with blocks of size five, Discrete Math. 309 (2009), 4435-4442.
[25] E. Schuster, Small uniformly sesolvable designs for block sizes 3 and 4, J. Combin. Des. 21 (2013), 481-523.
[26] E. Schuster and G. Ge, On uniformly resolvable designs with block sizes 3 and 4, Des. Codes Cryptogr. 57 (2010), 47-69.
[27] D. R. Stinson, Frames for Kirkman triple systems, Discrete Math. 65 (1987), 289-300.
[28] H. Wei and G. Ge, Some more 5-GDDs, 4-frames and 4-RGDDs, Discrete Math. 336 (2014), 7-21.
[29] X. Zhang and G. Ge, On the existence of partitionable skew Room frames, Discrete Math. 307 (2007), 2786-2807.
(Received 5 Jan 2017; revised 6 Apr 2017)

[^0]: * Research supported by the National Natural Science Foundation of China under Grant 11571179 and the Priority Academic Program Development of Jiangsu Higher Education Institutions. E-mail: caohaitao@njnu.edu.cn

