On the existence of $(K_{1,3}, \lambda)$ -frames of type g^u

Fen Chen Haitao Cao*

Institute of Mathematics Nanjing Normal University Nanjing 210023 China

Abstract

A $(K_{1,3}, \lambda)$ -frame of type g^u is a $K_{1,3}$ -decomposition of a complete *u*partite graph with *u* parts of size *g* into partial parallel classes each of which is a partition of the vertex set except for those vertices in one of the *u* parts. In this paper, we completely solve the existence of a $(K_{1,3}, \lambda)$ -frame of type g^u .

1 Introduction

In this paper, the vertex set and edge set (or edge-multiset) of a graph G (or multigraph) are denoted by V(G) and E(G) respectively. For a graph G, we use λG to represent the multi-graph obtained from G by replacing each edge of G with λ copies of it. A graph G is called a *complete u-partite graph* if V(G) can be partitioned into u parts M_i , $1 \leq i \leq u$, such that two vertices of G, say x and y, are adjacent if and only if $x \in M_i$ and $y \in M_j$ with $i \neq j$. We use $\lambda K(m_1, m_2, \ldots, m_u)$ for the λ -fold of the complete u-partite graph with m_i vertices in the group M_i .

Given a collection of graphs \mathcal{H} , an \mathcal{H} -decomposition of a graph G is a set of subgraphs (blocks) of G whose edge sets partition E(G), and each subgraph is isomorphic to a graph from \mathcal{H} . When $\mathcal{H} = \{H\}$, we write \mathcal{H} -decomposition as H-decomposition for the sake of brevity. A parallel class of a graph G is a set of subgraphs whose vertex sets partition V(G). A parallel class is called uniform if each block of the parallel class is isomorphic to the same graph. An \mathcal{H} -decomposition of a graph Gis called (uniformly) resolvable if the blocks can be partitioned into (uniform) parallel classes. Recently, a lot of results have been obtained on uniformly resolvable \mathcal{H} -decompositions of K_v , especially on uniformly resolvable \mathcal{H} -decompositions with $\mathcal{H} = \{G_1, G_2\}$ ([6, 7, 11, 15, 18–21, 23–26]) and with $\mathcal{H} = \{G_1, G_2, G_3\}$ ([8]). For the graphs related to this paper, the reader is referred to [3, 17].

^{*} Research supported by the National Natural Science Foundation of China under Grant 11571179 and the Priority Academic Program Development of Jiangsu Higher Education Institutions. E-mail: caohaitao@njnu.edu.cn

A (resolvable) \mathcal{H} -decomposition of $\lambda K(m_1, m_2, \ldots, m_u)$ is called a (resolvable) group divisible design, denoted by (\mathcal{H}, λ) -(R)GDD. When $\lambda = 1$, we usually omit λ in the notation. The type of an \mathcal{H} -GDD is the multiset of group sizes $|M_i|, 1 \leq i \leq u$, and we usually use the "exponential" notation for its description: type $1^i 2^{j} 3^k \ldots$ denotes *i* occurrences of groups of size 1, *j* occurrences of groups of size 2, and so on. In this paper, we will use $K_{1,3}$ -RGDDs as input designs for recursive constructions. There are some known results on the existence of $K_{1,3}$ -RGDDs. For example, $K_{1,3}$ -RGDDs of types 2^4 and 4^4 have been constructed in [17], and the existence of a $K_{1,3}$ -RGDD of type 12^u for any $u \geq 2$ has been solved in [3].

Let K be a set of positive integers. If $\mathcal{H} = \{K_1, K_2, \ldots, K_t\}$ with $|V(K_i)| \in K$ $(1 \leq i \leq t)$, then \mathcal{H} -GDD is also denoted by K-GDD, and an K-GDD of type 1^v is called a *pairwise balanced design*, denoted by (K, v)-PBD. It is usual to write k rather than $\{k\}$ when $K = \{k\}$ is a singleton.

A set of subgraphs of a complete multipartite graph covering all vertices except those belonging to one part M is said to be a partial parallel class missing M. A partition of an (\mathcal{H}, λ) -GDD of type g^u into partial parallel classes is said to be a (\mathcal{H}, λ) -frame. Frames were firstly introduced in [1]. Frames are important combinatorial structures used in graph decompositions. Stinson [27] solved the existence of a $(K_3, 1)$ -frame of type g^u . For the existence of a (K_4, λ) -frame of type g^u , see [10, 12–14, 22, 28, 29]. Cao et al. [5] started the research of a $(C_k, 1)$ -frame of type g^u . Buratti et al. [2] have completely solved the existence of a (C_k, λ) -frame of type g^u recently. Here we focus on the existence of a $(K_{1,3}, \lambda)$ -frame of type g^u which can be used in uniformly resolvable \mathcal{H} -decompositions with $K_{1,3} \in \mathcal{H}$ in [3]. It is easy to see that the number of partial parallel classes missing a specified group is $\frac{2g\lambda}{3}$. So we have the following necessary conditions for the existence of a $(K_{1,3}, \lambda)$ -frame of type g^u .

Theorem 1.1. The necessary conditions for the existence of a $(K_{1,3}, \lambda)$ -frame of type g^u are $\lambda g \equiv 0 \pmod{3}$, $g(u-1) \equiv 0 \pmod{4}$, $u \geq 3$ and $g \equiv 0 \pmod{4}$ when u = 3.

Not many results have been known for the existence of a $(K_{1,3}, \lambda)$ -frame of type g^u .

Theorem 1.2. [3] There exists a $K_{1,3}$ -frame of type 12^u for $u \ge 3$.

In this paper, we will prove the following main result.

Theorem 1.3. The necessary conditions for the existence of a $(K_{1,3}, \lambda)$ -frame of type g^u are also sufficient with the definite exception of $(\lambda, g, u) = (6t + 3, 4, 3), t \ge 0$.

2 Recursive constructions

For brevity, we use I_k to denote the set $\{1, 2, \ldots, k\}$, and use (a; b, c, d) to denote the 3-star $K_{1,3}$ with vertex set $\{a, b, c, d\}$ and edge set $\{\{a, b\}, \{a, c\}, \{a, d\}\}$. Now we state two basic recursive constructions for $(K_{1,3}, \lambda)$ -frames. Similar proofs of these constructions can be found in [9] and [27].

Construction 2.1. If there exists a $(K_{1,3}, \lambda)$ -frame of type $g_1^{u_1}g_2^{u_2}\ldots g_t^{u_t}$, then there is a $(K_{1,3}, \lambda)$ -frame of type $(mg_1)^{u_1}(mg_2)^{u_2}\ldots (mg_t)^{u_t}$ for any $m \ge 1$.

Construction 2.2. If there exist a (K, v)-GDD of type $g_1^{t_1}g_2^{t_2}\ldots g_m^{t_m}$ and a $(K_{1,3}, \lambda)$ -frame of type h^k for each $k \in K$, then there exists a $(K_{1,3}, \lambda)$ -frame of type $(hg_1)^{t_1}(hg_2)^{t_2}\ldots (hg_m)^{t_m}$.

Definition 2.1. Let G be a λ -fold complete u-partite graph with u groups M_1, M_2, \ldots, M_u such that $|M_i| = g$ for each $1 \leq i \leq u$. Suppose $N_i \subset M_i$ and $|N_i| = h$ for any $1 \leq i \leq u$. Let H be a λ -fold complete u-partite graph with u groups (called holes) N_1, N_2, \ldots, N_u . An incomplete resolvable $(K_{1,3}, \lambda)$ -group divisible design of type g^u with a hole of size h in each group, denoted by $(K_{1,3}, \lambda)$ -IRGDD of type $(g, h)^u$, is a resolvable $(K_{1,3}, \lambda)$ -decomposition of G - E(H) in which there are $\frac{2\lambda(g-h)(u-1)}{3}$ parallel classes of G and $\frac{2\lambda h(u-1)}{3}$ partial parallel classes of G - H.

Lemma 2.3. There exists a $(K_{1,3}, 3)$ -IRGDD of type $(12, 4)^2$.

Proof: Let the vertex set be $Z_{16} \cup \{a_0, a_1, a_2, a_3\} \cup \{b_0, b_1, b_2, b_3\}$, and let the two groups be $\{0, 2, \ldots, 14\} \cup \{a_0, a_1, a_2, a_3\}$ and $\{1, 3, \ldots, 15\} \cup \{b_0, b_1, b_2, b_3\}$. The required 8 partial parallel classes can be generated from two partial parallel classes Q_1, Q_2 by $+4j \pmod{16}, j = 0, 1, 2, 3$. The required 16 parallel classes can be generated from four parallel classes $P_i, i = 1, 2, 3, 4$, by $+4j \pmod{16}, j = 0, 1, 2, 3$. The blocks in Q_1, Q_2 and P_i are listed below.

A k-GDD of type n^k is called a *transversal design*, denoted by TD(k, n). A TD(k, n) is *idempotent* if it contains a parallel class of blocks. A resolvable TD(k, n) is denoted by RTD(k, n). If we can select a block from each parallel class of an RTD(k, n), and all these n blocks form a new parallel class, then this RTD(k, n) is denoted by $RTD^*(k, n)$.

Construction 2.4. Suppose there exist an $RTD^*(u, n)$, $a(K_{1,3}, \lambda)$ -IRGDD of type $(g+h, h)^u$, $a(K_{1,3}, \lambda)$ -RGDD of type g^u , and $a(K_{1,3}, \lambda)$ -RGDD of type $(g+h)^u$, then there exists $a(K_{1,3}, \lambda)$ -RGDD of type $(gn+h)^u$.

Proof: We start with an RTD*(u, n) with n parallel classes $P_i = \{B_{i1}, B_{i2}, \ldots, B_{in}\}, 1 \leq i \leq n$, and a parallel class $Q = \{B_{11}, B_{21}, \ldots, B_{n1}\}$. Give each vertex weight g. For each block B_{ij} in $P_i \setminus Q$, place a $(K_{1,3}, \lambda)$ -RGDD of type g^u whose $t = \frac{2\lambda g(u-1)}{3}$ parallel classes are denoted by F_{ij}^s , $1 \leq s \leq t$. For each block B_{i1} in Q with $1 \leq i \leq n-1$, place a $(K_{1,3}, \lambda)$ -IRGDD of type $(g+h, h)^u$ on the vertices of the weighted block B_{i1} and hu new common vertices (take them as u holes). Denote its t parallel classes by F_{i1}^s , $1 \leq s \leq t$, and its $w = \frac{2\lambda h(u-1)}{3}$ partial parallel classes by Q_{i1}^s , $1 \leq s \leq w$. Further, place on the vertices of the weighted block B_{n1} and these hu new vertices a $(K_{1,3}, \lambda)$ -RGDD of type $(g+h)^u$ whose t+w parallel classes are denoted by F_{n1}^s , $1 \leq s \leq t+w$.

Let $F_i^s = \bigcup_{j=1}^n F_{ij}^s$, $1 \le s \le t$, $1 \le i \le n$, and $T_j = F_{n1}^{t+j} \cup (\bigcup_{i=1}^{n-1} Q_{i1}^j)$, $1 \le j \le w$. It is easy to see F_i^s and T_j are parallel classes of the required $(K_{1,3}, \lambda)$ -RGDD of type $(gn+h)^u$.

Construction 2.5. If there is a $(K_{1,3}, \lambda)$ -RGDD of type g^2 , then there exists a $(K_{1,3}, \lambda)$ -frame of type g^{2u+1} for any $u \ge 1$.

Proof: We start with a K_2 -frame of type 1^{2u+1} in [4]. Suppose its vertex set is I_{2u+1} . Denote its 2u + 1 partial parallel classes by F_i $(i \in I_{2u+1})$ which is with respect to the group $\{i\}$. The required $(K_{1,3}, \lambda)$ -frame of type g^{2u+1} will be constructed on $I_{2u+1} \times I_g$. For any $B = \{a, b\} \in F_i$, place on $B \times I_g$ a copy of a $(K_{1,3}, \lambda)$ -RGDD of type g^2 , whose $\frac{2\lambda g}{3}$ parallel classes are denoted by $P_j(B)$, $1 \leq j \leq \frac{2\lambda g}{3}$. Let $P_i^j = \bigcup_{B \in F_i} P_j(B), i \in I_{2u+1}, 1 \leq j \leq \frac{2\lambda g}{3}$. Then each P_i^j is a partial parallel class with respect to the group $\{i\} \times I_g$. Thus we have obtained a $(K_{1,3}, \lambda)$ -frame of type g^{2u+1} for any $u \geq 1$.

Note that if there exists a $(K_{1,3}, \lambda)$ -frame of type g^3 , then it is easy to see that these $2\lambda g/3$ partial parallel classes missing the same group form a $(K_{1,3}, \lambda)$ -RGDD of type g^2 . Combining with Construction 2.5, we have the following conclusion.

Lemma 2.6. The existence of a $(K_{1,3}, \lambda)$ -frame of type g^3 is equivalent to the existence of a $(K_{1,3}, \lambda)$ -RGDD of type g^2 .

Construction 2.7. If there exist a $(K_{1,3}, \lambda)$ -frame of type $(m_1g)^{u_1}(m_2g)^{u_2}\dots(m_tg)^{u_t}$ and a $(K_{1,3}, \lambda)$ -frame of type $g^{m_i+\varepsilon}$ for any $1 \le i \le t$, then there exists a $(K_{1,3}, \lambda)$ frame of type $g^{\sum_{i=1}^t m_i u_i + \varepsilon}$, where $\varepsilon = 0, 1$.

Proof: If there exists a $(K_{1,3}, \lambda)$ -frame of type $(m_1g)^{u_1}(m_2g)^{u_2}\dots(m_tg)^{u_t}$, there are $\frac{2\lambda|G_j|}{3}$ partial parallel classes missing G_j , $1 \leq j \leq u_1+u_2+\dots u_t$. Add $g\varepsilon$ new common vertices (if $\varepsilon > 0$) to the vertex set of G_j and form a new vertex set G'_j . Then break up G'_j with a $(K_{1,3}, \lambda)$ -frame of type $g^{|G_j|/g+\varepsilon}$ with groups $G_j^1, G_j^2, \dots, G_j^{|G_j|/g}, M$, where the $g\varepsilon$ common vertices (if $\varepsilon > 0$) are viewed as a new group M. It has $\frac{2\lambda|G_j|}{3} + \frac{2\lambda g\varepsilon}{3}$ partial parallel classes.

Next match up the $\frac{2\lambda|G_j|}{3}$ partial parallel classes missing G_j with $\frac{2\lambda|G_j^i|}{3}$ partial parallel classes missing G_j^i to get the required partial parallel classes with respect to the group G_j^i (note that $\frac{2\lambda|G_j|}{3} = \sum_{i=1}^{|G_j^i|/g} \frac{2\lambda|G_j^i|}{3}$), $1 \le i \le |G_j|/g$.

Finally, combine these $\frac{2\lambda g\varepsilon}{3}$ partial parallel classes (if $\varepsilon > 0$) from all the groups to get $\frac{2\lambda g\varepsilon}{3}$ partial parallel classes missing M.

3 $\lambda = 1$

By Theorem 1.1, it is easy to see that the two cases $\lambda = 1$ and $\lambda = 3$ are crucial for the whole problem. In this section we first consider the case $\lambda = 1$.

Lemma 3.1. For each $u \equiv 1 \pmod{4}$, $u \geq 5$, there exists a $K_{1,3}$ -frame of type 3^u .

Proof: For u = 5, 9, let the vertex set be Z_{3u} , and let the groups be $M_i = \{i, i + u, i + 2u\}, 0 \le i \le u - 1$. The required 2 partial parallel classes with respect to the group M_i are $\{Q_1 + i, Q_1 + i + u, Q_1 + i + 2u\}$ and $\{Q_2 + i, Q_2 + i + u, Q_2 + i + 2u\}$. The blocks in Q_1 and Q_2 are listed below.

 $\begin{aligned} & u = 5 \quad Q_1 \quad (1;2,3,4) \quad Q_2 \quad (2;6,8,9) \\ & u = 9 \quad Q_1 \quad (1;2,3,4) \quad (5;15,16,17) \quad Q_2 \quad (1;5,6,7) \quad (4;11,12,17) \end{aligned}$

For $u \ge 13$, we start with a $K_{1,3}$ -frame of type $12^{(u-1)/4}$ from Theorem 1.2 and apply Construction 2.7 with $\varepsilon = 1$ to get the required $K_{1,3}$ -frame of type 3^u , where the input design, a $K_{1,3}$ -frame of type 3^5 , is constructed above.

Lemma 3.2. For each $u \equiv 1 \pmod{2}$, $u \geq 5$, there exists a $K_{1,3}$ -frame of type 6^u .

Proof: For $u \equiv 1 \pmod{4}$, apply Construction 2.1 with m = 2 to get a $K_{1,3}$ -frame of type 6^u , where the input design a $K_{1,3}$ -frame of type 3^u exists by Lemma 3.1.

For $u \equiv 3 \pmod{4}$, when u = 7, 11, 15, let the vertex set be Z_{6u} , and let the groups be $M_i = \{i + ju : 0 \le j \le 5\}, 0 \le i \le u - 1$. Three of the four required partial parallel classes P_0, P_1, P_2 with respect to the group M_0 can be generated from an initial parallel class P by $+i \pmod{6u}, i = 0, 2u, 4u$. The last partial parallel class missing M_0 is $P_3 = Q \cup \{Q + 2u\} \cup \{Q + 4u\}$. All these required partial parallel classes can be generated from P_0, P_1, P_2, P_3 by $+2j \pmod{6u}, 0 \le j \le u - 1$. For each u, the blocks in P and Q are listed below.

u = 7	P	(1; 2, 3, 4)	(5; 9, 10, 11)	(6; 8, 12, 15)	(13; 22, 23, 24)	(16; 17, 19, 20)
		(18; 29, 34, 36)	(25; 33, 37, 41)	(26; 31, 38, 39)	(40; 27, 30, 32)	
	Q	(1; 16, 19, 23)	(3; 20, 22, 26)	(10; 25, 27, 32)		
u = 11	P	(41; 60, 61, 65)	(5; 9, 10, 12)	(6; 7, 8, 13)	(14; 17, 18, 19)	(15; 21, 23, 24)
		(16; 25, 26, 28)	(20; 34, 35, 36)	(27; 37, 39, 40)	(29; 43, 45, 46)	(30; 38, 47, 48)
		(31; 52, 54, 56)	(3; 1, 50, 51)	(32; 53, 57, 59)	(42; 2, 4, 62)	(64; 49, 58, 63)
	Q	(1; 4, 27, 28)	(2; 15, 25, 38)	(7; 36, 39, 43)	(18; 42, 52, 53)	(19; 54, 56, 57)
u = 15	P	(66; 79, 83, 86)	(2; 1, 58, 70)	(69; 11, 67, 74)	(73; 8, 10, 12)	(14; 17, 18, 19)
		(16; 23, 24, 25)	(26; 36, 37, 38)	(27; 39, 40, 41)	(28; 42, 44, 46)	(29; 47, 48, 49)
		(31; 52, 53, 54)	(32; 51, 55, 56)	(33; 43, 50, 57)	(34; 59, 61, 62)	(35; 63, 71, 81)
		(3; 64, 77, 89)	(4; 6, 87, 88)	(13; 5, 7, 82)	(20; 9, 68, 84)	(21; 72, 78, 85)
		(22; 65, 76, 80)				
	Q	(1; 4, 10, 32)	(3; 36, 37, 38)	(5; 42, 43, 53)	(9; 48, 49, 50)	(14; 51, 52, 58)
		(16; 17, 56, 57)	(24; 55, 59, 71)			

For u = 19, apply Construction 2.1 with m = 3 to get a $K_{1,3}$ -frame of type 36^3 , where the input design a $K_{1,3}$ -frame of type 12^3 exists by Lemma 1.2. Further, applying Construction 2.7 with $\varepsilon = 1$ and a $K_{1,3}$ -frame of type 6^7 constructed above, we can obtain a $K_{1,3}$ -frame of type 6^{19} .

For u = 23, start with a TD(4, 3) in [16]. Delete a vertex from the last group to obtain a {3,4}-GDD of type $3^{3}2^{1}$. Give each vertex weight 12, and apply Construction 2.2 to get a $K_{1,3}$ -frame of type $36^{3}24^{1}$. Applying Construction 2.7 with $\varepsilon = 1$, we can obtain a $K_{1,3}$ -frame of type 6^{23} .

For u = 35, apply Construction 2.1 with m = 5 to obtain a $K_{1,3}$ -frame of type 30⁷. Then apply Construction 2.7 with $\varepsilon = 0$ to get a $K_{1,3}$ -frame of type 6³⁵.

For u = 47, start with a TD(5,5) in [16]. Delete two vertices from the last group to obtain a $\{4,5\}$ -GDD of type 5^43^1 . Give each vertex weight 12, and apply Construction 2.2 to get a $K_{1,3}$ -frame of type 60^436^1 . Applying Construction 2.7 with $\varepsilon = 1$, we can obtain a $K_{1,3}$ -frame of type 6^{47} .

For all other values of u, we can always write u as u = 2t+6n+1 where $0 \le t \le n$, $t \ne 2, n \ge 4$ and $n \ne 6$. From [16], there is an idempotent TD(4, n) with n blocks B_1, B_2, \ldots, B_n in a parallel class. Delete n - t vertices in the last group that lie in $B_{t+1}, B_{t+2}, \ldots, B_n$. Taking the truncated blocks B_1, B_2, \ldots, B_n as groups, we have formed a $\{t, n, 3, 4\}$ -GDD of type $4^{t}3^{n-t}$ when $t \ge 3$, or a $\{n, 3, 4\}$ -GDD of type $4^{t}3^{n-t}$ when $t \ge 0, 1$. Then give each vertex weight 12, and use Construction 2.2 to get a $K_{1,3}$ -frame of type $4^{t}3^{6n-t}$. Further, we use Construction 2.7 with $\varepsilon = 1$ to obtain a $K_{1,3}$ -frame of type 6^{u} . The proof is complete.

4 $\lambda = 3$

In this section we continue to consider the case $\lambda = 3$.

Lemma 4.1. For each $u \equiv 1 \pmod{4}$, $u \geq 5$, there is a $(K_{1,3}, 3)$ -frame of type 1^u .

Proof: For u = 5, 9, 13, 17, 29, 33, let the vertex set be Z_u , and let the groups be $M_i = \{i\}, i \in Z_u$. The two partial parallel classes are $P_1 + i$ and $P_2 + i$ with respect to the group M_i . The blocks in P_1 and P_2 are listed below.

u = 5	P_1	(1; 2, 3, 4)			
	P_2	(2; 1, 3, 4)			
u = 9	P_1	(1; 2, 3, 4)	(5; 6, 7, 8)		
	P_2	(1; 2, 4, 6)	(3; 5, 7, 8)		
u = 13	P_1	(1; 2, 3, 4)	(5; 6, 7, 8)	(9; 10, 11, 12)	
	P_2	(1; 5, 7, 9)	(2; 8, 10, 11)	(12; 3, 4, 6)	
u = 17	P_1	(1; 2, 3, 4)	(5; 6, 7, 8)	(9; 10, 12, 14)	(11; 13, 15, 16)
	P_2	(1; 5, 6, 7)	(2; 8, 9, 10)	(3; 11, 13, 16)	(4; 12, 14, 15)
u = 29	P_1	(1; 2, 3, 4)	(5; 6, 7, 8)	(9; 10, 11, 12)	(13; 17, 18, 19)
		(14; 20, 21, 22)	(15; 23, 24, 25)	(16; 26, 27, 28)	
	P_2	(1; 5, 6, 7)	(2; 9, 10, 11)	(3; 8, 13, 16)	(4; 19, 20, 21)
		(12; 23, 24, 26)	(18; 22, 25, 27)	(28; 14, 15, 17)	
u = 33	P_1	(1:2,3,4)	(5; 6, 7, 8)	(9:10,11,12)	(13; 17, 18, 19)
	1	(14; 20, 21, 22)	(15; 23, 24, 25)	(16; 27, 28, 29)	(26; 30, 31, 32)
	P_2	(1; 5, 6, 8)	(2; 9, 10, 11)	(3; 12, 13, 14)	(4; 17, 21, 22)
	-	(7; 23, 24, 26)	(15; 25, 29, 30)	(16; 27, 28, 31)	(32; 18, 19, 20)

For all other values of u, apply Construction 2.2 with a $(\{5, 9, 13, 17, 29, 33\}, u)$ -PBD from [4] to obtain the conclusion.

Lemma 4.2. For each $u \in \{7, 11, 15, 23, 27\}$, there is a $(K_{1,3}, 3)$ -frame of type 2^u .

Proof: Let the vertex set be Z_{2u} , and let the groups be $M_i = \{i, i+u\}, 0 \le i \le u-1$. The 4 partial parallel classes missing the group M_i are $P_j + i$, $1 \le j \le 4$. For each u, the blocks in P_j are listed below.

u = 7	P_1	(1; 2, 3, 4)	(5; 6, 8, 9)	(10; 11, 12, 13)		
	P_2	(1; 2, 3, 4)	(5; 9, 10, 11)	(8; 6, 12, 13)		
	P_3	(1; 3, 5, 6)	(2; 4, 10, 12)	(8; 9, 11, 13)		
	P_4	(2; 5, 10, 11)	(9; 1, 3, 4)	(12; 6, 8, 13)		
u = 11	P_1	(1; 2, 3, 4)	(5; 6, 7, 8)	(9; 10, 12, 13)	(14; 15, 16, 17)	(18; 19, 20, 21)
	P_2	(1; 3, 5, 6)	(2; 4, 7, 8)	(9; 13, 14, 15)	(10; 16, 17, 18)	(12; 19, 20, 21)
	P_3	(1; 6, 7, 8)	(2; 3, 5, 9)	(4; 12, 17, 19)	(14; 10, 18, 20)	(21; 13, 15, 16)
	P_4	(1; 8, 9, 13)	(3; 12, 16, 20)	(6; 10, 15, 18)	(7; 17, 19, 21)	(14; 2, 4, 5)
u = 15	P_1	(1; 2, 3, 4) (22; 23, 24, 25)	(5; 6, 7, 8) (26; 27, 28, 29)	(9; 10, 11, 12)	(13; 17, 18, 19)	(14; 16, 20, 21)
	P_2	(1; 5, 6, 7) (16; 21, 26, 27)	(2; 3, 8, 9) (20; 25, 28, 29)	(4; 10, 11, 12)	(13; 17, 18, 19)	(14; 22, 23, 24)
	P_3	(1; 8, 9, 10) (17; 24, 26, 28)	(2; 5, 6, 7) (29; 18, 19, 21)	(3; 11, 12, 13)	(4; 14, 22, 23)	(16; 20, 25, 27)
	P_4	(1; 8, 11, 12) (13; 25, 27, 29)	(2; 6, 14, 16) (20; 3, 4, 7)	(5;17,18,19)	(9; 21, 22, 26)	(10; 23, 24, 28)
u = 23	P_1	(18; 8, 21, 38)	(19; 24, 39, 44)	4) $(14; 2, 7, 20)$	(4; 29, 37, 45)	(15; 31, 34, 41)
	1	(36; 1, 17, 28) (43; 12, 25, 35)	(33; 11, 22, 32)	2) (13;9,10,40)	(30; 6, 26, 27)	(16; 3, 5, 42)
	P_2	(8; 29, 40, 43)	(22; 6, 20, 36)	(2; 26, 28, 45)	(25; 11, 39, 42)	(21; 10, 13, 31)
		(17; 15, 27, 32) (3; 1, 14, 34)	(12; 5, 16, 30)	(4; 33, 38, 44)	(35; 9, 18, 41)	(7;19,24,37)
	P_3	(24; 16, 37, 45)	(12; 11, 30, 34)	(18; 5, 8, 9)	(27; 3, 20, 39)	(6; 22, 38, 42)
		(41; 28, 32, 35) (31; 13, 26, 36)	(44; 7, 40, 43)	(21; 25, 29, 33	3) (2;14,15,17)	(19; 1, 4, 10)
	P_4	(31; 6, 14, 41)	(33; 3, 26, 42)	(28; 1, 27, 36)	(4; 7, 22, 43)	(21; 16, 24, 25)
		(17; 12, 19, 39) (44; 29, 35, 45)	(10; 8, 11, 40)	(32; 13, 34, 38)	(9; 2, 15, 30)	(37; 5, 18, 20)
u = 27	P_1	(35; 13, 18, 24)	(52; 40, 46, 49)	(28; 11, 17, 26)	(41; 15, 31, 47)	(42; 3, 6, 48)
		(10; 2, 8, 34)	(7; 19, 30, 32)	(4; 12, 16, 29)	(45; 14, 25, 38)	(36; 1, 50, 51)
		(44; 22, 23, 37)	(20; 5, 9, 43)	(39; 21, 33, 53)	3)	
	P_2	(35; 32, 36, 42)	(19; 10, 12, 52)	(9; 13, 34, 39)	(1; 20, 21, 48)	(25; 11, 14, 43)
		(45; 8, 44, 46)	(2; 38, 47, 50)	(40; 6, 24, 53)	(3; 23, 26, 31)	(15; 16, 17, 37)
		(49; 28, 30, 33)	(5; 7, 22, 29)	(18; 4, 41, 51)	1	
	P_3	(39; 17, 23, 52)	(28; 29, 44, 50)) (19; 6, 18, 30)	(43; 5, 34, 53)	(2; 31, 32, 46)
		(22; 13, 14, 33)	(1; 9, 42, 47)	(24; 20, 36, 38)	(37; 25, 41, 51)	1) (7; 3, 4, 12)
		(11; 16, 21, 40)	(10; 8, 15, 49)	(48; 26, 35, 45)	5)	
	P_4	(16; 13, 36, 39)	(50; 12, 37, 46)	5) (51; 15, 25, 32)	2) (20; 1, 10, 35)	(33; 9, 40, 41)
		(5; 3, 11, 42)	(48; 18, 52, 53)	(8; 34, 43, 47)	(31; 6, 19, 22)	(44; 7, 23, 49)
		(24; 4, 14, 45)	(2; 28, 30, 38)	(26; 17, 21, 29)	9)	

Lemma 4.3. There exists a $(K_{1,3}, 3)$ -frame of type 2^u for each $u \equiv 1 \pmod{6}$ and $u \geq 19$.

Proof: For each u, we start with a $K_{1,3}$ -frame of type $12^{\frac{u-1}{6}}$ by Lemma 1.2, and

apply Construction 2.7 with $\varepsilon = 1$ to get a $(K_{1,3}, 3)$ -frame of type 2^u , where the input design a $(K_{1,3}, 3)$ -frame of type 2^7 comes from Lemma 4.2.

Lemma 4.4. There exists a $(K_{1,3}, 3)$ -RGDD of type g^2 , g = 8, 20, 52.

Proof: Let the vertex set be Z_{2g} , and let the groups be $\{0, 2, \ldots, 2g - 2\}$ and $\{1, 3, \ldots, 2g - 1\}$. The required 2g parallel classes can be generated from P by $+1 \pmod{2g}$. The blocks in P are listed below.

g = 8	(0; 1, 3, 5)	(2; 7, 9, 13)	(11; 4, 8, 10)	(15; 6, 12, 14)	
g = 20	(0; 1, 3, 5)	(2; 7, 9, 11)	(4; 13, 15, 17)	(6; 19, 21, 23)	(8; 25, 27, 29)
	(31; 10, 18, 20)	(33; 22, 24, 26)	(35; 28, 30, 32)	(37; 12, 34, 36)	(39; 14, 16, 38)
g = 52	(89; 68, 84, 102)	(15; 14, 46, 96)	(37; 56, 60, 72)	(26; 59, 67, 77)	(4; 3, 61, 73)
	(43; 0, 6, 10)	(12; 19, 51, 57)	(50; 1, 7, 53)	(86; 11, 99, 101)	(74; 9, 25, 69)
	(16; 71, 93, 103)	(23; 30, 44, 82)	(95; 32, 52, 90)	(62; 5, 33, 81)	(34; 41, 47, 85)
	(87; 42, 88, 98)	(58; 29, 31, 35)	(39; 22, 36, 92)	(91; 8, 18, 76)	(2; 49, 65, 97)
	(24; 13, 21, 63)	(55; 20, 40, 80)	(75; 38, 66, 100)	(45; 28, 64, 78)	(79; 48, 54, 70)
	(94; 17, 27, 83)				

Lemma 4.5. There exists a $(K_{1,3}, 3)$ -frame of type l^3 for any l > 4 and $l \equiv 0 \pmod{4}$.

Proof: We distinguish two cases.

1. $l \equiv 0 \pmod{8}$. Applying Construction 2.5 with a $(K_{1,3}, 3)$ -RGDD of type 8^2 from Lemma 4.4, we can obtain a $(K_{1,3}, 3)$ -frame of type 8^3 . Then apply Construction 2.1 with m = l/8 to get a $(K_{1,3}, 3)$ -frame of type l^3 .

2. $l \equiv 4 \pmod{8}$. Let l = 8k + 4, $k \ge 1$. For l = 12, take a $K_{1,3}$ -frame of type 12³ from Theorem 1.2 and repeat each block 3 times to get a $(K_{1,3}, 3)$ -frame of type 12³. For l = 20, 52, the conclusion comes from Lemmas 2.6 and 4.4. For all other values of l, applying Construction 2.4 with u = 2, n = k, g = 8 and h = 4, we can obtain a $(K_{1,3}, 3)$ -RGDD of type $(8k + 4)^2$, where the input designs an RTD*(2, k) can be obtained from an idempotent TD(3, k) in [16], a $(K_{1,3}, 3)$ -IRGDD of type $(12, 4)^2$ exists by Lemma 2.3, a $(K_{1,3}, 3)$ -RGDD of type 8^2 comes from Lemma 4.4, and a $K_{1,3}$ -RGDD of type $(2k + 4)^3$.

Lemma 4.6. For any $t \ge 0$, a $(K_{1,3}, 6t + 3)$ -frame of type 4^3 can not exist.

Proof: By Lemma 2.6 we only need to prove there doesn't exist a $(K_{1,3}, 6t+3)$ -RGDD of type 4². Assume there exists a $(K_{1,3}, 6t+3)$ -RGDD of type 4². Without lose of generality, we suppose the vertex set is Z_8 , and the two groups are $\{0, 2, 4, 6\}$ and $\{1, 3, 5, 7\}$. There are 16t + 8 parallel classes. For each vertex v, suppose there are exactly x parallel classes in which the degree of v is 3. Then we have 3x + (16t + 8 - x) = 4(6t + 3). So x = 4t + 2.

Now we consider two vertices 0 and 1. The edge $\{0, 1\}$ appears exactly in 3 + 6t parallel classes. Suppose there are exactly *a* parallel classes in which the degree of 0

is 3, and b parallel classes in which the degree of 0 is 1. Then the vertex 1 has degree 3 in the later b parallel classes. So there are 4t + 2 - b parallel classes in which 0 and 1 are not adjacent and the degree of 1 is 3. Thus in these 4t + 2 - b parallel classes the degree of 0 is 3. So we have $4t + 2 - b + a \le 4t + 2$. That is $a \le b$. Similarly, we can prove $b \le a$. Now we have a = b. Note that a + b = 6t + 3. Thus we obtain a contradiction.

Lemma 4.7. There exists a $(K_{1,3}, 6t)$ -frame of type 4^3 , $t \ge 1$.

Proof: We first construct a $(K_{1,3}, 6)$ -RGDD of type 4². Let the vertex be Z_8 , and let the two groups be $\{0, 2, 4, 6\}$ and $\{1, 3, 5, 7\}$. The required 16 parallel classes are $P_{ij} = \{(0+i; 1+j, 3+j, 5+j), (7+j; 2+i, 4+i, 6+i)\}, i = 0, 2, 4, 6, j = 0, 2, 4, 6.$ By Lemma 2.6 there exists a $(K_{1,3}, 6)$ -frame of type 4³. Repeat each block t times to get the conclusion.

Lemma 4.8. For each $u \ge 4$, there exists a $(K_{1,3}, 3)$ -frame of type 4^u .

Proof: For u = 5, 9, apply Construction 2.1 with m = 4 to get a $(K_{1,3}, 3)$ -frame of type 4^u , where the input design a $(K_{1,3}, 3)$ -frame of type 1^u exists by Lemma 4.1.

For u = 7, 11, 15, 19, 23, apply Construction 2.1 with m = 2 to get a $(K_{1,3}, 3)$ -frame of type 4^u , where the input designs $(K_{1,3}, 3)$ -frames of type 2^u exist by Lemmas 4.2 and 4.3.

When u = 4, 6, 8, 10, 14, let the vertex set be 4u, and let the groups be $M_i = \{i, i+u, i+2u, i+3u\}, 0 \le i \le u-1$. With respect to the group $M_i, 0 \le i \le u-1$, the 8 partial parallel classes are $P_j + i + uk, j = 1, 2, 0 \le k \le 3$. The blocks in P_1 and P_2 are listed below.

u = 4	P_1	(1; 2, 3, 6)	(5; 7, 10, 11)	(14; 9, 13, 15)		
	P_2	(1; 7, 10, 14)	(2; 5, 9, 15)	(13; 3, 6, 11)		
u = 6	P_1	(1; 2, 3, 4)	(5; 7, 8, 9)	(10; 11, 13, 14)	(15; 19, 20, 22)	(16; 17, 21, 23)
	P_2	(1; 3, 8, 9)	(2; 7, 10, 11)	(4; 14, 15, 17)	(13; 21, 22, 23)	(5; 16, 19, 20)
u = 8	P_1	(1; 2, 3, 4)	(5; 6, 7, 9)	(10; 11, 12, 13)	(14; 17, 18, 19)	
		(15; 20, 21, 26)	(23; 28, 29, 30)	(31; 22, 25, 27)		
	P_2	(1; 10, 11, 12)	(2; 9, 13, 14)	(3; 15, 17, 18)	(4; 19, 22, 23)	
		(6; 25, 28, 31)	(7; 21, 26, 27)	(20; 5, 29, 30)		
u = 10	P_1	(1; 2, 3, 4)	(5; 6, 7, 8)	(9; 11, 12, 13)	(14; 15, 18, 19)	(16; 21, 22, 23)
		(17; 24, 25, 26)	(27; 31, 33, 36)	(29; 35, 37, 38)	(39; 28, 32, 34)	
	P_2	(1; 9, 12, 13)	(2; 14, 15, 16)	(3; 17, 18, 19)	(4; 21, 22, 23)	(5; 24, 26, 28)
		(6; 29, 31, 34)	(8; 32, 35, 37)	(11; 27, 33, 36)	(25; 7, 38, 39)	
u = 14	P_1	(4; 19, 38, 52,)	(5; 27, 32, 36)	(10; 33, 34, 55)	(11; 6, 9, 18)	(13; 7, 12, 17)
	1	(21; 15, 25, 26)	(23; 8, 16, 20)	(24; 37, 51, 54)	(39; 29, 45, 49)	(40; 22, 31, 35)
		(46; 1, 30, 48)	(47; 2, 3, 50)	(53; 41, 43, 44)		<pre> / / / / /</pre>
	P_2	(2; 1, 11, 36)	(3; 18, 19, 20,)	(4; 21, 22, 23)	(5; 24, 25, 26)	(6; 27, 29, 30)
		(7; 31, 32, 33)	(8; 34, 35, 45)	(9; 17, 52, 53)	(12; 47, 48, 55)	(13; 15, 46, 49)
		(41; 10, 40, 44)	(43; 39, 50, 51)	(54; 16, 37, 38)		

For u = 12, 18, apply Construction 2.1 with $m = \frac{u}{6}$ and a $(K_{1,3}, 3)$ -frame of type 8^3 from Lemma 4.5 to get a $(K_{1,3}, 3)$ -frame of type $(\frac{4u}{3})^3$. Applying Construction 2.7 with $\varepsilon = 0$ and a $(K_{1,3}, 3)$ -frame of type $4^{\frac{u}{3}}$, we can get a $(K_{1,3}, 3)$ -frame of type 4^{u} .

For all other values of u, take a $(\{4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 18, 19, 23\}, u)$ -PBD from [4], then apply Construction 2.2 to obtain the conclusion.

Lemma 4.9. For each $u \equiv 1 \pmod{2}$, $u \geq 5$, there is a $(K_{1,3}, 3)$ -frame of type 2^u .

Proof: For $u \equiv 1 \pmod{4}$, apply Construction 2.1 with m = 2 to get a $(K_{1,3}, 3)$ -frame of type 2^u , where the input design a $(K_{1,3}, 3)$ -frame of type 1^u exists by Lemma 4.1.

For $u \equiv 3 \pmod{4}$, when $u \in \{7, 11, 15, 19, 23, 27, 31, 55\}$, a $(K_{1,3}, 3)$ -frame of type 2^u exists by Lemmas 4.2 and 4.3.

For u = 35, 63, we start with a $(K_{1,3}, 3)$ -frame of type 1^5 or 1^9 from Lemma 4.1, and apply Construction 2.1 with m = 14 to get a $(K_{1,3}, 3)$ -frame of type 14^5 or 14^9 . Applying Construction 2.7 with $\varepsilon = 0$ and a $(K_{1,3}, 3)$ -frame of type 2^7 , we can get a $(K_{1,3}, 3)$ -frame of type 2^u .

For u = 39, start with a TD(5, 4) in [16]. Delete a vertex from the last group to obtain a $\{4, 5\}$ -GDD of type $3^{1}4^{4}$. Give each vertex weight 4, and apply Construction 2.2 to get a $(K_{1,3}, 3)$ -frame of type $12^{1}16^{4}$, where the input design $(K_{1,3}, 3)$ -frames of type 4^{4} and 4^{5} exist by Lemma 4.8. Applying Construction 2.7 with $\varepsilon = 1$ and $(K_{1,3}, 3)$ -frames of type 2^{7} and 2^{9} , we can obtain a $(K_{1,3}, 3)$ -frame of type 2^{39} .

For u = 47, start with a TD(5,5) in [16]. Delete 2 vertices from the last group to obtain a $\{4,5\}$ -GDD of type $3^{1}5^{4}$. Give each vertex weight 4, and apply Construction 2.2 to get a $(K_{1,3}, 3)$ -frame of type $12^{1}20^{4}$. Applying Construction 2.7 with $\varepsilon = 1$, we can obtain a $(K_{1,3}, 3)$ -frame of type 2^{47} .

For u = 95, we start with a $(K_{1,3}, 3)$ -frame of type 1⁵ from Lemma 4.1, and apply Construction 2.1 with m = 38 to get a $(K_{1,3}, 3)$ -frame of type 38⁵. Applying Construction 2.7 with $\varepsilon = 0$ and a $(K_{1,3}, 3)$ -frame of type 2¹⁹, we can get a $(K_{1,3}, 3)$ frame of type 2⁹⁵.

For all other values of u, we can always write u as u = 2t+8n+1 where $0 \le t \le n$, $t \ne 2, 3, n \ge 4$ and $n \ne 6, 10$. We start with an idempotent TD(5, n) in [16] with n blocks B_1, B_2, \dots, B_n in a parallel class. Delete n-t vertices in the last group that lie in $B_{t+1}, B_{t+2}, \dots, B_n$. Taking the truncated blocks B_1, B_2, \dots, B_n as groups, we have formed a $\{t, n, 4, 5\}$ -GDD of type $5^t 4^{n-t}$ when $t \ge 4$, or a $\{n, 4, 5\}$ -GDD of type $5^t 4^{n-t}$ when $t \ge 0, 1$. Give each vertex weight 4, and apply Construction 2.2 to get a $(K_{1,3}, 3)$ -frame of type $20^t 16^{n-t}$. Applying Construction 2.7 with $\varepsilon = 1$ and $(K_{1,3}, 3)$ -frames of types 2^9 and 2^{11} , we can obtain a $(K_{1,3}, 3)$ -frame of type 2^u . The proof is complete.

5 Proof of Theorem 1.3

Now we are in the position to prove our main result.

Proof of Theorem 1.3: We distinguish two cases.

1. $\lambda \equiv 1, 2 \pmod{3}$. In this case we have three subcases.

(1) $g \equiv 3 \pmod{12}$. By Theorem 1.1 we have $u \equiv 1 \pmod{4}$, $u \geq 5$. There exists a $K_{1,3}$ -frame of type 3^u by Lemma 3.1. Repeat each block λ times to get a $(K_{1,3}, \lambda)$ frame of type 3^u . Apply Construction 2.1 with m = g/3 to get a $(K_{1,3}, \lambda)$ -frame of type g^u .

(2) $g \equiv 6 \pmod{12}$. By Theorem 1.1 we have $u \equiv 1 \pmod{2}$, $u \geq 5$. Similarly we can obtain a $(K_{1,3}, \lambda)$ -frame of type 6^u from a $K_{1,3}$ -frame of type 6^u which exists by Lemma 3.2. Then we apply Construction 2.1 with m = g/6 to get a $(K_{1,3}, \lambda)$ -frame of type g^u .

(3) $g \equiv 0 \pmod{12}$. By Theorem 1.1 we have $u \geq 3$. Similarly we can use Construction 2.1 with m = g/12 and a $K_{1,3}$ -frame of type 12^u from Lemma 1.2 to obtain a $(K_{1,3}, \lambda)$ -frame of type g^u .

2. $\lambda \equiv 0 \pmod{3}$. In this case we also have three subcases.

(1) $g \equiv 1,3 \pmod{4}$. By Theorem 1.1 we have $u \equiv 1 \pmod{4}$, $u \geq 5$. Similarly we can use Construction 2.1 with m = g and a $(K_{1,3}, 3)$ -frame of type 1^u from Lemma 4.1 to obtain a $(K_{1,3}, \lambda)$ -frame of type g^u .

(2) $g \equiv 2 \pmod{4}$. By Theorem 1.1 we have $u \equiv 1 \pmod{2}$, $u \geq 5$. Similarly we can use Construction 2.1 with m = g/2 and a $(K_{1,3}, 3)$ -frame of type 2^u from Lemma 4.9 to obtain a $(K_{1,3}, \lambda)$ -frame of type g^u .

(3) $g \equiv 0 \pmod{4}$. Let $g = 4s, s \ge 1$. By Theorem 1.1 we have $u \ge 3$. When u = 3 and s = 1, by Lemma 4.6 a $(K_{1,3}, 6t + 3)$ -frame of type 4^3 can not exist for any $t \ge 0$, and by Lemma 4.7 there exists a $(K_{1,3}, 6t)$ -frame of type 4^3 for any $t \ge 1$. When u = 3 and s > 1, a $(K_{1,3}, \lambda)$ -frame of type g^u can be obtained from a $(K_{1,3}, 3)$ -frame of type g^u which exists by Lemma 4.5. When $u \ge 4$, there exists a $(K_{1,3}, 3)$ -frame of type 4^u by Lemma 4.8. Apply Construction 2.1 with m = s to get a $(K_{1,3}, \lambda)$ -frame of type g^u .

Acknowledgments

We would like to thank the anonymous referees for their careful reading and many constructive comments which greatly improved the quality of this paper.

References

- B. Alspach, P. J. Schellenberg, D. R. Stinson and D. Wagner, The Oberwolfach problem and factors of uniform odd length cycles, *J. Combin. Theory Ser. A* 52 (1989), 20–43.
- [2] M. Buratti, H. Cao, D. Dai and T. Traetta, A complete solution to the existence of (k, λ) -cycle frames of type g^u , J. Combin. Des. **25** (2017), 197–230.
- [3] F. Chen and H. Cao, Uniformly resolvable decompositions of K_v into K_2 and $K_{1,3}$ graphs, *Discrete Math.* **339** (2016), 2056–2062.

- [4] C. J. Colbourn and J. H. Dinitz, Handbook of Combinatorial Designs, 2nd Ed. Chapman & Hall/CRC, 2007.
- [5] H. Cao, M. Niu and C. Tang, On the existence of cycle frames and almost resolvable cycle systems, *Discrete Math.* **311** (2011), 2220–2232.
- [6] J. H. Dinitz, A. C. H. Ling and P. Danziger, Maximum uniformly resolvable designs with block sizes 2 and 4, *Discrete Math.* **309** (2009), 4716–4721.
- [7] P. Danziger, G. Quattrocchi and B. Stevens, The Hamilton-Waterloo problem for cycle sizes 3 and 4, J. Combin. Des. 12 (2004), 221–232.
- [8] G. Lo Faro, S. Milici and A. Tripodi, Uniformly resolvable decompositions of K_v into paths on two, three and four vertices, *Discrete Math.* **338** (2015), 2212–2219.
- [9] S. Furino, Y. Miao and J. Yin, Frames and resolvable designs: Uses, Constructions and Existence, CRC Press, Boca Raton, FL, 1996.
- [10] S. Furino, S. Kageyama, A. C. H. Ling, Y. Miao and J. Yin, Frames with block size four and index three, *Discrete Math.* **106** (2002), 117–124.
- [11] M. Gionfriddo and S. Milici, On the existence of uniformly resolvable decompositions of K_v and $K_v I$ into paths and kites, *Discrete Math.* **313** (2013), 2830–2834.
- [12] G. Ge, Uniform frames with block size four and index one or three, J. Combin. Des. 9 (2001), 28–39.
- [13] G. Ge and A. C. H. Ling, A symptotic results on the existience of 4-RGDDs and uniform 5-GDDs, J. Combin. Des. 13 (2005), 222–237.
- [14] G. Ge, C. W. H. Lam and A. C. H. Ling, Some new uniform frames with block size four and index one or three, J. Combin. Des. 12 (2004), 112–122.
- [15] P. Hell and A. Rosa, Graph decompositions, handcuffed prisoners and balanced P-designs, Discrete Math. 2 (1972), 229–252.
- [16] R. Julian R. Abel, C. J. Colbourn and J. H. Dintz, in: *Handbook of Combina-torial Designs, 2nd Ed.* (C. J. Colbourn and J. H. Dinitz, Eds.), Chapman & Hall/CRC, 2007.
- [17] S. Küçükçifçi, G. Lo Faro, S. Milici and A. Tripodi, Resolable 3-star designs, Discrete Math. 338 (2015), 608–614.
- [18] S. Küçükçifçi, S. Milici and Z. Tuza, Maximum uniformly resolvable decompositions of K_v and $K_v I$ into 3-stars and 3-cycles, *Discrete Math.* **338** (2015), 1667–1673.

- [19] S. Milici, A note on uniformly resolvable decompositions of K_p and $K_v I$ into 2-stars and 4-cycles, Australas. J. Combin. 56 (2013), 195–200.
- [20] S. Milici and Z. Tuza, Uniformly resolvable decompositions of K_v into P_3 and K_3 graphs, *Discrete Math.* **331** (2014), 137–141.
- [21] R. Rees, Uniformly resolvable pairwise balanced designs with block sizes two and tree, J. Combin. Theory Ser. A 5 (1987), 207–225.
- [22] R. Rees and D. R. Stinson, Frames with block size four, Canad. J. Math. 44 (1992), 1030–1049.
- [23] E. Schuster, Uniformly resolvable designs with index one and block sizes three and four—with three or five parallel classes of block size four, *Discrete Math.* **309** (2009), 2452–2465.
- [24] E. Schuster, Uniformly resolvable designs with index one and block sizes three and five and up to five with blocks of size five, *Discrete Math.* **309** (2009), 4435–4442.
- [25] E. Schuster, Small uniformly sesolvable designs for block sizes 3 and 4, J. Combin. Des. 21 (2013), 481–523.
- [26] E. Schuster and G. Ge, On uniformly resolvable designs with block sizes 3 and 4, Des. Codes Cryptogr. 57 (2010), 47–69.
- [27] D. R. Stinson, Frames for Kirkman triple systems, Discrete Math. 65 (1987), 289–300.
- [28] H. Wei and G. Ge, Some more 5-GDDs, 4-frames and 4-RGDDs, *Discrete Math.* 336 (2014), 7–21.
- [29] X. Zhang and G. Ge, On the existence of partitionable skew Room frames, Discrete Math. 307 (2007), 2786–2807.

(Received 5 Jan 2017; revised 6 Apr 2017)