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Abstract

In a social network individuals have prominent centrality if they are in-
termediaries between the communication of others. The betweenness cen-
trality of a vertex measures the number of intersecting geodesics between
two other vertices. Formally, the betweenness centrality of a vertex v is
the ratio of the number of shortest paths between two other vertices u and
w which contain v to the total number of shortest paths between u and w.
In this paper, we consider the problem of characterizing all graphs with
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distinct betweenness centralities. This results in a specialized class of
graphs with unusual symmetries including a trivial automorphism group.

We begin by solving the problem for all graphs with less than or equal
to seven vertices. Then we consider the general problem by investigating
the density and minimality of graphs with distinct betweeness centralities
Finally, we investigate the problem of creating infinite families of graphs
with this property.

1 Introduction

In a social network individuals have varying levels of centrality according to the
flow of information. Individuals placed at the intersection of shortest lines of com-
munication between others have a high degree of “betweenness” centrality. The
study of centrality in networks in general has received much attention in recent
years with the rising presence of social media sites such as Facebook, Twitter, In-
stagram, and LinkedIn. The concept of centrality based on intersecting geodesics
was introduced independently by Anthonisse [1] and Freeman [7]. Numerous means
for quantifying centrality have emerged including degree centrality, closeness cen-
trality, eigenvector centrality, leverage centrality, betweenness centrality, and others
[2,3,7,8,9, 15, 18, 21]. In this paper we focus on (vertex) betweenness centrality.

In social networks, certain people have central roles in communication which give
an elevated level of authority. Suppose the flow of information in an organization
follows shortest paths of communication and that some action (i.e. mediation or ap-
proval) is required by each person on these paths. The number of actions a person
must perform is linked to both the topology of the network as well as their location
within it. The number of actions a person has to perform can be described by a
property well known in social network literature called betweenness centrality. We
give a formal definition of betweenness centrality in the next subsection.

1.1 Betweenness centrality

The betweenness centrality of a vertex v is the ratio of the number of shortest paths
between two other vertices v and w which contain v to the total number of shortest
paths between u and w. This idea was introduced by Anthonisse [1] and Freeman
[7] in the context of social networks. This concept has since appeared frequently
in both social network and neuroscience literature [3, 4, 8, 9, 14, 19, 21, 23]. The
betweenness centrality of graphs has been computed for various families of graphs
including complete bipartite graphs, wheel graphs, cocktail party graphs, ladder
graphs, and cycles [16].
We first give some background with some elementary results.

Definition 1.1 The betweenness centrality of a vertex v in a graph G denoted beg(v),
measures the frequency at which v appears on a shortest path between two other
distinct vertices x and y. Let o4y be the number of shortest paths between distinct
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vertices x and y, and let 0., (v) be the number of shortest paths between x and y that
contain v. Then beg(v) = ZU”#(:) (for all distinct vertices v, x, and y).

x?y

In our first lemma, we restate an elementary result on the lower and upper bounds

of the betweenness centrality of a vertex. This was found by Gago et al. and Grassi
et al. [11] and [13].

Lemma 1.1 For a given graph G with n vertices, 0 < be(v) < (n—1)(n —2) for all
vertices v in G. Furthermore, these bounds are tight.

It is clear that if a vertex has a betweenness centrality of zero, it means that the
vertex is likely to be less vital to the network than a vertex with a higher betweenness
centrality. Gago et al. and Grassi et al. [11] and [13] provided a classification for
vertices to have a betweenness centrality of zero. We restate this as our next lemma.
We recall that the closed neighborhood of a verter is the subgraph induced by a
vertex and its neighbors.

Lemma 1.2 Given a vertex v, be(v) = 0 if and only if the closed neighborhood of v
forms a complete subgraph.

Gago, Hurajovd, and Madaras [10] investigated graphs where the betweenness
centrality of all of the vertices were the same. In this paper we investigate the other
extreme.

We consider the problem of constructing graphs where the betweenness central-
ities of all vertices are distinct. The motivation for this problem is to consider an
organizational network where each person has a distinct level of authority and hence
the levels of authority form a total order. In addition, the resulting graphs form an
interesting and unusual family - one with no symmetries (in terms of either place-
ment or intersecting geodesics). This results in a specialized class of graphs with
unusual symmetries including a trivial automorphism group. Determining a com-
plete characterization of this class of graphs turns out to be a difficult problem.

In Section 2, we consider the problem of characterizing graphs with distinct be-
tweenness centralities including general properties such as extrema, density, and
minimality. In Section 3, we investigate extensions of graphs with distinct between-
ness centralities to infinite families of graphs of the same type. Finally in Section 4,
we state a series of related open problems.

2 Distinct betweenness centralities

We consider the problem of characterizing graphs with distinct betweenness central-
ities. We introduce a family of graphs that will appear throughout the paper. The
pendant ladder graph PL, is the Cartesian Product P, x P, with a pendant edge
attached to a corner vertex (PL,, has 2n + 1 vertices). The graph PLs is shown in
Figure 1. This graph has distinct betweenness centralities.
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Figure 1. The graph PLj distinct betweenness centralities

A graph G with distinct betweenness centralities must have the property that
G has a trivial automorphism group. If G has a non-trivial automorphism where
two vertices are switched. Then these two vertices will have the same betweenness
centrality.

However, it is possible for a graph to have a trivial automorphism group and not
have distinct betweenness centralities. An example is shown in Figure 2.

— N

Figure 2. A graph with six vertices with a trivial automorphism group

This graph has three vertices whose closed neighborhood is a complete subgraph,
which by Lemma 1.2 will have a betweenness centrality of zero.

Proposition 2.1 Let G be a graph with distinct betweenness centralities. Then the
following properties hold:

(i) G has a trivial automorphism group.

(ii) There is at most one vertex whose closed neighborhood is a complete subgraph.

However the combination of these two necessary conditions is not sufficient. We
give an example in Figure 3, where vertices vs and v, have a betweenness centrality
of 2

3

Figure 3. A graph that meets conditions (i) and (ii) but does not have distinct
betweenness centralities
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2.1 Extremal properties

In the next two theorems we show that a smallest connected graph with distinct
betweenness centralities has seven vertices.

Theorem 2.1 Let n be the number of vertices in a graph. If 2 < n < 6, then there
are no connected graphs with distinct betweenness centralities.

Proof. We consider different cases.

e n = 2: The only connected graph with two vertices is K5 which has two vertices
with degree one.

e n = 3: There are two non-isomorphic connected graphs with exactly 3 vertices:
P; and K3. The graph P; has two vertices of degree one and in K3 will have
three vertices with betweenness centrality zero, by Lemma 1.2.

e n = 4: There are six non-isomorphic connected graphs with four vertices: Kjy;
K4 — e (e is an arbitrary edge); Ky — Ps; K;3; Cy; and Py. All of these graphs
have rotational or reflectional symmetry and therefore have a non-trivial auto-
morphism group.

e n = 5: All of the 21 non-isomorphic connected graphs with five vertices have
a non-trivial automorphism group. A list can be found at [24].

e n = 6: We apply Proposition 2.1 to the 112 non-isomorphic connected graphs
with six vertices which were given by Cvetkovi¢ and Petrié¢ [5]. Proposition 2.1
(i) rules out all of the graphs except for graphs 12, 19, 24, 25, 33, 46, 59, 60,
67, 77, 85, 87, 95, and 98 since all of the other graphs clearly have non-trivial
automorphism groups. Proposition 2.1 (ii) rules out 11 graphs: 12, 19, 24, 33,
59, 60, 77, 85, 87, 95, and 98. This leaves three graphs: 25, 46, and 67. Graph
67 was shown in Figure 3 and it was noted that there are two vertices with the
same betweenness centrality. The final two cases are discussed below.

¢! Vi &)
A% V3
6 | T e
/N
Vs Vs Ve
Figure 4. Graph 25 Figure 5. Graph 46
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In graph 25 (see Fig. 4) vertices vq, v3, and v4 have a betweenness centrality of

5
In graph 46 (see Fig.5) vertices v; and vy have a betweenness centrality of %

Hence there are no graphs with six vertices or less that have distinct between-
ness centralities.

This completes the proof. m

We obtained all 853 non-isomorphic connected graphs with seven vertices from
McKay [17]. We note that we need only consider connected graphs since all graphs
on five vertices or less have at least two vertices with the same betweenness central-
ity and the two graphs on six vertices with distinct betweenness centralities have a
vertex with a betweenness centrality of zero. Each of the 853 non-isomorphic con-
nected graphs with seven vertices were checked for distinct betweenness centrality
using the package MatlabBGL by Gleich [12]. The result was that there are exactly
21 graph with distinct betweenness centralities. An independent verification using
Mathematica gave an identical result.

Theorem 2.2 There are exactly 21 graphs on seven vertices with distinct between-
ness centralities. These are as follows:
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Figure 6. The 21 graphs of order seven with distinct betweenness centralities
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2.2 Density

Since every graph with distinct betweenness centralities is an asymmetric graph we
can use known results about the density of asymmetric graphs to give properties
regarding the density of graphs with distinct betweenness centralities. We recall a
theorem of Quintas [20].

Theorem 2.3 If K is an asymmetric graph having p vertices and q edges, then
(i)p=1orp>6 and
(i) m, < q < M, where
(

0 if p=1
6 if p=6,7
my, = N
p—zan—w if p>38
\ n=1
and )
0 if p=1
9 if p=6
M, = 15 if p=7
p—(p;3)+2an+w if p>8
n=1

\
where a,, equals the number of asymmetric trees having less than or equal to n
vertices and w is the number of asymmetric trees having n + 1 vertices.

We can refine the above theorem to give properties about the density of graphs
with distinct betweenness centralities.

We first note that although the complement of an asymmetric graph is asymmet-
ric, the complement of a graph with distinct betweenness centralities may not have
distinct betweenness centralities. We consider the graph shown in Figure 7 and its
complement.

a b d f
[

- : ¥
C e g

Figure 7. A graph with distinct betweenness centralities whose complement does
not have distinct betweenness centralities

_ Let G be the graph shown in Figure 7. The betweenness centralities for G and
G are shown in Table 1 below.
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beg(v) | begl0)
0 5.6667
11.6667 | 1.6667
3.3333 1.6667
11.0000 | O

8.0000 | 0.6667
2.3333 | 2.6667
1.6667 | 3.6667

Table 1.

Ql—|olalolo|al

Theorem 2.4 Let G be a graph with n vertices and distinct betweenness centralities.
Thenn=1orn>7 and

(i) When n =1 we have |[E(G)| = 0.

(11) When n =7 we have 8 < |E(G)| < 14.

(1ii) When n = 8 we have 7 < |E(G)| < 21.

(iv) When n =9 we have 8 < |E(G)| < 29.

(v) When n > 10 we have n — 1 < |E(G)| < @— (n—2—([%*] -1)).

Proof. Case (i) is trivial and Case (ii) follows by inspection of the 21 graphs with
seven vertices that have distinct betweenness centralities in Theorem 2.2. For cases
(ii)-(v) we note that the lower bound follows from the fact that there can be at most
one isolated vertex and no component of G can be a tree with more than one vertex.
As aresult |E(G)| >n — 1.

(ili) n = 8: Assume |E(G)| > 22. Since G has distinct betweenness centralities,
G is asymmetric. This implies that G is asymmetric and |E(G)| < 6 and since n = 8
this is impossible by [20]. Calculation of the betweenness centralities for the graph
shown in Figure 8 shows this upper bound is tight.

1

7 6

Figure 8. A graph whose complement has distinct betweenness centralities

(iv) n = 9: Assume |E(G)| > 30. Since G has distinct betweenness centralities,
G is asymmetric. This implies that G is asymmetric and |E(G)| < 6 and since n = 9
this is impossible by [20]. As noted by a referee, the calculation of betweenness
centralities for the complement of the graph shown in Figure 9, shows this upper
bound is tight.
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Figure 9. A graph whose complement has distinct betweenness centralities

(iv) n > 10: The proof will be to show that if G has a large number of edges
then the complement will contain a component of size between 2 and 6. Then the
complement will not be asymmetric [20], and therefore the original graph will not
be asymmetric. Consider the complement. It can have at most one isolated vertex.
We could form a bound on the number of edges by having the remaining n — 1
vertices be part of a tree, which would result in n — 2 edges. However depending
on the tree it may be possible to remove some edges so that the tree breaks up so
that each component has order at least 6 (the minimum order for a graph to be

n—1

asymmetric) [20]. However if G has less than n — 2 — (LTJ — 1) edges it must

have a component of size between 2 and 6 which would make the graph asymmetric.
Hence |E(G)| >n—2—(|252] - 1) = |[B(G)| < 20 — (n—2— (|252] - 1)). =

6 2 6

2.3 Minimality

An undirected graph G with at least two vertices is a minimal asymmetric graph
if G is asymmetric and no proper induced subgraph of G on at least two vertices
is asymmetric. A recent paper by Schweitzer and Schweitzer [22] identifies all 18
minimal asymmetric graphs. It turns out that only two of these graphs have distinct
betweenness centralities. The first is the pendant ladder graph shown in Figure 2
(which is also graph number 11 in Theorem 2.2). The second graph is shown in
Figure 10.

Figure 10. A graph with distinct betweenness centralities

In Theorem 2.2 we presented a complete list of the 21 graphs with seven vertices
that have distinct betweenness centralities. It turns out that graph 11 is a subgraph
in 19 of the 21 graphs. The other two graphs that appear as subgraphs of others are



R. LOPEZ ET AL./ AUSTRALAS. J. COMBIN. 68 (2) (2017), 285-303 294

graphs 4 and 20. We summarize the relationships in the partially ordered set shown
in Figure 11, where the relation is by subgraph containment.

3,12,13,14,17,19 5,6,7,8,9,10,16,18,21

4]

Figure 11. A partially ordered set showing structure of the 21 graphs

3 Infinite families of graphs

We consider the problem of creating an infinite family of graphs with distinct be-
tweenness centralities. One approach would be to start with a graph that has distinct
betweenness centralities and show that this graph implies the existence of another
graph with distinct betweenness centralities. Another would be to fix each graph in
an infinite family and obtain a closed formula of the betweenness centrality for each
vertex, and show they are all distinct. In this section we present infinite families
created using both of these methods.

We begin with the first approach which involves an extension from a graph with
distinct betweenness centralities to other graphs with the same property. If we start
with a graph Gy with a vertex v of degree 1, and we successively append vertices
V1,02, ..., Uy of a path to v, the betweenness centrality of the vertices in G changes
by a constant amount with each new vertex added.

Lemma 3.1 (Constant) Let Gy be a graph with a vertex v of degree 1 where all of
the betweenness centralities are distinct. Let Gy be the graph where a path Py with
vertices v1 Vg, ..., Uy 15 appended to the vertex v. Then for every vertex uw € Gy — v,
bea,,, (u) = beg, (u) + Z ‘7“#?) for every k > 1.

aFv,u

Proof. Consider any u € G, —v. Since the location of v in G4 is the same as the
location of v in Gy, we have beg, ,,(u) — beg, , (u) = beg, ,, (v) —beg, (u) and hence

beci (1) = beg, (u) + ) . m

Ova
aFv,u

Our next lemma involves an elementary property from geometry which will be
useful later in Theorem 3.1.

Lemma 3.2 Let Ly, Lo, ..., L, be a finite set of lines in the x,y plane. Then there
exists an x value after which no two lines intersect.

Proof. The lines Ly, Lo, ..., L, can only intersect at a finite number of points. Let
(x,y) be the intersection point with the maximum x value. m

We show in our next example how a graph with distinct betweenness centralities
can be extended to an infinite family of graphs with the same property.
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Example 3.1 Let Gy = PLy. The vertices in G have distinct betweenness cen-
tralities, and eight of the mine are non-integers: bcg,(vg) = 0, beg,(v1) = 16%,
b, (v2) = 192, begy(vs) = 153, begy(va) = 22, begy(vs) = 43, beg,(vs) = 145,
beg, (v7) = 133, and beg,(vs) = 23. By Lemma 3.1 the change in betweenness cen-
tralities of these eight vertices stays constant as vertices are added. Let Gy be the
graph Gy with the path P, appended to the vertex with degree 1 in Go. For this graph,
beg, (v1) = 163 +(14), beg, (v2) = 192 +6¢(F) = 4Tt + 22, beg, (vs) = 155 +64(5) =
22t + 3L, beg,(va) = 22 +6t(3) = 3t + 5, beg,(vs) = 43 + 6t(%2) = 13t + £,
beg, (v) = 145 +6t(3) = 14t + 2, beg, (vr) = 1354+ 66(3) = 9t + L, 22 +6t(0) = 22,
and begy(vs) = 23, Since lem(6,3,2) = 6 the total changes over six iterations will be
integers. The betweenness centralities for all other vertices will be integers, none of
which are the same, so all of the vertices in the graph will have distinct betweenness
centralities. Letting t vary over the positive multiples of 6 creates an infinite class of
graphs beg,, which have distinct betweenness centralities.

We next present general methods for extending a graph with distinct betweenness
centralities to an infinite family of graphs with the same property.

Lemma 3.3 (Extension) Let Gy be a graph with a vertex v of degree 1 where all
of the betweenness centralities are distinct. Let Gy be the graph where a path Py with
vertices U1 Vg, ...,V is appended to the vertex v. Then there exists some sufficiently
large k beyond which the betweenness centralities of the vertices in Gy are all distinct

Proof. Consider any vertex u € Gy—v. By Lemma 3.1 we have that the betweenness
centrality values for each u change by a constant amount at each iteration. For each
vertex u we have that beg, ,, (u) = beg, (u) + Z U”;“—(u) Let y, be a line with slope
aFv,u

Z "”#(a”) and y-intercept bcg,(u). By Lemma 3.2, there exists some value k after
aFv,u

which no two lines intersect. Hence there exists some sufficiently large k& beyond
which the betweenness centralities of the vertices in G are all distinct in G;. =

Theorem 3.1 Let G be a graph with n vertices with a vertex v of degree 1 and
n — 1 wvertices with distinct betweenness centrality values that are not integers. Let
G, be the graph with V(G,) = V(G) U {v;| 1 < i < n} and E(G,) = E(G) U
{(v,v1), (v1,v2) 4 ..o, (Vn—1,v)}. There will be an infinite number of graphs of the
form G,, (for sufficiently large n) with distinct betweenness centralities.

Proof. By Lemma 3.3, each of the n—1 vertices with distinct betweenness centrality
values will increase by a fixed amount. Let these amounts be Z—i, Z—z, e Z:i . Let N =
lem(by, by, .., by—1). After every N iterations the cumulative additions to the original
betweenness centrality values will be integers. Hence the betweenness centrality
values will all be non-integers. We note that bcg, (v;) = 2(7 — 1)(n — i) which are all
positive integers and all different. Since the appended vertices all have betweenness
centrality values that are integers and the vertices in G all have betweenness centrality
values that are non-integers, all of the vertices in GG,, must have distinct betweenness

centralities. m
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3.1 Prayer Flag Graphs

We next use the second approach for obtaining an infinite family of graphs with
distinct betweenness centralities. We give a precise calculation of the betweenness
centrality of each vertex in each graph of an infinite family. Recall that a ladder
graph is the graph P, x P, with vertices vy, vs, ..., v9;_1 on the “top” row and vertices
Vg, Uy, ..., Uy o1 the “bottom” row. Then a pendant ladder graph PL,, is obtained by
adding a single vertex vy and an edge from vy to v1. A prayer flag graph PF,, is PL,
with the following set of edges removed: {vag, vagi2} for all 1 < k < 52, An example
is shown in Figure 12. In our next proof we will refer to the six vertices vy s, ..., Vg

as ‘the block’.
R‘ 4,( 3 4;\ 1
Var—2 k

Voiis Vo Vo,

’!‘{ 4 V.,! 2 Vﬂ;

Figure 12. A prayer flag graph

Theorem 3.2 Let G = PF;. Then:

be(vg) =0

be(vy—1) =1+ 32 (21 —4) =31 — 2 = (41 —5)

be(va—3) =2(3+20—4+3) + 320 —4)+ (21 —4) = 21 - 15

be(vy—s) = 200 — 50 + 3 = 200 —

be(vap—1) = 2(4k) (20 — 4k) + 4k — 2 when 4 < 4k < 21 — 6

be(vap—z) = 2 ((4k — 3)(20 — (4k —2) + 1) + (20 — (4k — 1) + 1)) when 1 < 4k—
3<20-9

be(vy) =20 — (4k — 1) =2l — 4k + 1 when 4 < 4k < 2[ —6

(
be(vag—o) = 4k —2 when 2 < 4k <20 —6
be(vy—q) = 2(20 — 4)
be(vg—o) = %l
be(vy) = 2
Proof.

o be(vg) =0
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o be(vy1) =1+2(20—4)=31—2=3(4—5)

U971 falls on % shortest paths between v; where 0 < ¢ < 2] — 5 and vy. It falls
on % of the shortest paths between vq;_3 and vy.

Then we double to account for both directions.

be(vy-3) =2(3+20—4+3) +3(20—4)+ (21 —4) = 21 - 15

2

vg;_3 falls on % shortest paths between v; where 0 <1¢ < 2l — 5 and wvq;.

1=l

vg;_3 falls on = shortest paths between v; where 0 < ¢ < 2l — 5 and vy _o.

2
vgy_3 falls on all of the shortest paths between v; where 0 < ¢ < 2] — 5 and

Vor—1-

2

vg;_3 falls on % of the shortest paths between vy_4 and vg;_1.

w]

1
2

Then doubling gives the desired result.

vg;_3 falls on = of the shortest paths between vy_5 and vg;_1.

be(vy—s) = 200 — 50 + 2 = 201 — 12

v9—5 falls on all of the shortest paths between v; where 0 < ¢ < 2/ — 6 and v;
where 21 — 4 < 5 < 2L.

Vg5 falls on £ of the shortest paths between vy and vg_;.

3
1

vg—5 falls on 5 of the shortest paths between vy 4 and vo_3.

Then doubling gives the desired result.

be(vag—1) = 2(4k) (21 — 4k) + 4k — 2 when 4k <20 — 6

var_1 falls on all of the shortest paths between v; where 0 <1 < 4k, i # 4k — 1
and v; where 4k +1 <1 < 21.

Va1 falls on % of the shortest paths between v; where 0 < ¢ < 4k — 3 and vyy.
Then doubling gives the desired result.

be(vap—s) = 2 ((4k — 3)(20 — (4k — 2) + 1) + (20 — (4k — 1) + 1)) = 44k — 10l
+ 16kl — 32k? — 16 when 1 < 4k — 3 < 20 — 9.

var—3 falls on all of the shortest paths between v; where 0 < ¢ < 4k — 4, and v;
where 4k — 2 <1 < 2L.

vy—3 falls on % of the shortest paths between vy,_o and v; where 4k —1 <7 < 2
and vggyo.

Then doubling gives the desired result.
be(vy) =21 — (4k — 1) =21 — 4k + 1 when 4k <21 — 6

vy, falls on % of the shortest paths between v; where 4k — 1 < ¢ < 2[, 1 # 4k
and vggyo.

Then doubling gives the desired result.
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o bc(vg—o) = 4k — 2 when 4k < 20 — 6

Vg2 falls on % of the shortest paths between vy, and v; where 0 <1 < 4k — 3.

Then doubling gives the desired result.

o be(vy_y) = %(2[ —4)

Vg4 falls on % of the shortest paths between vg;_o and v; where 0 <17 < 21 —5.

Ug;—4 falls on % of the shortest paths between vy and v; where 0 <7 < 2] — 5.

Then doubling gives the desired result.

® bC(’Ugl,Q) = %l

V9o falls on % of the shortest paths between v; where 0 < i < 2l — 5 and vy.

vg;_o falls on the shortest path between vy_4 and vsy.

1
2

1
2

2

vg;_o falls on = of the shortest paths between vy_3 and wvy.

vg;_o falls on = of the shortest paths between vy_4 and vg_s.

vgy_o falls on = of the shortest paths between vy_4 and vg;_1.

wl

Summing these gives 2 (20 —4) + 1+ 1 + 5 + 2 = 3.
Then doubling gives the desired result.

o be(vy) =3
v falls on % of the shortest paths between vg;_5 and wvy;_;.
v falls on é of the shortest paths between vg;_4 and wvy;_;.

Then doubling gives the desired result.

This completes the proof. m

Lemma 3.4 Let t € Z*. When | = (6t + 1), block vertices have betweenness cen-
trality values that are non-integers.

Proof. Let [ = (6t + 1). Then

(
be(vy—1) = 2(4 —5) = L(4 (6t + 1) — 5) =8t—1
be(vars) = B (6 + 1) — 15 = 52t — 12
be(vy—s) = 100 — 12 =10 (6t + 1) — 122 = 60t — %
be(va_a) = 2(2 (6t Y1) —4) = 10t — >
be(vy o) = % M = 16t + 3 8
be(vy) =2 m

Lemma 3.5 Let t € Zt. When | = (6t + 1), non-block vertices have betweenness
centrality values that are integers.
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Proof. Let [ = (6t +1).
bC(U4k_2) =4k — 2
be(vag—1) = (4k) (2] — 4k) = —4k (4k — 21) when 4k — 1 <2l -7
bC(U4k) =2 — (4]{ — 1) = 2] — 4k +1
be(vaprr) = 2(4k + 1)(20 + 1 — (4k + 2)) + (21 — (4k + 3))
= 6] — 20k + 16kl — 32k* —5 when 4k —1 <2/ —9 =

Lemma 3.6 The block vertices all have distinct betweenness centralities.

Proof. When t € Z*., We have
be(vy) = 2 < be(vy-1) = 8t — 3 < be(vy—q) = 10t — 2 < be(vy—2) = 16t + § <
be(vay—3) = 52t — & < be(vy—5) = 1206 — 2. m

Lemma 3.7 {bc(var—2), be(vag—1)} N {bc(var), be(vars1)} = 0.

Proof. {bc(vy_2),bc(vg,_1)} are all even since be(vyg_o) = 4k — 2 and be(vyg_1) =
(4k) (20 — 4k) = —4k (4k — 21) when 4k — 1 < 2] — 7.

{bc(var), be(vgr1)} are all odd since be(vyg) = 21 — (4k — 1) = 21 — 4k + 1 and
be(vps1) = 61 — 20k + 16k — 32k — 5 when 4k — 1< 20— 9. m

Lemma 3.8 All of the vertices of the form wvy._o that are not in the block have
distinct betweenness centralities.

Proof. We know that be(vy,—o) = 4k — 2, which is monotonically increasing, so all
betweenness centralities must be distinct. m

Lemma 3.9 All of the vertices of the form vy, that are not in the block have distinct
betweenness centralities.

Proof. We know that bc(vy,) = 21 — 4k 4 1, which is monotonically decreasing, so
all betweenness centralities must be distinct. m

Lemma 3.10 All of the vertices of the form wvy,_1 that are not in the block have
distinct betweenness centralities.

Proof. We know that bc(vy,—1) = —4k (4k — 21) when 4k — 1 < 2] — 7, which is
monotonically decreasing, so all betweenness centralities must be distinct. =

Lemma 3.11 All vertices of the form vy_3 that are not in the block have distinct
betweenness centralities.

Proof. We have established that be(vy,_3) = 44k — 100 + 16kl — 32k* — 16. Assume
that there exist integers k and h such that be(vy,—3) = bc(vap—3). Then 44k — 100 +
16kl — 32k* — 16 = 44h — 10l + 16hl — 32h? —16. Then 44k — 101 + 16kl — 32k? — 16 —
(44h — 100 + 16kl — 32h? — 16) = 0. By simplifying, 44k — 100 + 16kl — 32k — 16 —
(44h — 100 + 16kl — 32h% — 16) = 4 (h — k) (8h + 8k — 41 — 11). Then we look for
solutions to the equation 4 (h — k) (8h + 8k — 4l — 11) = 0. This occurs when h—k =



R. LOPEZ ET AL./AUSTRALAS. J. COMBIN. 68 (2) (2017), 285-303 300

0 or 8h + 8k — 4l — 11 = 0. We note that if £ = h then v, = v;,. Next we consider
8h + 8k — 4l — 11 = 0. This would imply that [ = 2h + 2k — 1741, which contradicts
the fact that [ is an integer. Hence the only time we can have bc(vag—3) = be(vgn—3)
is when k = h, or equivalently if k£ # h then bc(vyg_3) # be(van—3) which is what we
wanted to prove. m

Lemma 3.12 All of the vertices in the block have distinct non-integer betweenness
centralities when | = 1 mod 6.

Proof. Recall the betweenness centralities for vertices in the block are:

bC(’UQlfl) = %(4[ — 5), bC(Uzlfg) = %(19[-31), bC(Uzl,Lr)) = 10l — %, bC(’UQl,4) =
2(21 — 4); be(vy—2) = %; and be(vy) = 3. If | = (6k + 1) we have be(vy—1) = 8k — é;
be(vg—3) = 52k — 13—9; bc(vg—5) = 60k — %; be(vg—y) = 10k — g; be(vg—o) = 16k + <;

3
and be(vy) = 2. The result then follows. m

We show in our next three lemmas that no vertex of the form vy, has the same
betweenness centrality as a vertex of the form vy;_1.

We first show that the betweenness centrality values of the bottom left corner
vertices are bounded from above by 2[ — 8.

Lemma 3.13 be(vgy_o) < 21 — 8.
Proof. Note that since wvy;,_9 is not in the block we must have £ < 1—73 Then
be(vap—2) =4k —2<4(52) —2=2/—-8. =

In the next lemma we show that the betweenness centrality values of the upper
right corner vertices are bounded from below by the value at k = 1.

Lemma 3.14 We have that (2) (4k)(2] — 4k) + 4k — 2 is minimized when k = 1.

Proof. Case 1: k=1

(2) (4k)(2l — 4k) + 4k — 2 = 161 — 30

Case 2. k£ >1

We will show that (2) (4k)(2] —4k)+4k—2—(161—30) = —4 (kK — 1) (8k — 41+ 7)
> 0.
Since k£ > 1, it suffices to show that 8k — 4l + 7 < 0.
Since | > 2k +3,41 > 4(2k+3)=8k+12>8k+7. m

Lemma 3.15 (2) (4k)(2] — 4k) + 4k — 2 > 2] — 8 when k = 1.

Proof. (2)(4(1))(21 —4(1))+4(1)—2>21 -8

= (2) (4(1))(20l —4(1)) +4(1) —2 =161 — 30

Since 16/ — 30 > 2] — 8 the smallest of the betweenness centralities of vertices of
the form vy, is strictly greater than the largest of the of the betweenness centralities
of vertices of the form v4;,_5. =

We show in our next series of lemmas that no vertex of the form vy, has the same
betweenness centrality as a vertex of the form vy_3.
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Lemma 3.16 bc(vy) = 21 — (dk — 1) = 21 — 4k + 1 is largest when k = 1.

Proof. This follows since the betweenness centralities of vertices of the form vy, are
monotonically decreasing as k increases. m

Lemma 3.17 bc(vy,_3) = 44k — 100 + 16kl — 32k* — 16. is minimized when k = 1.

Proof. Let k = 1. Then bc(vy) = 44 — 100 4 161 — 32 — 16 = 6] — 4. We claim
that 6/ — 4 is the smallest betweenness centrality of any of the vertices of the form
Var—3. We need to show that 44k — 10l + 16kl — 32k*> — 16 > 6] — 4 for all k > 1.
44k — 100 + 16kl — 32k* — 16 — (61 —4) = 4 (k — 1) (4l — 8k + 3) > 0. We consider
two cases.

Case 1: k=1. Then 6] — 4 > 6] — 4.

Case 2. k # 0. This implies that (4] —8k+3) >0=8k —4l—3 <0

We note that k < 1_73 If k= 1_73 is the case, we have 8 (1_73) — 4l -3 =—-15. 1If
k is any smaller 8k — 4l — 3 < 0.
Hence be(vgy—3) > 60l —4. m

Lemma 3.18 The largest of the betweenness centralities of vertices of the form vy
is strictly less than the smallest of the betweenness centralities of vertices of the form

V4k—3.

Proof. The largest of the betweenness centralities of vertices of the form wvyy is 21 —3.
The smallest of the betweenness centralities of vertices of the form v4,_sis 61 — 4.
Clearly 6/ — 4 > 2l — 3 when [ > 1. The result then follows. m

4 Conclusion

Our paper shows the existence of infinite families of graphs with distinct between-
ness centralities and investigates the problem of characterizing this class of graphs.
In Proposition 2.1 we presented two necessary conditions for a graph to have dis-
tinct betweenness centralities. We pose the problem of finding conditions that are
necessary and sufficient, which would give a complete characterization of this family.

Problem 4.1 Determine necessary and sufficient conditions for a graph to have
distinct betweenness centralities.

We also pose some ideas involving special cases which are certainly more tractable.
In Figure 1 we gave an example of a pendant ladder graph with 7 vertices that has
distinct betweenness centralities, and we showed later that many graphs that have
distinct betweenness centralities contain this graph. It was conjectured that the
family of pendant ladders has distinct betweenness centralities [6]. While this holds
for PL, for values 3 < n < 9 it oddly fails to hold for PLyy where two vertices
have betweenness centralities of 90.2357. While we showed that this family can be
tweaked to create prayer flag graphs that can have distinct betweenness centralities,
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it is plausible that some infinite subsequence of pendant ladder graphs have distinct
betweenness centralities. We were able to show that an infinite subsequence of prayer
flag graphs has distinct betweenness centralities. This property may hold for the
entire sequence. It would also be intriguing to investigate other families of graphs
that are similar in structure to pendant ladder graphs or prayer flag graphs.

Using a computer search and MatlabBGL [12] we found that 890 of 11,117 non-
isomorphic graphs on eight vertices have distinct betweenness centralities. It would
be an interesting problem to determine a set of minimal graphs analogous to the
ones shown in Figure 11. This could then be generalized to graphs with more than
eight vertices.

Finally, in Theorem 3.1 we showed a method for extending certain graphs with
distinct betweenness centralities to families of graphs with the same property. It
would be an interesting problem to determine if this method can be generalized.
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