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Abstract

The intersection problem for minimum covers of Kn with triples has pre-
viously been settled in the case where the paddings are required to be
equal. In this paper we extend this result by considering two generaliza-
tions: the paddings need not be equal, and the paddings are required to
be simple.

1 Introduction

A Steiner triple system of order n, STS(n), is a pair (S, T ), where T is a set of
edge-disjoint triangles (or triples) which partitions the edge set of Kn (the complete
undirected graph on n vertices) with vertex set S. It is well known that the spectrum
for Steiner triple systems is precisely the set of all n ≡ 1 or 3 (mod 6) [3], and that
if (S, T ) is a triple system of order n then |T | = n(n− 1)/6; define τ = n(n− 1)/6.
Denote by I(n) = {0, 1, 2, . . . , τ} \ {τ − 1, τ − 2, τ − 3, τ − 5} and by J(n) = {k |
there exists a pair of triple systems of order n having exactly k triples in common}.

The following theorem gives a complete solution of the intersection problem for
triple systems.

Theorem 1.1 (C.C. Lindner, A. Rosa [7]) Let n ≡ 1 or 3 (mod 6). Then
J(n) = I(n) if n �= 9 and J(9) = I(9) \ {5, 8}.
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When n �≡ 1 or 3 (mod 6) there does not exist a triple system; so the intersection
problem for maximum packings and minimum coverings suggests itself. Much of the
intersection problem for maximum packings has been solved in [2, 8]. The object
of this paper is to generalize the intersection problem for minimum coverings of Kn

with triples. We need to be a bit more precise.

A covering of Kn with triples is a triple (S, T ,P), where S is the vertex set of
Kn, P is a multiset edges on the vertex set S (called the padding) and T is an edge-
disjoint multiset of triples which partitions the edge set Kn ∪P. If |P| is as small as
possible we say that (S, T ,P) is a minimum covering of Kn with triples (MCT(n)).
If |P| is as small as possible with the added requirement that P contains no repeated
edges then we say that (S, T ,P) is a simple minimum covering of Kn with triples
(SMCT(n)). So a Steiner triple system is a minimum covering of Kn with padding
P = ∅. It turns out that if n ≡ 5 (mod 6) then P is a doubled edge in any MCT(n),
and is a 5-cycle in any SMCT(n) (both paddings are listed in Table 1).

The following easy to read table gives paddings for the minimum covering of order
n for all n. When n ≡ 5 (mod 6), both the MCT(n) and the SMCT(n) are provided.
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Table 1.

Most of the intersection problem for minimum coverings of Kn with triples is
settled in the following result. For the rest of the paper, let I(n) = {1, 2, . . . , τ(n)},
where τ(n) is the number of triples in an MCT(n) or SMCT(n), whichever is being
considered. (In what follows, when the value of n is clear, then we simply write τ
instead of τ(n).)

Theorem 1.2 (C.C. Lindner, C.A. Rodger [5]) For each i ∈ I(n), there exist
two MCT(n)s, (S, T1,P1) and (S, T2,P2), with |T1 ∩ T2| = i and P1 = P2 if and only
if

1. i /∈ {τ − 1, τ − 2, τ − 3, τ − 5}, and

2. if n = 5 then i �= 0.

It will be convenient to define J(n) = {k | there exists a pair of MCT(n)s in-
tersecting in exactly k triples} and JS(n) = {k | there exists a pair of SMCT(n)s
intersecting in exactly k triples}. In this paper, we extend Theorem 1.2 in two ways.
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In Section 2, the restriction in Theorem 1.2 that P1 = P2 is removed. Then in Sec-
tion 3, Theorem 1.2 is extended to consider the intersection problem for SMCT(n)s.

2 MCT(n)s with paddings that may differ

In this section we consider the intersection problem for MCT(n)s in which it is not
required that both MCT(n)s have the same padding. Of course, in such a setting it
is fine if the paddings happen to be the same, so in view of Theorem 1.2 it remains to
decide whether or not this relaxation allows {τ − 1, τ − 2, τ − 3, τ − 5} to be in J(n).
As will be shown, sometimes it does and sometimes it does not! (See Theorem 2.5.)
We begin with some helpful lemmas.

Lemma 2.1 Let (S, T1,P1) and (S, T2,P2) be two MCT(n)s. If P1 contains no path
of length 2 then τ − 1 /∈ J(n).

Proof: Let MCT(n)s (S, T1,P1) and (S, T2,P2) be two MCT(n)s in which T1\{t1} =
T2\{t2}. Each edge e ∈ E(t1)\E(t2) must be in some other triple in T2, say t′2 �= t2.
But T1\{t1} = T2\{t2}, so e is in two triples in T1. Therefore e ∈ P1.

Since P1 contains no path of length 2 and since t1 is isomorphic to K3, it follows
that t1 contains at most one edge in P1.

Therefore t1 has at most one edge that is not in t2 and so, being a copy of K3,
this forces t1 to equal t2. �

Some small values have unusual intersection numbers, so are handled in the fol-
lowing lemma.

Lemma 2.2 J(4) = {2, 3}, J(5) = {1, 2, 4} and J(6) = {0, 2, 3, 6}.

Proof: First consider J(4). Let S = {1, 2, 3, 4} and let (S, T1,P1) and (S, T2,P2)
be the following two MCT(4)s:
T1 = {{1, 2, 3}, {1, 2, 4}, {2, 3, 4}}, P1 = {{1, 2}, {2, 3}, {2, 4}},
T2 = {{1, 2, 4}, {1, 3, 4}, {2, 3, 4}}, P2 = {{1, 4}, {2, 4}, {3, 4}}.
Then |T1 ∩ T1| = 3 and |T1 ∩ T2| = 2. It is trivial to see that these are the only
possibile intersection sizes.

Next is the case n = 5. Let S = {1, 2, 3, 4, 5} and consider the three following
MCT(5)s:
T1 = {{1, 2, 3}, {1, 2, 4}, {1, 2, 5}, {3, 4, 5}}, P1 = {{1, 2}, {1, 2}},
T2 = {{1, 2, 3}, {2, 3, 4}, {2, 3, 5}, {1, 4, 5}}, P2 = {{2, 3}, {2, 3}}, and
T3 = {{1, 3, 4}, {2, 3, 4}, {3, 4, 5}, {1, 2, 5}}, P3 = {{3, 4}, {3, 4}} Then |T1 ∩ T1| = 4,
|T1 ∩ T2| = 1 and |T1 ∩ T3| = 2. It is easy to see that these are the only possi-
bile intersection sizes since once the padding is chosen the MCT(5) is completely
determined.
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Finally consider J(6). In view of Theorem 1.2, the only intersection numbers
remaining to be considered are those in {1, 3, 4, 5}. Let S = {0, 1, 2, 3, 4, 5} and
define the following MCT(6)s:

T1 = {{0, 1, 2}, {0, 1, 3}, {0, 4, 5}, {1, 4, 5}, {2, 3, 4}, {2, 3, 5}}, so
P1 = {{0, 1}, {2, 3}, {4, 5}}, and
T2 = {{0, 1, 2}, {0, 2, 4}, {0, 3, 5}, {1, 3, 4}, {1, 4, 5}, {2, 3, 5}}, so
P2 = {{0, 2}, {1, 4}, {3, 5}}.

Then |T1 ∩ T2| = 3. By Lemma 2.1, we know 5 /∈ J(6). A straightforward search
shows that 1, 4 /∈ J(6). �

We now focus on the case where n ≡ 5 (mod 6), beginning with the next lemma
which is a vital ingredient in showing τ − 5 ∈ J(n).

Lemma 2.3 Let H be the graph on 7 vertices formed by a cycle of length 3 and a
cycle of length 5 sharing exactly one vertex. There exist two coverings of K7−E(H),
each having a doubled edge as its padding, with no triple occurring in both coverings.

Proof: The result follows by defining

T1 = {{0, 1, 3}, {0, 1, 6}, {0, 4, 5}, {2, 3, 4}, {2, 5, 6}} and

T2 = {{0, 3, 4}, {0, 5, 6}, {1, 2, 3}, {1, 2, 6}, {2, 4, 5}} with

H = (0, 1, 2) ∪ (1, 4, 6, 3, 5), so P1 = {{0, 1}, {0, 1}} and P2 = {{1, 2}, {1, 2}}. �

Lemma 2.4 Let n ≡ 5 (mod 6). Then J(n) = I(n)\{τ − 1}.

Proof: We consider four cases in turn.

Case 1: τ − 1 /∈ J(n) by Lemma 2.1 since the padding is a doubled edge.

Case 2: τ − 2 ∈ J(n). Let (S, T, L) be a maximum packing of Kn with triples with
leave the 4-cycle (a, b, c, d) (see [6], for example). Form two MCT(n)s (S, T1,P1) and
(S, T2,P2) by defining T1 = T ∪{{a, b, c}, {a, c, d}} and T2 = T ∪{{a, b, d}, {b, c, d}}.
Then P1 = {{a, c}, {a, c}} and P2 = {{b, d}, {b, d}}, and clearly |T1 ∩ T2| = τ − 2 as
required.

Case 3: τ − 3 ∈ J(n). Let (S,B) be a PBD(6n +5), n ≥ 1, with one block
f = {a, b, c, d, e} of size 5 and all other blocks of size 3 (see [6], for example). Form two
MCT(n)s (S, T1,P1) and (S, T2,P2) by defining T1 = (B\{f}) ∪ {{a, b, c}, {a, b, d},
{a, b, e}, {c, d, e}} and T2 = (B\{f}) ∪ {{a, b, c}, {b, c, d}, {b, c, e}, {a, d, e}}. Then
P1 = {{a, b}, {a, b}} and P2 = {{b, c}, {b, c}}, and clearly |T1 ∩ T2| = τ − 3 as
required.

Case 4: τ − 5 ∈ J(n). If n = 5 then τ = 4, so in this case we can assume that
n ≥ 11. We begin by considering the two smallest cases, n = 11 and 17. In each case
the MCT(n)s are constructed by starting with the MCT(7)s ({0, 1, . . . , 6}, T1,P1)
and ({0, 1, . . . , 6}, T2,P2) defined in Lemma 2.3. If n = 11 then to each of T1 and T2

add the triples in:
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{{1, 4, 7}, {4, 6, 10}, {3, 6, 8}, {3, 5, 9}, {1, 5, 10}, {0, 1, 8}, {0, 2, 7}, {1, 2, 9},
{5, 7, 8}, {6, 7, 9}, {3, 7, 10}, {4, 8, 9}, {2, 8, 10}, {0, 9, 10}}.

If n = 17 then use Lemma 2.3 to form the two sets of triples T1 and T2, except first
rename the vertices so that H = (0, 1, 2, 3, 4) ∪ (0, 5, 6). Then the result follows by
defining two MCT(17)s on the vertex set S = {0, 1, . . . , 6} ∪ ({0, 1, 2, 3, 4} × {0, 1})
by adding to each of T1 and T2 the triples in:

{{i, i+ 1, (2 + i, 0)}, {2 + i, (i, 0), (i+ 1, 0)}, {i, (i, 0), (i, 1)}, {(i, 0), (i+ 2, 0),
(i+ 1, 1)}, {i+ 4, (i, 1), (i+ 3, 1)}, {i+ 3, (i, 1), (i+ 1, 1)}, {5, (i, 0), (i+ 2, 1)},
{6, (i, 0), (i+ 3, 1)} | 0 ≤ i ≤ 4} ∪ {{0, 5, 6}}, reducing all sums modulo 5.

Now let n = 6x+5 with x ≥ 3. Then there exists a GDD (V,B) with x groups of
size 6 and all blocks of size 3 (for example, see [6]). Form the two required MCT(n)s,
on the vertex set V ∪ S of order n as follows. On the 11 vertices formed by the 6
vertices in one group and the 5 vertices in S, place the triples in the two MCT(11)s
just formed; so these intersect in all but 5 triples. On the 11 points formed by each
other group together with S, place the triples of K11\K5 (see, for example, “The
Quasigroup with Holes Construction” in [6]), the hole of size 5 being the vertices
in S. �

Theorem 2.5 J(4) = {2, 3}, J(5) = {1, 2, 4}, J(6) = {0, 2, 3, 6}, and if n ≥ 7 then

1. J(n) = I(n) \ {τ − 1} when n ≡ 0 or 5 (mod 6), and

2. J(n) = I(n) when n ≡ 2 or 4 (mod 6).

Proof: In view of Theorem 1.2 it remains to decide whether or not this relaxation
where the paddings can be different allows the integers {τ − 1, τ − 2, τ − 3, τ − 5} to
be in J(n) in the cases where n ≡ 0, 2, 4 or 5 (mod 6). We consider various cases in
turn. The cases where n ≤ 6 are settled in Lemma 2.2, so assume that n ≥ 8.

Case 1: n ≡ 0 (mod 6). The fact that τ − 1 /∈ J(n) follows from Lemma 2.1 since
the padding is a 1-factor.

Let n = 6x for some x ≥ 2, let S = {0, 1, . . . , 6x− 4} and let S1 = {0, 1, . . . , 6x−
1}. Let (S, T ) be a partial STS(n− 3) in which the leave is the 2-factor consisting of
the cycles (0, 1, . . . , 6x−7) and (6x−6, 6x−5, 6x−4) (see “The 6n+5 Construction”
in [6], for example). Form an MCT(n) (S1, T1,P1) from T by adding: the set T ′

1 of
triples in an MCT(6) on the vertex set {6x − 6, 6x − 5, . . . , 6x − 1}; the triples in
{{6x − 3 + i, 2j + i, 2j + 1 + i} | 0 ≤ i ≤ 1, 0 ≤ j ≤ 3x − 4}, reducing the sum
modulo 6x − 6; and the triples in {{6x − 1, 2j, 2j + 1} | 0 ≤ j ≤ 3x − 4}. Form
another MCT(n) (S1, T2,P2) by defining T2 = (T1 ∪ {{6x− 1, 0, 2}, {6x− 1, 1, 3}} \
{{6x − 1, 0, 1}, {6x − 1, 2, 3}}. Finally, form third MCT(n) (S1, T3,P3) by defining
T3 = (T1 ∪ T ′

3 ) \ T ′
1 , where T ′

3 is the set of triples in an MCT(6) on the vertex
set {6x − 6, 6x − 5, . . . , 6x − 1} for which |T ′

1 ∩ T ′
3 | = 3 (see Lemma 2.2). Then

|T1 ∩ T2| = τ − 2, |T1 ∩ T3| = τ − 3 and |T2 ∩ T3| = τ − 5.

Case 2: n ≡ 2 or 4 (mod 6). Let ({1, 2, . . . , n− 1}, T ) be an STS(n − 1). Append
a vertex n to form an MCT(n) with padding:
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P1 = {{1, n}, {1, 2}, {1, 3}} ∪ {{2x, 2x+ 1} | 2 ≤ x ≤ (n− 2)/2}
by defining T1 = T ∪ {{1, 2, n}, {1, 3, n}} ∪ {{2x, 2x + 1, n} | 2 ≤ x ≤ (n − 2)/2}.
Similarly, define four more MCT(n)s by defining:

1. T2 = (T1∪{{2, 3, n}})\{{1, 3, n}}which has padding P2 = (P1∪{{2, n}, {2, 3}})
\{{1, n}, {1, 3}},

2. T3 = (T1 ∪ {{4, 6, n}, {5, 7, n}}) \ {{4, 5, n}, {6, 7, n}} which has padding P3 =
(P1 ∪ {{4, 6}, {5, 7}}) \ {{4, 5}, {6, 7}},

3. T4 = (T2 ∪ {{4, 6, n}, {5, 7, n}}) \ {{4, 5, n}, {6, 7, n}} which has padding P4 =
(P2 ∪ {{4, 6}, {5, 7}}) \ {{4, 5}, {6, 7}}, and

4. if n ≥ 14 then T5 = (T4∪{{8, 10, n}, {9, 11, n}}) \ {{8, 9, n}, {10, 11, n}} which
has padding P4 = (P2 ∪ {{8, 10}, {9, 11}}) \ {{8, 9}, {10, 11}}.

Then |T1 ∩ T2| = τ − 1, |T1 ∩ T3| = τ − 2, |T1 ∩ T4| = τ − 3 and |T1 ∩ T5| = τ − 5.
If n = 8 then let ({1, 2, . . . , 7}, T ′

0) be a STS(7) with |T ′
0 ∩ T | = 3 and define T0 =

T ′
0 ∪ {{1, 2, 8}, {2, 3, 8}, {4, 5, 8}, {6, 7, 8}}; then |T0 ∩ T1| = τ − 5. If n = 10 then let

T0 = T ∪{{1, 4, 10}, {2, 3, 10}, {5, 6, 10}, {7, 8, 10}, {7, 9, 10}}; then |T0∩T1| = τ −5.

Case 3: n ≡ 5 (mod 6). This follows from Lemma 2.4. �

3 Simple paddings

In this section we settle the intersection problem for two minimum coverings in which
the paddings are required to be simple, but can be different. Since the only case where
the padding is not simple in Theorem [5] is when n ≡ 5 (mod 6), the padding being
a doubled edge, we now focus on that case where we require the padding to be a
5-cycle. We begin with some small ingredients needed for the general result.

Lemma 3.1 JS(5) = {0, 2, 3, 5}.

Proof: Let S = {0, 1, 2, 3, 4}. For 1 ≤ i ≤ 4 let (S, Ti,Pi)be the MCT(5) defined
by:

T1 = {{0, 1, 2}, {0, 1, 3}, {0, 3, 4}, {1, 2, 4}, {2, 3, 4}}, P1 is the 5-cycle (0, 1, 2, 4, 3),
T2 = {{0, 1, 4}, {0, 2, 3}, {0, 2, 4}, {1, 2, 3}, {1, 3, 4}}, P2 = (0, 2, 3, 1, 4),
T3 = {{0, 1, 3}, {0, 1, 4}, {0, 2, 4}, {1, 2, 3}, {2, 3, 4}}, P3 = (0, 1, 3, 2, 4), and
T4 = {{0, 1, 2}, {0, 1, 4}, {0, 3, 4}, {1, 2, 3}, {2, 3, 4}}, P4 = (0, 1, 2, 3, 4).
Then |T1 ∩ T2| = 0, |T1 ∩ T3| = 2, |T1 ∩ T4| = 3 and |T1 ∩ T1| = 5. A computer search
shows that these are the only intersection numbers in JS(5). �

Lemma 3.2 JS(11) = I(11).
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Proof: Let X = {0, 1, 2, 3, 4}. For 1 ≤ i ≤ 4 let (X, Ti,Pi) be the MCT(5)
defined in Lemma 3.1. For 1 ≤ i ≤ 7 let αi : X 
→ X be a bijection. Let F =
{F0, F1, F2, F3, F4} be a 1-factorization of K6 on the vertex set {5, 6, 7, 8, 9, 10}. Let
S = {0, 1, . . . , 10}.

For 1 ≤ i ≤ 4, form the MCT(11) (S, Ci,Pi) by defining Ci = Ti ∪ {{j, x, y} | j ∈
X, {x, y} ∈ Fαi(j)}.

Three more MCT(11)s are needed. For 5 ≤ i ≤ 7, form (S, Ci,Pi) by defining
T5 = {{0, 5, 3}, {0, 1, 4}, {0, 2, 4}, {1, 2, 3}, {2, 3, 4}} and C5 = T5 ∪ {{j, x, y} | j ∈
X, {x, y} ∈ Fα5(j)}, so P5 = (0, 5, 3, 2, 4), defining T6 = {{0, 5, 2}, {0, 1, 3}, {0, 3, 4},
{1, 2, 4}, {2, 3, 4}} and C6 = T6 ∪ {{j, x, y} | j ∈ X, {x, y} ∈ Fα6(j)}, so P6 =
(0, 5, 2, 4, 3), and finally, letting C7 = T1 ∪ {{j, x, y} | j ∈ X, {x, y} ∈ Fα7(j)}, so
P7 = P1. Notice that |T1 ∩ T5| = 1 and |T1 ∩ T6| = 4.

For 1 ≤ i < k ≤ 6, let D(i, k) = |{j | αi(j) = αk(j)}|; notice that D(i, k) can
be chosen to take on any value in {0, 1, 2, 3, 5}. Then, since each 1-factor contains
3 edges, |C1 ∩ C2| = 3D(1, 2), |C1 ∩ C3| = 2 + 3D(1, 3), |C1 ∩ C4| = 3 + 3D(1, 4),
|C1 ∩C5| = 1+ 3D(1, 5), |C1 ∩C6| = 4+ 3D(1, 6), and |C1 ∩C7| = 5+ 3D(1, 7). By
suitably choosing the bijections, it now follows that JS(11) = I(11) = {0, 1, . . . , 20}.

�

Lemma 3.3 JS(17) = I(17).

Proof: This proof closely follows that of Lemma 3.2, so some details are omitted.

We begin with the following factorization F1 = {F1, F2, F3, F4, F5, T1} of K12:
F1 = {{0, 4}, {1, 8}, {5, 9}, {2, 6}, {3, 10}, {7, 11}},
F2 = {{0, 5}, {1, 9}, {4, 8}, {2, 7}, {3, 11}, {6, 10}},
F3 = {{0, 6}, {1, 7}, {2, 8}, {3, 9}, {4, 10}, {5, 11}},
F4 = {{0, 7}, {1, 6}, {2, 9}, {3, 8}, {4, 11}, {5, 10}},
F5 = {{0, 8}, {1, 5}, {2, 10}, {3, 7}, {4, 9}, {6, 11}}, and
T1 = {{i, i+ 1, i+ 3} | i = 0, 1, . . . , 11}, reducing the sums modulo 12.

Let T2 = {{i, i+ 2, i + 3} | i = 0, 1, . . . , 11}. Then F2 = (F1 ∪ T2)\T1, reducing
the sums modulo 12, is a second factorization of K12. Notice that |T1 ∩ T2| = 0.

Let X = {12, 13, . . . , 16}. Let T ′ = {T ′
i | 1 ≤ i ≤ 7} where T ′

i is formed from Ti

in Lemma 3.2 by renaming vertex j with j + 12 except that 5 is renamed with 0.

Each integer in I(17) = {0, 1, . . . , 47} can be written as a + 12b + 6c, where
a ∈ {0, 1, . . . , 5}, b ∈ {0, 1} and c ∈ {0, 1, 2, 3, 5}. Two MCT(17)s with intersection
a+12b+6c can be constructed by the union of the following choices: each MCT(17)
chooses one of the sets in T ′ in such a way that they intersect in a triples; each
MCT(17) chooses triples in either T1 or T2, chosen to be the same if b = 1 and
different if b = 0; and each chooses one of the sets {{j, x, y} | j ∈ X, {x, y} ∈ Fα1(j)}
and {{j, x, y} | j ∈ X, {x, y} ∈ Fα2(j)}, where α1(j) and α2(j) are bijections from
{1, 2, . . . , 5} to itself, chosen so that D(1, 2) = c.

So it follows that JS(17) = I(17) = {0, 1, . . . , 47}. �
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With Lemmas 3.1, 3.2 and 3.3 in hand we can now proceed to the main construc-
tion for n ≡ 5 (mod 6), proving the following result.

Theorem 3.4 Let n ≡ 5 (mod 6). Then JS(5) = {0, 2, 3, 5} and JS(n) = I(n) for
all n ≥ 11.

Proof: If n ≤ 17 then the result follows from Lemmas 3.1, 3.2 and 3.3. So we can
assume that n ≥ 23. Let n = 6m+ 5 = 5+ 3(2m); so we are assuming that 2m ≥ 6.
Hence there exists a GDD G = (Y,G,B) with |Y | = 2m, blocks of size 3, and all
groups of size 2 except possibly for one of size 4 (easily constructed by deleting a
point either from a STS or from a PBD with 1 block of size 5, the rest of size 3). It
is also worth noting that τ = 6m2 + 9m+ 5

First note that each integer in A = {0, 3, 6, 9, . . . , 9s}\{9s−3}, where s = |B| ≥ 4
can be written as the sum of s integers, say z1, z2, . . . , zs, each being in {0, 3, 9}.
Then, if G contains ε ∈ {0, 1} groups of size 4, it follows that each integer in I(n) =
{0, 1, . . . , 6m2+9m+5} can be written as x+y+z where x ∈ JS(11+6ε), y ∈ {15i |
0 ≤ i ≤ m−1−ε}, and z ∈ A. (To see this, it helps to note that the largest values x, y
and z can take are τ(11+6ε) = 20+27ε, 15(m−1−ε) and 9s = 9((m(2m−2)−4ε)/3)
respectively, the sum of these three values being 6m2 + 9m+ 5.)

Let X be a set of 5 vertices. Two MCT(n)s on the vertex set S = X ∪ (Y ×
{1, 2, 3}) with intersection x+y+ z can be constructed by the union of the following
choices:

(i) Each MCT(n) chooses the triples in an MCT(17) or an MCT(11) if G does or
does not contain a group of size 4 respectively, chosen so that they intersect in
x triples;

(ii) for each remaining group in G, say {a, b}, each MCT(n) takes the 15 triples in
a K3-decomposition of K11 −K5 on the vertex set S = X ∪ ({a, b} × {1, 2, 3})
with hole X, chosen so that they are 15 identical triples for y/15 of the groups
and are disjoint otherwise; and

(iii) for each block bi = {a, b, c} ∈ B = {b1, b2, . . . , bs}, each MCT(n) chooses the
blocks in aK3-decomposition of the complete tripartite graphK3,3,3 (with parts
{a} × {1, 2, 3}, {b} × {1, 2, 3}, and {c} × {1, 2, 3}), chosen so that they agree
in zi triples.

Note that the paddings are the 5-cycles defined by the MCTs defined in (i).

Then it follows that JS(n) = I(n). �
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