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Abstract

The paired bondage number (total restrained bondage number, indepen-
dent bondage number, k-rainbow bondage number) of a graph G, is the
minimum number of edges whose removal from G results in a graph with
larger paired domination number (respectively, total restrained domi-
nation number, independent domination number, k-rainbow domination
number). In this paper we show that the decision problems for these
variants are NP-hard, even when restricted to bipartite graphs.

1 Introduction

Let G be a graph with vertex set V (G) = V of order |V | = n and size |E(G)| = m,
and let v be a vertex in V . The open neighborhood of v is NG(v) = {u ∈ V |uv ∈
E(G)} and the closed neighborhood of v is NG[v] = {v} ∪ NG(v). If the graph G is
clear from the context, we simply write N(v) rather than NG(v). The degree of a
vertex v, is deg(v) = |N(v)|. A vertex of degree one is called a leaf and its neighbor
a support vertex. A pendant edge is an edge that one of its endpoints is a leaf.
We denote the set of leaves and support vertices of a graph G by L(G) and S(G),
respectively. For a set S ⊆ V , its open neighborhood is the set N(S) = ∪v∈SN(v),
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and its closed neighborhood is the set N [S] = N(S)∪S. A matching in a graph G is
a set of independent edges in G. A perfect matching M in G is a matching such that
every vertex of G is incident to an element of M . For a subset S of vertices of G
we refer to G[S] as the subgraph of G induced by S. For notation and graph theory
terminology, we in general follow [8, 10].

A subset S ⊆ V is a dominating set of G if every vertex not in S is adjacent
to a vertex in S. The domination number of G, denoted by γ(G), is the minimum
cardinality of a dominating set of G. A dominating set S in a graph with no isolated
vertex is a total dominating set if the induced subgraph G[S] has no isolated vertex.
The total domination number of G, denoted by γt(G), is the minimum cardinality
of a total dominating set of G. A dominating set S in a graph G with no isolated
vertex is called a paired dominating set if the induced subgraph G[S] contains a
perfect matching. The paired domination number of G, denoted by γpr(G), is the
minimum cardinality of a paired dominating set of G. A dominating set S is called
an independent dominating set if the induced graph G[S] has no edge. The indepen-
dent domination number of G, denoted by i(G), is the minimum cardinality of an
independent dominating set of G. A total dominating set S is called a total restrained
dominating set if every vertex of V − S is adjacent to another vertex in V − S. The
total restrained domination number of G, denoted by γtr(G), is the minimum car-
dinality of a total restrained dominating set of G. A dominating set S is called an
γ(G)-set of G if |S| = γ(G). Similarly a γt(G)-set, an i(G)-set, a γpr(G)-set, and a
γtr(G)-set are defined. For references on domination and total domination in graphs
see for example [8, 10].

For a graph G and an integer k ≥ 2, let f : V (G)→ P({1, 2, ..., k}) be a function.
If for each vertex v ∈ V (G) such that f(v) = ∅ we have ∪u∈N(v)f(u) = {1, 2, ..., k},
then f is called a k-rainbow dominating function (or simply kRDF) of G. The weight,
w(f), of f is defined as w(f) =

∑
v∈V (G) |f(v)|. The minimum weight of a kRDF of

G is called the k-rainbow domination number of G, and is denoted by γrk(G). If f is
a kRDF of G, then we denote by V f

12...k the set of all vertices u with |f(u)| = k. We
refer to a γrk-function in a graph G as a kRDF with minimum weight. If f is a kRDF
of G, then we say that a vertex v is not k-rainbow dominated by f if f(v) = ∅ and
∪u∈N(v)f(u) 6= {1, 2, ..., k}. For references in rainbow domination see for example
[2, 3, 17].

The bondage number of G, denoted by b(G), is the minimum number of edges
whose removal from G results in a graph with larger domination number. The
concept of bondage in graphs was introduced by Bauer, Harary, Nieminen and Suffel
in [1], and has been further studied for example in [4, 5, 16]. Raczek [15] introduced
the concept of paired bondage in graphs. The paired bondage number bpr(G) of a
graph G with no isolated vertex is the cardinality of a smallest set of edges E ′ ⊆ E(G)
for which (1) G − E ′ has no isolated vertex, and (2) γpr(G − E ′) > γpr(G). Zhang,
Liu and Sun [19] defined the independent bondage number bi(G) of G to be the
minimum cardinality among all subsets E ′ ⊆ E(G) for which i(G−E ′) > i(G). The
total restrained bondage number btr(G) of a graph G with no isolated vertex is the
cardinality of a smallest set of edges E ′ ⊆ E(G) for which (1) G−E ′ has no isolated
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vertex, and (2) γtr(G − E ′) > γtr(G). The concept of total restrained bondage is
studied in [13]. The k-rainbow bondage number brk(G) of a graph G with maximum
degree at least two is the minimum cardinality among all sets E ′ ⊆ E(G) for which
γrk(G− E ′) > γrk(G). For a survey of results and recent developments on bondage
we refer the reader to [18].

The complexity issue of several parameters in the theory of domination have been
studied, see for example [6, 8]. The decision problem for some bondage problems has
been proven to be NP-hard, see for example [7, 11, 12, 14, 18].

Conjecture 1.1 (Xu, [18]). The paired bondage problem is NP-complete.

In this paper, we consider the complexity issue for paired bondage problem, total
restrained bondage problem, independent bondage problem, and k-rainbow bondage
problem. We prove that the decision problem for these bondage problems is NP-hard,
even when restricted to bipartite graphs. Our proofs are by a transformation from
the 3-satisfiability problem (known as 3-SAT problem) that we describe it as follows.
A truth assignment for a set U of Boolean variables is a mapping t : U → {T, F}.
A variable u is said to be true (or false) under t if t(u) = T (or t(u) = F ). If u
is a variable in U , then u and u are literals over U . The literal u is true under t
if and only if the variable u is true under t, and the literal u is true if and only if
the variable u is false. A clause over U is a set of literals over U , and it is satisfied
by a truth assignment if and only if at least one of its members is true under that
assignment. A collection C of clauses over U is satisfiable if and only if there exists
some truth assignment for U that simultaneously satisfies all the clauses in C. Such
a truth assignment is called a satisfying truth assignment for C. The 3-SAT problem
is specified as follows.

3-SAT problem:
Instance: A collection C = {C1, C2, ..., Cm} of clauses over a finite set U of variables
such that |Cj| = 3 for j = 1, 2, ...,m.
Question: Is there a truth assignment for U that satisfies all the clauses in C?

Note that the 3-SAT problem was proven to be NP-complete in [6].

2 Main results

Consider the following decision problems.

Paired bondage problem (PB):

Instance: A graph G with no isolated vertex and a positive integer κ.
Question: Is bp(G) ≤ κ?

Total restrained bondage problem (TRB):

Instance: A graph G with no isolated vertex and a positive integer κ.
Question: Is btr(G) ≤ κ?

Independent bondage problem (IB):

Instance: A nonempty graph G and a positive integer κ.
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Question: Is bi(G) ≤ κ?

k-rainbow bondage problem (kRB):

Instance: A nonempty graph G and a positive integer κ.
Question: Is brk(G) ≤ κ?

We will prove the following.

Theorem 2.1. PB is NP-hard for bipartite graphs.

Theorem 2.2. TRB is NP-hard for general graphs.

Theorem 2.3. IB is NP-hard for bipartite graphs.

Theorem 2.4. kRB is NP-hard for bipartite graphs.

3 Proofs

We show the NP-hardness of each problem by transforming the 3-SAT problem to it
in polynomial time. Let U = {u1, u2, ..., un} and C = {C1, C2, ..., Cm} be an arbitrary
instance of the 3-SAT.

3.1 Proof of Theorem 2.1

We construct a bipartite graph G and an integer κ such that C is satisfiable if and
only if bp(G) ≤ κ. Corresponding to each variable ui ∈ U , we associate the graph Hi

shown in Figure 1. Corresponding to each clause Cj = {xj, yj, zj} ∈ C, we associate
a single vertex cj and add the edge-set Ej = {cjxj, cjyj, cjzj}. Next add the graph
J shown in Figure 1, and join s2 to each vertex cj with 1 ≤ j ≤ m, to obtain a
bipartite graph G. Set κ = 1.
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Figure 1. The graphs Hi and J .
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Let S be a γpr(G)-set. Clearly |S∩V (Hi)| ≥ 2. Moreover, |S∩{s1, s2, s3, s4, s5}| ≥
2. Thus we have the following.

Lemma 3.1. γpr(G) = |S| ≥ 2n+ 2.

Lemma 3.2. γpr(G) = 2n+ 2 if and only if C is satisfiable.
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Proof. Assume that γpr(G) = 2n + 2. Then |S ∩ V (Hi)| = 2 for i = 1, 2, ..., n,
|S ∩{s1, s2, s3, s4, s5}| = 2 and S ∩{c1, ..., cm} = ∅. Clearly s3 ∈ S, and thus we may
assume, without loss of generality, that S ∩ {s1, s2, s3, s4, s5} = {s3, s4}. Moreover,
S does not contain both ui and ui for i = 1, 2, ..., n. If S ∩ {uj, uj} = ∅ for some
j, then we replace the vertices of S ∩ V (Hj) by ui and bi. We thus may assume
that |S ∩ {ui, ui}| = 1 for i = 1, 2, ..., n. Let t : U −→ {T, F} be a mapping
defined by t(ui) = T if ui ∈ S and t(ui) = F if ui ∈ S. For each j ∈ {1, 2, ..,m},
the corresponding vertex cj in G is not dominated by s3 or s4, and thus there is
an integer i ∈ {1, 2, ..., n} such that cj is dominated by S ∩ {ui, ui}. Assume that
ui ∈ S, and cj is dominated by ui. By the construction of G the literal ui is in the
clause Cj. Then t(ui) = T , which implies that the clause Cj is satisfied by t. Next
assume that ui ∈ S, and cj is dominated by ui. By the construction of G the literal
ui is in the clause Cj. Then t(ui) = F . Thus, t assigns ui the truth value T , that is,
t satisfies the clause Cj. Hence C is satisfiable.

Conversely, suppose that C is satisfiable. Let t : U −→ {T, F} be a satisfying
truth assignment for C. We construct a paired dominating set S for G of cardinality
2n + 2. For this purpose, we construct a subset D of vertices of G as follows. If
t(ui) = T , then we put the vertices ui and bi in D; if t(ui) = F , then put the vertices
ui and di in D. Clearly, |D| = 2n. Since t is a satisfying truth assignment for C,
for each j = 1, 2, ...,m, at least one of literals in Cj is true under the assignment t.
It follows that the corresponding vertex cj in G is adjacent to at least one vertex
in D, since cj is adjacent to each literal in Cj. Thus S = D ∪ {s3, s4} is a paired
dominating set of G of cardinality 2n + 2, and so γpr(G) ≤ 2n + 2. By Lemma 3.1,
γpr(G) = 2n+ 2.

Lemma 3.3. For any non-pendant edge e ∈ E(G), γpr(G− e) ≤ 2n+ 4.

Proof. Let e ∈ E(G) be a non-pendant edge. Assume that e 6∈ E(Hi). If e 6∈ {s2ci :
i = 1, 2, ...,m}, then {ui, bi : i = 1, 2, ..., n} ∪ {s1, s2, s3, s4} is a paired dominating
set for G − e of cardinality 2n + 4, and thus γpr(G − e) ≤ 2n + 4. Thus assume
that e = s2ci, for some i ∈ {1, 2, ...,m}. There is an integer j ∈ {1, 2, ..., n} such
that N(ci) ∩ {uj, uj} 6= ∅. Without loss of generality, assume that uj ∈ N(ci).
Then {ui, bi : i = 1, 2, ..., n, i 6= j} ∪ {s3, s4} ∪ {ci, uj, dj, uj} is a paired dominating
set for G − e of cardinality 2n + 4, and thus γpr(G − e) ≤ 2n + 4. Next assume
that e ∈ E(Hi) for some i ∈ {1, 2, ..., n}. If e ∈ {eiwi, eiui, diui, diwi, diai}, then
{uj, bj : j = 1, 2, ..., n} ∪ {s1, s2, s3, s4} is a paired dominating set for G − e of
cardinality 2n+ 4. If e ∈ {biai, eiui}, then {uj, dj : j = 1, 2, ..., n} ∪ {s1, s2, s3, s4} is
a paired dominating set for G− e of cardinality 2n+ 4. If e = uidi, then {uj, bj : j =
1, 2, ..., n} ∪ {s1, s2, s3, s4} is a paired dominating set for G− e of cardinality 2n+ 4.
If e = biui, then similarly γpr(G− e) ≤ 2n+ 4.

Lemma 3.4. γpr(G) = 2n+ 2 if and only if bp(G) = 1.

Proof. Assume γpr(G) = 2n + 2. Let D be a γpr(G − e)-set, where e = s3s4.
Since s2 and s3 are a support vertices in G − e, we have s2, s3 ∈ D, and so
|D ∩ {s1, s2, s3, s4, s5}| ≥ 3. Since |D ∩ V (Hi)| ≥ 2, for i = 1, 2, ..., n, we deduce
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that |D| > 2n + 2, and thus bp(G) = 1. Conversely, assume that bp(G) = 1. Let e
be a non-pendant edge such that γpr(G− e) > γpr(G). By Lemma 3.3, we have that
γpr(G − e) ≤ 2n + 4. Since γpr(G) ≥ 2n + 2, and γpr(G) is even, we conclude that
γpr(G) = 2n+ 2.

From Lemmas 3.2, 3.3 and 3.4, it follows that bp(G) ≤ 1 if and only if C is
satisfiable. Since the construction of the paired bondage instance is straightforward
from a 3-SAT instance, the size of the paired bondage instance is bounded from
above by a polynomial function of the size of the 3-SAT instance. It follows that this
is a polynomial transformation, and the proof is complete.

3.2 Proof of Theorem 2.2

We construct a bipartite graph G and an integer κ such that C is satisfiable if and
only if btr(G) ≤ κ. Corresponding to each variable ui ∈ U , we associate a graph Gi

obtained from the graph Hi shown in Figure 1 by adding a vertex fi and joining fi
to ai. Figure 2 shows the graph Gi.
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Figure 2. The graphs Gi and J1.
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Corresponding to each clause Cj = {xj, yj, zj} ∈ C, we associate a single vertex
cj and add the edge-set Ej = {cjxj, cjyj, cjzj}. Next we add the graph J1 shown in
the Figure 2, and join s1 and s2 to each vertex cj with 1 ≤ j ≤ m. Set κ = 1. Let S
be a γtr(G)-set. For i = 1, 2, ..., n, clearly S contains fi and ai. Since ei is dominated
by S, we find that |S ∩ V (Gi)| ≥ 4, for i = 1, 2, ..., n. Since S contains s3, s4, s5 and
s6, we obtain that |S ∩ V (J)| ≥ 4. Thus we have the following.

Lemma 3.5. γtr(G) = |S| ≥ 4n+ 4.

Lemma 3.6. γtr(G) = 4n+ 4 if and only if C is satisfiable.

Proof. Assume that γtr(G) = 4n + 4. Then |S ∩ V (Gi)| = 4 for i = 1, 2, ..., n,
S ∩ V (J) = {s3, s4, s5, s6} and S ∩ {s1, s2} = S ∩ {c1, ..., cm} = ∅. If S ∩ {ui, ui} = ∅
for some integer i, then {ei, wi} ⊆ S, since ei and wi are dominated by S. Then
we replace wi by bi. Thus S ∩ {ui, ui} 6= ∅ for each i = 1, 2, ..., n. If {ui, ui} ⊆ S
for some i, then |S ∩ V (Gi)| ≥ 5, a contradiction. Thus |{ui, ui} ∩ S| = 1 for
i = 1, 2, ..., n. Let t : U −→ {T, F} be a mapping defined by t(ui) = T if ui ∈ S
and t(ui) = F if ui ∈ S. For each j ∈ {1, 2, ..,m}, the corresponding vertex cj in
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G is not dominated by {s3, s4, s5, s6}, and thus there is an integer i ∈ {1, 2, ..., n}
such that cj is dominated by S ∩ {ui, ui}. Assume that ui ∈ S, and cj is dominated
by ui. By the construction of G the literal ui is in the clause Cj. Then t(ui) = T ,
which implies that the clause Cj is satisfied by t. Next assume that ui ∈ S, and cj
is dominated by ui. Then by the construction of G the literal ui is in the clause Cj.
Then t(ui) = F . Thus, t assigns ui the truth value T , that is, t satisfies the clause
Cj. Hence C is satisfiable.

Conversely, suppose that C is satisfiable. Let t : U −→ {T, F} be a satisfying
truth assignment for C. We construct a total restrained dominating set S for G of
cardinality 4n + 4. For this purpose, we construct a subset D of vertices of G as
follows. If t(ui) = T , then we put the vertices ui, ei, ai and fi in D; if t(ui) = F , then
put the vertices ui, ei, ai and fi in D. Clearly, |D| = 4n. Since t is a satisfying truth
assignment for C, for each j = 1, 2, ...,m, at least one of literals in Cj is true under the
assignment t. It follows that the corresponding vertex cj in G is adjacent to at least
one vertex in D, since cj is adjacent to each literal in Cj. Thus S = D∪{s3, s4, s5, s6}
is a total restrained dominating set of G of cardinality 4n+4, and so γtr(G) ≤ 4n+4.
By Lemma 3.5, γtr(G) = 4n+ 4.

Lemma 3.7. For any non-pendant edge e ∈ E(G), γtr(G− e) ≤ 4n+ 5.

Proof. Let e ∈ E(G) be a non-pendant edge. If e = s3s4, s1s2 or s2s4, then
{s1, s3, s4, s5, s6}∪{ui, ei, ai, fi : i = 1, 2, ..., n} is a total restrained dominating set for
G−e of cardinality 4n+5, and thus γtr(G−e) ≤ 4n+5. If e = s1s3, e = s1ci for some
i ∈ {1, 2, ...,m}, or e = ciuj or e = ciuj, for some i ∈ {1, 2, ...,m} and j ∈ {1, 2, ..., n},
then {s2, s3, s4, s5, s6} ∪ {ui, ei, ai, fi : i = 1, 2, ..., n} is a total restrained dominat-
ing set for G − e of cardinality 4n + 5, and thus γtr(G − e) ≤ 4n + 5. Similarly if
e = s2ci for some i ∈ {1, 2, ...,m}, then γtr(G − e) ≤ 4n + 5. Thus assume that
e ∈ E(Gi) for some i ∈ {1, 2, ..., n}. If e ∈ {aibi, aidi, wibi, widi, biui, biui, diui, diui},
then {s2, s3, s4, s5, s6}∪{uj, ej, aj, fj : j = 1, 2, ..., n} is a total restrained dominating
set for G − e of cardinality 4n + 5, and thus γtr(G − e) ≤ 4n + 5. If e = eiwi, then
{ai, fi, di, ui} ∪ {s2, s3, s4, s5, s6} ∪ {uj, ej, aj, fj : j = 1, 2, ..., n, j 6= i} is a total re-
strained dominating set for G−e of cardinality 4n+5, and thus γtr(G−e) ≤ 4n+5. If
e = uiei, then {ai, fi, ui, bi}∪{s1, s2, s3, s4, s6, s6}∪{uj, ej, aj, fj : j = 1, 2, ..., n, j 6= i}
is a total restrained dominating set for G − e of cardinality 4n + 5, and thus
γtr(G− e) ≤ 4n+ 5.

Lemma 3.8. γtr(G) = 4n+ 4 if and only if btr(G) = 1.

Proof. Assume γtr(G) = 4n+ 4. Let D be a γtr(G− e)-set, where e = s1s3. Clearly
{s3, s4, s5, s6} ⊆ S. Since s1 is dominated byD, we obtain that (N [s1]−{s3})∩D 6= ∅.
Since |D ∩ V (Gi)| ≥ 4, for i = 1, 2, ..., n, we deduce that |D| > 4n + 4, and thus
btr(G) = 1. Conversely, assume that btr(G) = 1. Let e be an edge such that
γtr(G − e) > γtr(G). By Lemma 3.7, we have that γtr(G − e) ≤ 4n + 5. Since
γtr(G) ≥ 4n+ 4, we conclude that γtr(G) = 4n+ 4.



N. JAFARI RAD ET AL. /AUSTRALAS. J. COMBIN. 68 (2) (2017), 265–275 272

From Lemmas 3.6, 3.7 and 3.8, it follows that btr(G) ≤ 1 if and only if C is sat-
isfiable. Since the construction of the total restrained bondage instance is straight-
forward from a 3-SAT instance, the size of the total restrained bondage instance is
bounded from above by a polynomial function of the size of the 3- SAT instance. It
follows that this is a polynomial transformation, as desired.

3.3 Proof of Theorem 2.3

We construct a bipartite graph G and an integer κ such that C is satisfiable if and
only if bi(G) ≤ κ. For i = 1, 2, ..., n, corresponding to each variable ui ∈ U , associate
a 6-cycle Hi : uiviuiaibidiui. Corresponding to each clause Cj = {xj, yj, zj} ∈ C,
associate a single vertex cj and add the edge-set Ej = {cjxj, cjyj, cjzj} for j =
1, 2, ...,m. Finally add a path P3 : s1s2s3, and join s1 and s3 to each vertex cj with
1 ≤ j ≤ m to obtain a bipartite graph G. Set κ = 1. Let S be an i(G)-set. Clearly
|S ∩ V (Hi)| ≥ 2 for i = 1, 2, ..., n. Also S ∩ {s1, s2, s3} 6= ∅. Thus we have the
following.

Lemma 3.9. |S| = i(G) ≥ 2n+ 1.

Lemma 3.10. i(G) = 2n+ 1 if and only if C is satisfiable.

Proof. Assume that i(G) = 2n + 1. Then |S ∩ V (Hi)| = 2 for i = 1, 2, ..., n, s2 ∈ S,
and S ∩ {s1, s3} = S ∩ {c1, ..., cm} = ∅. If {ui, ui} ⊆ S for some i, then bi is not
dominated by S, a contradiction. Thus |S ∩ {ui, ui}| ≤ 1. If S ∩ {ui, ui} = ∅
for some i, then we can replace S ∩ V (Hi) by {ui, ai}. Thus we may assume that
|S ∩ {ui, ui}| = 1 for i = 1, 2, ..., n. Let t : U −→ {T, F} be a mapping defined
by t(ui) = T if ui ∈ S and t(ui) = F if ui ∈ S. For each j ∈ {1, 2, ..,m}, the
corresponding vertex cj in G is not dominated by {s2}, and thus there is an integer
i ∈ {1, 2, ..., n} such that cj is dominated by S∩{ui, ui}. Assume that ui ∈ S, and cj
is dominated by ui. By the construction of G the literal ui is in the clause Cj. Then
t(ui) = T , which implies that the clause Cj is satisfied by t. Next assume that ui ∈ S,
and cj is dominated by ui. By the construction of G the literal ui is in the clause Cj.
Then t(ui) = F . Thus, t assigns ui the truth value T , that is, t satisfies the clause Cj.
Hence C is satisfiable. Conversely, suppose that C is satisfiable. Let t : U −→ {T, F}
be a satisfying truth assignment for C. We construct an independent dominating set
S for G of cardinality 2n+ 1. For this purpose, we construct a subset D of vertices
of G as follows. If t(ui) = T , then we put ui and ai in D; if t(ui) = F , then put ui
and di in D. Clearly, |D| = 2n. Since t is a satisfying truth assignment for C, for
each j = 1, 2, ...,m, at least one of literals in Cj is true under the assignment t. It
follows that the corresponding vertex cj in G is adjacent to at least one vertex in
D, since cj is adjacent to each literal in Cj. Thus S = D ∪ {s2} is an independent
dominating set of G of cardinality 2n + 1, and so i(G) ≤ 2n + 1. By Lemma 3.9,
i(G) = 2n+ 1.

The proofs of the following lemmas are straightforward, and we omit them.
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Lemma 3.11. For any edge e ∈ E(G), i(G− e) ≤ 2n+ 2.

Lemma 3.12. i(G) = 2n+ 1 if and only if bi(G) = 1.

From Lemmas 3.10, 3.11 and 3.12 it follows that bi(G) ≤ 1 if and only if C is satis-
fiable. Since the construction of the independent bondage instance is straightforward
from a 3-SAT instance, the size of the independent bondage instance is bounded from
above by a polynomial function of the size of the 3-SAT instance. It follows that this
is a polynomial transformation, as desired.

3.4 Proof of Theorem 2.4

We construct a bipartite graph G and an integer κ such that C is satisfiable if
and only if brk(G) ≤ κ. Corresponding to each variable ui ∈ U , we associate a
graph Hi with V (Hi) = {ui, ui, bi, di} ∪ {cij, eij : j = 1, 2, ..., k + 1} and E(Hi) =
{uidi, uibi} ∪ {cijeij, cijdi, cijbi, eijui, eijui : j = 1, 2, ..., k + 1}. Figure 3 shows the
graph Hi for k = 2. Corresponding to each clause Cj = {xj, yj, zj} ∈ C, associate
a single vertex cj and add the edge-set Ej = {cjxj, cjyj, cjzj}. Finally, add a star
K1,k with central vertex s and leaves s1, ..., sk, and join s1 to each vertex cj with
1 ≤ j ≤ m, and set κ = 1.
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Figure 3. The graph Hi for k = 2.

Let f be a γrk(G)-function. It is straightforward to see that
∑

v∈V (Hi)
|f(v)| ≥ 2k

for i = 1, 2, ..., n. Since |f(s)| +
∑k

j=1 |f(si)| +
∑m

j=1 |f(cj)| ≥ k, we obtain that
γrk(G) = w(f) ≥ 2kn+ k. Thus we obtain the following.

Lemma 3.13. γrk(G) = w(f) ≥ 2kn+ k.

Lemma 3.14. γrk(G) = 2kn+ k if and only if C is satisfiable

Proof. Assume that γrk(G) = 2kn + k. Let g be a γrk(G)-function. Clearly∑
v∈V (Hi)

|g(v)| ≥ 2k for i = 1, 2, ..., n. Also |g(ci)| = 0 for i = 1, 2, ...,m. If |g(s1)| =
k, then s2 is not k-rainbow dominated by g, a contradiction. Thus |g(s1)| < k. This
implies that for each j ∈ {1, 2, ..,m}, there is an integer i ∈ {1, 2, ..., n} such that
cj is dominated by V g

12...k ∩ {ui, ui}. Assume that ui ∈ V g
12...k, and cj is dominated

by ui. By the construction of G the literal ui is in the clause Cj. Then t(ui) = T ,
which implies that the clause Cj is satisfied by t. Next assume that ui ∈ V g

12...k, and
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cj is dominated by ui. By the construction of G the literal ui is in the clause Cj.
Then t(ui) = F . Thus, t assigns ui the truth value T , that is, t satisfies the clause
Cj. Hence C is satisfiable.

Conversely, assume that C is satisfiable. Let t : U −→ {T, F} be a satisfying
truth assignment for C. We construct a subset D of vertices of G as follows. If
t(ui) = T , then we put the vertices ui and bi in D; if t(ui) = F , then put the vertices
ui and di in D. Clearly, |D| = 2n. Now f defined on V (G) by f(u) = {1, 2, ..., k} if
u ∈ D, f(s) = {1, 2, ..., k}, f(u) = ∅ otherwise, is a kRDF of weight 2kn + k, and
thus γrk(G) ≤ 2kn+ k. By Lemma 3.13, γrk(G) = 2kn+ k.

The following can be easily proved.

Lemma 3.15. For any edge e ∈ E(G), γrk(G− e) ≤ 2n+ k + 1.

Lemma 3.16. γrk(G) = 2kn+ k if and only if brk(G) = 1.

Proof. Assume that γrk(G) = 2kn + k. Let h be a γrk(G − ss2)-function. Then∑
v∈V (Hi)

|h(v)| ≥ 2k for i = 1, 2, ..., n, and |h(s)|+
∑k

i=1 |h(si)| ≥ k+1. Consequently

brk(G) = 1. Conversely assume that bkr(G) = 1. Let e be an edge such that
γrk(G − e) > γrk(G). It is a routine matter to see that γrk(G − e) ≤ 2kn + k + 1.
Thus 2kn+k+1 ≥ γrk(G−e) > γrk(G) ≥ 2kn+k implying that γrk(G) = 2kn+k.

Thus, from Lemmas 3.14, 3.15 and 3.16 it follows that brk(G) ≤ 1 if and only if C
is satisfiable. Since the construction of the k-rainbow bondage instance is straightfor-
ward from a 3-SAT instance, the size of the k-rainbow bondage instance is bounded
from above by a polynomial function of the size of the 3-SAT instance. It follows
that this is a polynomial transformation, as desired.
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