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Abstract

The complementary prism GG of a graph G is formed from the disjoint
union of G and its complement G by adding the edges of a perfect match-
ing between the corresponding vertices of G and G. A Roman dominating
function on a graph G = (V,E) is a labeling f : V (G) �→ {0, 1, 2} such
that every vertex with label 0 is adjacent to a vertex with label 2. The
Roman domination number γR(G) ofG is the minimum f(V ) = Σv∈V f(v)
over all such functions of G. We study the Roman domination number of
complementary prisms. Our main results show that γR(GG) takes on a
limited number of values in terms of the domination number of GG and
the Roman domination numbers of G and G.
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1 Introduction

Complementary products were introduced in [6] as a generalization of Cartesian
products. Problems involving domination invariants of Cartesian products [9, 11]
are among the most interesting and well-studied problems in graph theory. In this
paper, we consider Roman domination in a sub-family of complementary products
called complementary prisms.

For a graph G = (V,E), the complementary prism, denoted GG, is formed from
the disjoint union of G and its complement G by adding a perfect matching between
corresponding vertices of G and G. For each v ∈ V (G), let v denote the vertex
corresponding to v in G. Formally, the graph GG is formed from G∪G by adding the
edge vv for every v ∈ V (G). We note that complementary prisms are a generalization
of the Petersen graph. In particular, the Petersen graph is the complementary prism
C5C5. For another example of a complementary prism, consider the following. The
corona of a graph G, denoted G ◦ K1, is formed from G by adding, for each v ∈
V (G), a new vertex v′ and the pendant edge vv′. Thus, the corona Kn ◦K1 is the
complementary prism KnKn.

The hamiltonicity of complementary prisms is studied in [10], and domination
parameters of complementary prisms have been studied in [5, 7] and elsewhere. As
previously mentioned, our focus is on Roman domination in these graphs.

A Roman dominating function (RDF) on a graphG is a vertex labeling f : V (G) �→
{0, 1, 2} such that every vertex with label 0 is adjacent to at least one vertex with
label 2. For any Roman dominating function f of G, and i ∈ {0, 1, 2}, let Vi = {v ∈
V (G) | f(v) = i}. Since this partition determines f , we write f = (V0, V1, V2). The
weight of a Roman dominating function f is defined as w(f) = Σv∈V f(v), equivalently
w(f) = |V1| + 2|V2|. The Roman domination number γR(G) of G is the minimum
weight of a Roman dominating function on the graph G. If a Roman dominating
function of G has weight γR(G), then it is referred to as a γR-function of G. Roman
domination was introduced by Cockayne et al. [4] in 2004 and has received much
attention in the literature, see for example [1, 2, 3, 8].

To aid in our discussion, we will need some more terminology. For a vertex v ∈
V (G), the open neighborhood of v is N(v) = {u ∈ V (G) | uv ∈ E(G)}, and the closed
neighborhood N [v] = N(v) ∪ {v}. The degree of a vertex v is degG(v) = |N(v)|.
A vertex of degree 0 is an isolated vertex. For two vertices u and v in a connected
graph G, the distance dG(u, v) between u and v is the length of a shortest u–v path
in G. The maximum distance among all pairs of vertices of G is its diameter, which
is denoted by diam(G). We say that G is a diameter-k graph if diam(G) = k. If G is
disconnected, then diam(G) = ∞. A set S ⊆ V (G) is a dominating set of G if every
vertex of V (G) \ S is adjacent to a vertex in S. The domination number γ(G) is the
minimum cardinality of any dominating set of G, and a dominating set of cardinality
γ(G) is called a γ-set of G.

We say that a vertex v ∈ V2 Roman dominates the vertices in N [v], and for a func-
tion f = (V0, V1, V2), we say that f Roman dominates the vertices in V1∪V2 as well as
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the vertices in V0 that have a neighbor in V2. We refer to the complementary prism
GG as a copy of G and a copy of G with a perfect matching between corresponding
vertices. For a set P ⊆ V (G), let P denote the corresponding set of vertices in V (G).
We also shorten V (G) to V and V (G) to V . Further, for any function f on GG, we
let w(fV ) denote the weight of f on G, and w(fV ) denote the weight of f on G. We
note that GG is isomorphic to GG, so our results stated in terms of G also apply to
G unless otherwise stated.

In this paper, we show that Roman domination numbers of complementary prisms
GG take on a limited number of values in terms of the domination number of GG
and the Roman domination numbers of G and G. These values are summarized in
Table 1 in Section 4. Among other results, we prove the lower bounds of Table 1 in
Section 2 and the upper bounds in Section 3.

2 Small Values and Lower Bounds

Observe that γR(GG) ≥ 2 for any graph G. As examples, we determine the comple-
mentary prisms GG having small Roman domination numbers, namely, those with
γR(GG) ∈ {2, 3, 4}.

Theorem 2.1 Let G be a graph of order n. Then

1. γR(GG) = 2 if and only if G = K1.

2. γR(GG) = 3 if and only if G = K2 or G = K2.

3. γR(GG) = 4 if and only if γR(G) = 3 and G has an isolated vertex or γR(G) = 3
and G has an isolated vertex.

Proof. (1) If G = K1, then GG = K2 and γR(K2) = 2.

Assume that γR(GG) = 2. Since a vertex in G (respectively, G) can Roman
dominate at most one vertex in G (respectively, G), it follows that any function of
weight 2 can Roman dominate at most one vertex in G or at most one vertex in G.
Hence, G = K1.

(2) If G = K2, then GG is isomorphic to the path P4 and γR(P4) = 3.

Assume that γR(GG) = 3. Then at most one vertex of GG, say v, is assigned a 2
under any γR-function of GG. It follows that G− v must be Roman dominated with
a weight of 1. Thus, G − v consists of exactly one vertex, that is, G, and hence, G
has order 2. Thus, {G,G} = {K2, K2}.
(3) Without loss of generality, assume that γR(G) = 3 and G has an isolated vertex

v. Then assigning a 2 to v Roman dominates V ∪ {v}. Further, since v is an isolate
of G and γR(G) = 3, it follows that assigning a total weight of 2 on the vertices of
G− v yields an RDF of GG. Thus, γR(GG) ≤ 2 + 2 = 4. Equality follows from (1)
and (2).
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Finally, assume that γR(GG) = 4, let f be a γR-function of GG. Note that (1)
and (2) imply that G has order at least 3. If no vertex of GG is assigned 2, then the
order of GG is 4, implying that G = K2 or G = K2, a contradiction. Thus, we may
assume, without loss of generality, that f(v) = 2. Moreover, if w(fV ) = 0, then G
has order at most 2, a contradiction. Hence, we have that w(fV ) ≥ 2, w(fV ) ≥ 1,
and w(fV ) + w(fV ) = 4. Further, if w(fV ) = 1, then w(fV ) = 3 implying that at
most two vertices of G are Roman dominated by f , a contradiction since G has order
at least 3. Hence, it must be the case that w(fV ) = w(fV ) = 2. If two vertices of G
are labeled 1, then v dominates G implying that v is an isolate in G and G has order
exactly 3. It follows that v is assigned 0 under f . Assigning 1 to every vertex of G
gives a RDF of G, and so, γR(G) = 3 and G has an isolated vertex. Hence, we may
assume that there is a vertex u ∈ G for which f(u) = 2. Thus, v Roman dominates
G−u and u Roman dominates G− v. Now u and v are adjacent in G or u and v are
adjacent in G. Hence, either u is an isolate in G or v is an isolate in G. Without loss
of generality, let u be an isolate in G. As before, γR(G) = 3, and the result holds. �

Corollary 2.1 If G and its complement G are isolate-free graphs, then γR(GG) ≥ 5.

For our next example, we determine the Roman domination number of the com-
plementary prism of a complete graph Kn.

Proposition 2.1 If G = Kn, then γR(GG) = n + 1.

Proof. Let v be a vertex in G. First note that the function assigning 2 to v, 1 to
each vertex in V \ {v}, and 0 otherwise is an RDF of GG. Hence, γR(GG) ≤ n + 1.

To see that γR(GG) ≥ n + 1, let f be a γR-function of GG. Note that for every
vertex v ∈ V , either f(v) ≥ 1 or f(v) = 2, implying that γR(GG) ≥ n. Further note
that if f has weight n, then every vertex of V is assigned 0 under f and every vertex
of V is assigned 1. But then the vertices of G are not Roman dominated by f , a
contradiction. Hence, γR(GG) ≥ n+ 1. �

Notice that from Proposition 2.1,

γR(GG) = n + 1 = γR(G) + 1 = max{γR(G), γR(G)}+ 1

for G = Kn. Next we show that for any graph G, γR(GG) ≥ max{γR(G), γR(G)}+1.

Theorem 2.2 For any graph G of order n, γR(GG) ≥ max{γR(G), γR(G)}+1 with
equality if and only if G or G has an isolated vertex.

Proof. If {G,G} = {Kn, Kn}, then GG is the corona Kn ◦K1. By Proposition 2.1,
γR(GG) = n + 1 = max{γR(G), γR(G)} + 1. Hence, we may assume that neither G
nor G is complete (empty), and so, G has order at least three. If either G or G is a
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P3, then it is a simple exercise to see that γR(GG) = max{γR(G), γR(G)}+1. Hence
we may assume that n ≥ 4.

Without loss of generality, assume that γR(G) ≥ γR(G). Let f be a γR-function
of GG.

If f(v) = 0 for every v ∈ V , then we note that f(v) = 2 for all v ∈ V . Let uv be an
edge in G. Then the function f ′(u) = 0 and f ′(w) = f(w) = 2 for every w ∈ V \ {u}
is an RDF of G such that w(f) ≥ w(f ′) + 2 ≥ γR(G) + 2.

Thus, we may assume that at least one vertex of V has a nonzero weight under
f . If no vertex of V is assigned a 2, then G is Roman dominated by the vertices of
G, implying that w(f) ≥ γR(G) + 1. If some vertex of V is assigned a 2, then the
function f ′(v) = 1 if f(v) = 2 and f ′(u) = f(u) otherwise, is a RDF of G such that
w(f) ≥ w(f ′) + 1 ≥ γR(G) + 1.

Now, by the above explanation, w(f) = γR(G) + 1 if and only if f(v) = 2 and
f(u) = 0 for all u ∈ V \ {v}, or f(v) = 1 and f(u) = 0 for all u ∈ V \ {v}. First
suppose that f(v) = 2 and f(u) = 0 for all u ∈ V \ {v}, and so, f(v) = 0. If v has
a neighbor with weight 2 in G, then γR(G) ≤ w(f) − 2, a contradiction. If there
exists a vertex u adjacent to v with f(u) = 0 or f(u) = 1, then f(u) = 0 and u
is not adjacent to a vertex with weight 2, a contradiction. Thus, v is an isolated
vertex in G. Second, suppose that f(v) = 1 and f(u) = 0 for all u ∈ V \ {v}.
In this case, f(u) = 2 for every u �= v in V . Recall that n ≥ 4. If v is not an
isolated vertex in G, then there exists a vertex w adjacent to v, and the function
f ′(w) = 2 = f(w), f ′(v) = f(v) and f ′(u) = 1 for any u �= w, v is an RDF of G such
that w(f) ≥ w(f ′) + 2 ≥ γR(G) + 2. This proves the necessity.

For the sufficiency, assume without loss of generality that G has an isolated vertex
v. Let f be a γR-function of G. Note that f(v) = 1. Moreover, the function assigning
0 to v, f(u) to every u ∈ V \ {v}, 2 to v, and 0 to every other vertex in V is a RDF
of GG having weight γR(G)− 1 + 2 = γR(G) + 1. Hence, γR(GG) = γR(G) + 1. �

Corollary 2.2 If neither graph G nor its complement G has an isolated vertex, then
γR(GG) ≥ max{γR(G), γR(G)}+ 2.

Next we show that the bound of Corollary 2.2 is sharp for graphs with minimum
degree one.

Theorem 2.3 If neither graph G nor its complement G has an isolated vertex and
one of them has a vertex of degree one, then γR(GG) = max{γR(G), γR(G)}+ 2.

Proof. Let G and G be isolate-free graphs. Assume that v is a vertex of degree one
in G and that u is the neighbor of v. Two possible scenarios can occur. For the first
case, there exists a γR-function of G such that f(v) = 0 and f(u) = 2. In this case,
f can be extended to an RDF of GG by assigning 2 to v and 0 to every other vertex
of G. In the second case, every γR(G)-function f assigns f(v) = 1. In this case, f
can be extended to an RDF of GG by reassigning 0 to v and assigning 2 to v, 1 to
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u, and 0 to every remaining vertex in V . In either case, γR(GG) ≤ γR(G) + 2, and
by Corollary 2.2, γR(GG) = γR(G) + 2. �

As a corollary to Theorem 2.3, we obtain the exact value for the Roman domination
number of the complementary prisms of paths. We use the following result from [4].

Proposition 2.2 [4] For paths Pn, γR(Pn) = 2n/3�.

Corollary 2.3 For paths G = Pn where n ≥ 3, γR(GG) =
⌈
2n
3

⌉
+ 2.

Proof. For G = P3, γR(GG) = 4 = γR(P3) + 2, and so the result holds. Thus, we
may assume that n ≥ 4. Since neither Pn nor P n for n ≥ 4 has an isolated vertex,
by Theorem 2.3 and Proposition 2.2, it follows that γR(GG) = γR(G)+2 =

⌈
2n
3

⌉
+2.
�

We note that the converse of Theorem 2.3 is not necessarily true. For example, let
G = C5. Then GG is the Petersen graph and γR(GG) = 6 = γR(G) + 2.

3 Upper Bounds

We begin with some results involving general graphs G. Note that assigning a weight
of 2 to every vertex of a γ-set S of G and a weight of 0 to the vertices in V \ S is an
RDF of G. This useful observation was first made in [4] as follows.

Observation 3.1 [4] For any graph G, γR(G) ≤ 2γ(G).

In [4], a graph G is called Roman if γR(G) = 2γ(G). We say that a graph G is
almost Roman if γR(G) = 2γ(G)−1. Using the following results from [4], we observe
that every diameter-2 graph is either Roman or almost Roman.

Proposition 3.1 [4] For any graph G with no isolated vertices, there exists a γR-
function f = (V0, V1, V2) of G such that if V1 �= ∅, then V1 is a 2-packing.

Theorem 3.1 [4] For any non-trivial connected graph G, γR(G) = min{2γ(G−S)+
|S| : S is a 2-packing}.

Note that if diam(G) = 2, then any maximal 2-packing of G contains exactly one
vertex. Thus, for diameter-2 graphs, if S is the set in Theorem 3.1, then either
S = ∅ or |S| = 1. Since removing a vertex can decrease the domination number of
any graph by at most one, we have the following corollaries to Theorem 3.1.

Corollary 3.1 If diam(G) = 2, then γR(G) ∈ {2γ(G), 2γ(G)− 1}.
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Corollary 3.2 If G is a graph of diameter 2, then γR(G) = 2γ(G)− 1 if and only
if G has a vertex v such that γ(G− v) = γ(G)− 1.

Now turning our attention back to complementary prisms, we consider the follow-
ing result from [6].

Theorem 3.2 [6] For the complementary prism GG, if diam(G) = diam(G) = 2
then diam(GG) = 2, else diam(GG) = 3.

Corollary 3.1 and Theorem 3.2 now yield the following corollary.

Corollary 3.3 For any graph G, if diam(G) = diam(G) = 2, then γR(GG) ∈
{2γ(GG), 2γ(GG)− 1}.

In other words, if diam(GG) = 2, then GG is Roman or almost Roman. Now we
consider complementary prisms with diameter 3. Clearly, an RDF of G combined
with an RDF of G forms an RDF of GG, so we make the following straightforward
observation.

Observation 3.2 For any graph G, γR(GG) ≤ γR(G) + γR(G).

Theorem 3.3 Let G be a graph with diam(G) ≥ 3 such that neither G nor G has
an isolated vertex. Then γR(G) + 2 ≤ γR(GG) ≤ γR(G) + 4.

Proof. The lower bound follows directly from Theorem 2.2. For the upper bound,
let u and v be peripheral vertices of G such that the distance between u and v equals
diam(G) ≥ 3. Since {u, v} dominates G, it follows that γ(G) ≤ 2. Observations 3.1
and 3.2 imply that γR(GG) ≤ γR(G) + γR(G) ≤ γR(G) + 4. �

We note that the upper bound of Theorem 3.3 is tight. To see this we consider a
family of strong product graphs.The strong product G�H of two graphs G and H has
vertex set V (G)×V (H) and any two distinct vertices (u, u′) and (v, v′) are adjacent
in G�H if and only if one of the following holds: uv ∈ E(G) and u′ = v′, or u = v
and u′v′ ∈ E(H), or uv ∈ E(G) and u′v′ ∈ E(H). For k ≥ 2, let Gk = C3k�K2. For
ease of discussion, we label the vertices of one copy of C3k as ui for 1 ≤ i ≤ 3k and
the vertices of the other copy of C3k as vi for 1 ≤ i ≤ 3k. The graph G2 is illustrated
in Figure 1. In our next result, we show that the complementary prisms GkGk are
extremal graphs for the upper bound of Theorem 3.3.

Proposition 3.2 For the graph Gk with k ≥ 2, γR(GkGk) = γR(Gk) + 4.

Proof. Let Gk = C3k � K2 with the vertex set described above. Let A = {ui |
i ≡ 2 (mod3)}. A function assigning a label of 2 to each vertex in A and 0 to each
vertex of V (Gk) \ A is an RDF of Gk. Hence, γR(Gk) ≤ 2k. Any RDF of Gk that
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Figure 1: The graph Gk when k = 2.

assigns a value of 2 to s < k vertices of Gk, must of necessity assign a value of 1
to at least 6(k − s) vertices of Gk. Thus, any such function f will have a weight
w(f) = 2s + 6(k − s) = 6k − 4s > 2k. Hence, γR(Gk) = 2k. Note that {u2, u5} is
a dominating set for Gk. Therefore, γR(Gk) ≤ 4. Any RDF of Gk that assigns no 2
will have a weight of n = 6k and if it labels exactly one vertex with a 2, it will have
a weight of at least 7. Thus, γR(Gk) ≥ γR(Gk) = 4.

We note that by Observation 3.2, γR(GkGk) ≤ γR(Gk) + γR(Gk) = 2k + 4. Let f
be a γR-function of GkGk. We aim to show that w(f) ≥ γR(Gk) + γR(Gk) = 2k + 4.
If f assigns a value of 2 to s < k vertices of V (Gk), then it must either assign a
value of 1 to at least 6(k − s) vertices of V (Gk) or a value of 2 to their counterparts
in V (Gk). In either case, w(f) ≥ 2s + 6(k − s) = 6k − 4s ≥ 2k + 4. If f assigns a
value of 2 to at least k + 2 vertices of V (GkGk), then w(f) ≥ 2k + 4. If f assigns a
value of 2 to exactly k + 1 vertices of V (Gk), then in order to Roman dominate the
6k − (k + 1) = 5k − 1 vertices of V (Gk) not Roman dominated by the vertices of
V (Gk), it will also be necessary for w(f) ≥ 2k + 2+ 5k − 1 > 2k+ 4. Thus, we may
assume that exactly k vertices of V (Gk) are assigned a label of 2 by f . If f does
not assign a label of 2 to any vertex of V (Gk), then w(f) ≥ 2k + 5k = 7k > 2k + 4.
Hence, we may assume that f assigns a value of 2 to exactly one vertex of V (Gk)
(if not, then w(f) ≥ 2k + 4 and we would be finished). Without loss of generality,
assume that f(u1) = 2.

Let S be the set of k vertices of V (Gk) assigned a label of 2 by f . Now V \N [u1] =
{u2, u3k, v2, v3k, v1}. Moreover, if more than one of these vertices is assigned a 1 under
f , then we have the desired result. This implies that at least four of these vertices are
dominated by vertices in S. Hence, at least four of the vertices of {u2, u3k, v2, v3k, v1}
are in S. But then the k vertices of S do not dominate all the vertices V (Gk) \ S, a
contradiction. It follows that γR(GkGk) = γR(Gk) + 4. �

As we have seen, the complementary prisms of paths attain the lower bound of
Theorem 3.3. Next we determine two additional families of complementary prisms
attaining this lower bound. Note that since γR(G) ≤ 2γ(G), it follows that if a graph
G is neither Roman nor almost Roman, then γR(G) ≤ 2γ(G)− 2. Also, we have the
following from [4].
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Proposition 3.3 [4] A graph G is Roman if and only if it has a γR-function f =
(V0, V1, V2) where V1 = ∅.

Theorem 3.4 If G is a graph that is neither Roman nor almost Roman and diam(G)
≥ 3, then γR(GG) ≤ γR(G) + 2 ≤ 2γ(G).

Proof. Select a γR-function f = (V0, V1, V2) of G such that |V2| is maximized. By
Proposition 3.1 and Theorem 3.1, V1 = ∅ or V1 is a 2-packing of G. Since G is not
Roman, it follows from Proposition 3.3 that V1 �= ∅.
Assume that |V1| = 1, and let V1 = {v}. In this case, γR(G) = 2|V2| + 1 and V2

dominates V \ {v}. Since γR(G) ≤ 2γ(G), it follows that 2|V2|+ 1 ≤ 2γ(G). Hence,
|V2| ≤ �γ(G)− 1/2� = γ(G)− 1. If |V2| ≤ γ(G)− 2, then V2 ∪ {v} is a dominating
set of G with cardinality at most γ(G)− 1, a contradiction. Hence, |V2| = γ(G)− 1
and γR(G) = 2|V2|+ |V1| = 2γ(G)− 1, contrary to our assumption that G is not an
almost Roman graph.

Thus, we may assume that |V1| ≥ 2. Since, V1 is a 2-packing, there exists vertices
u and v in V1 such that d(u, v) ≥ 3. Define the function f ∗ on GG as follows. If
x ∈ V \ {u, v}, let f ∗(x) = f(x). Let f ∗(u) = f ∗(v) = 0 and f ∗(u) = f ∗(v) = 2.
For all x ∈ V \ {u, v}, let f ∗(x) = 0. We note that {u, v}, dominates V . Thus, f ∗

is an RDF of GG, implying that γR(GG) ≤ w(f) = γR(G) − 2 + 4 = γR(G) + 2.
Furthermore, since G is not Roman or almost Roman, γR(G) ≤ 2γ(G)− 2 and the
result follows. �

Theorem 2.2 and Theorem 3.4 yield the following corollary.

Corollary 3.4 Let G be a graph such that both G and G are isolate-free. If G is
neither Roman nor almost Roman and diam(G) ≥ 3, then γR(GG) = γR(G) + 2.

We need the following definition before proceeding. A set S ⊆ V (G) is a restrained
dominating set if S is a dominating set of G and every vertex v ∈ V (G) \ S has a
neighbor in V (G) \S. The minimum cardinality of a restrained dominating set of G
is called the restrained domination number of G and is denoted by γr(G) (not to be
confused with γR(G)).

Theorem 3.5 If G is a Roman graph such that γr(G) > γ(G) and G has no isolated
vertices, then γR(GG) = γR(G) + 2.

Proof. Let S be a γ-set of G. Since γr(G) �= γ(G), it follows that there exists a
vertex v ∈ V \ S such that N(v) ⊆ S. Let f be a function f : V (GG) �→ {0, 1, 2}
such that f(u) = 2 if u ∈ S∪{v} and f(u) = 0 otherwise. The function f is an RDF
on GG with weight 2|S|+2 = 2γ(G) + 2 = γR(G)+ 2. Hence, γR(GG) ≤ γR(G) + 2.
Note that an isolated vertex of G would be in V1. Since G is a Roman graph,
Proposition 3.3 implies that G has no isolated vertices. Further, since G has no
isolated vertices, the result follows from Theorem 2.2. �
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We conclude this section by noting that the middle value of γR(G) + 3 is also
attainable. Let G = Cn for n ≥ 6 such that n is congruent to 0 or 1 modulo 3.
Then γR(GG) = γR(G) + 3 = 2n/3�+3. Furthermore, we note that if G is a graph
with diam(G) ≥ 3 and G is neither Roman nor almost Roman, by Theorem 3.4,
γR(GG) = γR(G) + 2. Hence, for any graph GG attaining the upper bound of
Theorem 3.3, each of G and G must be Roman or almost Roman. However, this
is not sufficient for a characterization of such graphs. For example, if G = Cn

where n ≥ 6 and n is congruent to 0 modulo 3, then both G and G are Roman but
γR(GG) < γR(G) + 4.

4 Summary

Let G be a graph such that G and G are isolate-free graphs. Hence, diam(G) ≥ 2 and
diam(G) ≥ 2. Then Table 1 summarizes the results from Sections 2 and 3 for such
graphs. The values for diam(G) and diam(G) are given in the first two columns and
the last column lists the possible values of γR(GG) for graphs GG where G and G
have these given diameters. The first row in the table is directly from Corollary 3.3.
It is well known that if diam(G) ≥ 3, then diam(G) ≤ 3. Thus, the second row follows
directly from Theorem 3.3 . If diam(G) = diam(G) = 3, then by Observation 3.1,
γR(GG) ≤ γR(G) + γR(G) ≤ 4 + 4 = 8. Given this small upper bound, we treat
this subcase of the second row result separately in Row 3. Note that in Table 1,
k = max{γR(G), γR(G)}.

Table 1: Roman Domination Numbers of Complementary Prisms

diam(G) diam(G) γR(GG)

2 2 {2γ(GG), 2γ(GG)− 1}
≥ 3 {2, 3} {k + 2, k + 3, k + 4}
3 3 ≤ 8

Acknowledgments

The authors would like to express their sincerest thanks to the anonymous referees
whose suggestions have greatly improved this paper.

References

[1] S. Bermudo, H. Fernau and J.M. Sigarreta, The differential and the Roman
domination number of a graph, Appl. Anal. Discrete Math. 8 (2014), 155–171.



A. ALHASHIM ET AL. /AUSTRALAS. J. COMBIN. 68 (2) (2017), 218–228 228

[2] E.W. Chambers, B. Kinnersley, N. Prince and D.B. West, Extremal problems
for Roman domination, SIAM J. Discrete Math. 23 (2009), 1575–1586.

[3] M. Chellali and N. Jafari Rad, Double equality between the Roman domination
and independent Roman domination numbers in trees, Discuss. Math. Graph
Theory 33 (2013), 337–346.

[4] E. J. Cockayne, P.M. Dreyer Sr., S.M. Hedetniemi and S.T. Hedetniemi, Roman
domination in graphs, Discrete Math. 278 (2004), 11–22.

[5] W. J. Desormeaux and T.W. Haynes, Restrained domination in complementary
prisms, Util. Math. 86 (2011), 267–278.

[6] T.W. Haynes, M.A. Henning, P. J. Slater and L.C. van der Merwe, The com-
plementary product of two graphs, Bull. Instit. Combin. Appl. 51 (2007), 21–30.

[7] T.W. Haynes, M.A. Henning and L.C. van der Merwe, Domination and total
domination in complementary prisms, J. Combin. Optim. 18 (2009), 23–37.

[8] M.A. Henning and S.T. Hedetniemi, Defending the Roman Empire—A new
strategy, Discrete Math. 266 (2003), 239–251.

[9] W. Imrich and S. Klavzar, Product Graphs, Structure and Recognition, Wiley
(2000).

[10] D. Meierling, F. Protti, D. Rautenbach and A.R. de Almeida, Cycles in com-
plementary prisms, Discrete Appl. Math. 193 (2015), 180–186.

[11] R. J. Nowakowski and D.F. Rall, Associative graph products and their inde-
pendence, domination, and coloring numbers, Discuss. Math. Graph Theory 16
(1996), 53–79.

(Received 19 July 2016; revised 18 Dec 2016)


