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Abstract

The existence of pairwise additive balanced incomplete block (BIB) de-
signs and pairwise additive cyclic BIB designs with λ = 1 has been dis-
cussed through direct and recursive constructions in the literature. This
paper takes BIB designs with 1-rotational automorphisms and then the
existence of pairwise additive 1-rotational BIB designs is investigated for
λ = 1. Finally, it is shown that there exists a 2-pairwise additive 1-
rotational BIB design with parameters v, k and λ = 1 if and only if any
v ≥ 4 and k = 2.

1 Introduction

A balanced incomplete block (BIB) design is a system (V,B), where V is a set of v
points and B (|B| = b) is a family of k-subsets (blocks) of V , such that each point
of V appears in r different blocks of B and any two different points of V appear in
exactly λ blocks in B [21]. This is denoted by BIBD(v, b, r, k, λ) or B(v, k, λ).

For a BIB design (V,B), let σ be a permutation on V . For a block B =
{v1, . . . , vk} ∈ B and a permutation σ on V , let Bσ = {vσ1 , . . . , vσk}. When B =
{Bσ | B ∈ B}, σ is called an automorphism of the design (V,B). If there exists
an automorphism σ of order v = |V |, then the BIB design is said to be cyclic. On
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the other hand, when there exists an automorphism σ of order v − 1 with one fixed
point, the BIB design is said to be 1-rotational with respect to the cyclic group of
order v − 1 [2, 19]. Throughout the paper, the BIB design being 1-rotational with
respect to the cyclic group of order v− 1 is simply said to be 1-rotational. Note that
1-rotational BIB designs with respect to other algebraic groups are not said to be
1-rotational in this paper.

For a cyclic BIB design (V,B), the set V of v points can be identified with
Zv = {0, 1, . . . , v − 1}. In this case, the design has an automorphism σ : i 7→ i + 1
(mod v). The block orbit containing B = {v1, v2, . . . , vk} ∈ B is a set of distinct
blocks B + i = {v1 + i, v2 + i, . . . , vk + i} (mod v) for i ∈ Zv. A block orbit is said
to be full or short according as |{B + i | 0 ≤ i ≤ v − 1}| = v or not.

For a 1-rotational BIB design (V,B), the set V of v points can be identified with
Zv−1 ∪ {∞} and the block orbit containing B = {v1, v2, . . . , vk} ∈ B is a set of
distinct blocks B + i = {v1 + i, v2 + i, . . . , vk + i} (mod v − 1) for i ∈ Zv−1. When
B = {∞, v2, . . . , vk}, B + i = {∞, v2 + i, . . . , vk + i}. Moreover, if λ = 1, then the
orbit of B = {∞, v2, . . . , vk} has cardinality (v − 1)/(k − 1). Similarly, a block orbit
is said to be full or short according as |{B + i | 0 ≤ i ≤ v − 2}| = v − 1 or not.

Choose an arbitrary block from each block orbit and call it an initial block. The
initial block in a full block orbit and a short block orbit is called a full initial block
and a short initial block, respectively. It is clear that a cyclic B(2t, 2, 1) or a 1-
rotational B(2t+ 1, 2, 1) has a short orbit given by the 2-subset {0, t} for any t ≥ 1.
This short orbit is denoted by {0, t}PC(t), where PC(t) means a short cycle of order
t, i.e., only 0, 1, . . . , t− 1 are to be added to the initial block.

Let s = v/k, where s need not be an integer, unlike other design parameters.
A set of ` BIBD(v, b, r, k, λ)’s, namely, (V,B1), (V,B2), . . . , (V,B`), is called an `-
pairwise additive BIB design, denoted by `-PAB(v, k, λ), if it is possible to pair the
designs (V,B1), (V,B2), . . . , (V,B`), in such a way that every pair (V,Bi1), (V,Bi2),
where 1 ≤ i1, i2 ≤ `, i1 6= i2, gives rise to a new design (V,B∗i1i2) with parameters
v∗ = v = sk, b∗ = b, r∗ = 2r, k∗ = 2k, λ∗ = 2r(2k − 1)/(sk − 1). The family B∗i1i2 is
defined by B∗i1i2 = {Bi1j ∪ Bi2j | 1 ≤ j ≤ b} with Bij being the jth block of an ith
block family Bi. When ` = s, this is called an additive BIB design [16, 23], denoted
by AB(v, k, λ). An `-PAB(v, k, λ) is said to be cyclic or 1-rotational, denoted by
`-PACB(v, k, λ) or `-PARB(v, k, λ), if (i) every design (V,B1), (V,B2), . . . , (V,B`) is
cyclic or 1-rotational, respectively, and (ii) every design (V,B∗i1i2) arising from the
pair (V,Bi1), (V,Bi2) is cyclic or 1-rotational and its initial blocks are obtained by
joining an initial block in (V,Bi1) to an initial block in (V,Bi2), where two orbits
given by Bi1j and Bi2j have the same cardinality for each 1 ≤ j ≤ b. Note that if we
join an initial block of a B(v, k, λ) to an initial block of another B(v, k, λ), then the
resulting block might not be an initial block of a B(v, 2k, λ′). When ` = s, this is
called an additive cyclic BIB design or an additive 1-rotational BIB design, denoted
by ACB(v, k, λ) or ARB(v, k, λ), respectively. For example, it is checked that the
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four block families

B1 : {0, 1}, {4, 2}, {3, 6}, {5,∞} mod 7

B2 : {4, 2}, {0, 1}, {5,∞}, {3, 6} mod 7

B3 : {5,∞}, {3, 6}, {0, 1}, {4, 2} mod 7

B4 : {3, 6}, {5,∞}, {4, 2}, {0, 1} mod 7

yield an ARB(8, 2, 1). Note that we allow repeated blocks in (V,B∗i1i2).
Some results on existence are reviewed. In a PAB(v, k, 1), it is shown that there

are an AB(2n, 2, 1) and an AB(3n, 3, 1) for any integer n ≥ 2 [22, 23], and there are a
2-PAB(v, 2, 1) for any v ≥ 4 and a 3-PAB(v, 2, 1) for any v ≥ 6 [11, 14]. Furthermore,
partial results on asymptotic existence of `-PAB(v, k, λ)’s and the existence of 2-
PACB(v, k, 1)’s are also shown in [12, 13, 15]. However, for an `-PACB(v, k, 1), its
complete existence is not yet known in the literature, even if ` = 2 and k = 2, as the
following shows.

Theorem 1.1 [12] There exists a 2-PACB(v, 2, 1) for any odd integer v ≥ 5 such
that gcd(v, 9) 6= 3.

Theorem 1.2 [15] There exists a 2-PACB(2mt, 2, 1) for any integer m ≥ 2 and any
odd integer t(≥ 1) such that gcd(t, 27) 6= 3, 9.

We now focus on 1-rotational BIB designs and the complete existence of a 2-
PARB(v, k, 1) will be established in Section 5 as follows. This will be the main
result of the present paper.

Theorem 1.3 There exists a 2-PARB(v, k, 1) if and only if any v ≥ 4 and k = 2.

Note that the existence of `-pairwise additive BIB designs is equivalent to the
existence of some kind of decompositions of a λ-fold complete graph λKv into edge-
disjoint subgraphs isomorphic to a complete graph Kk, denoted by a (v,Kk, λ)-
design, in terms of graph embeddings (cf. [3, 7]). In fact, Theorem 1.3 is equivalent
to say that there are two 1-rotational (v,K2, 1)-designs simultaneously embedded
into a 1-rotational (v,K4, 6)-design allowed the repeated blocks such that two K2’s
simultaneously embedded into each K4 are vertex-disjoint. However, as far as the
authors know, any existence result on graphs which is equivalent to Theorem 1.3 has
not been provided in literature.

On the other hand, [14] gives a construction of an `-PAB(v, k, λ) by use of nested
BIB designs defined in [20]. A survey of nested BIB designs is given in [18] and a
more general class of nested BIB designs is further discussed in [10, 17] with wide
applicability for other designs. Unfortunately, to the best of our knowledge, by
utilizing any result on nested BIB designs we cannot show the complete existence of
a 2-PARB(v, 2, 1).

In particular, Z-cyclic whist tournament designs of order 4n in [1] coincide with
a special class of nested BIB designs having both a 1-rotational automorphism and
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the property of resolvability. It is seen that the Z-cyclic whist tournament designs of
order 4n can give the 2-PARB(4n, 2, 1) with resolvability by use of the construction
method in [14]. However, the investigation of existence of a 2-PARB(v, 2, 1) with
resolvability may be as difficult as showing the existence of Z-cyclic whist tournament
designs. The resolvability of a 2-PARB(v, k, 1) will be discussed in another paper.

In Section 2, fundamental results for PAB(v, k, 1)’s and 1-rotational BIB designs
will be reviewed and the nonexistence of a 2-PARB(v, k, 1) for any k ≥ 3 will be
shown. In Section 3, a pairwise additive cyclic relative difference family (PACDF)
used in the proof of Theorem 1.3 will be defined and recursive constructions used
in [4, 9, 24] will be developed for the PACDF. Section 4 shows some existence of
PACDFs and Section 5 is devoted to the proof of Theorem 1.3. As the appendix,
individual examples will be presented.

2 Fundamental results

It is known [23] that in a PAB(v, k, λ)

2λ ≡ 0 (mod k − 1) (2.1)

which implies k = 2 or 3 when λ = 1.

A B(v, 3, 1) is known as a Steiner triple system (STS). The existence of 1-
rotational STSs with respect to an arbitrary group is studied in [2]. Moreover, a
characterization of 1-rotational STSs with respect to the cyclic group of order v − 1
is known as follows.

Lemma 2.1 [19] Any 1-rotational B(v, 3, 1) (V,B) with a point set V = Zv−1∪{∞}
contains the short orbit of the block {0, (v − 1)/2,∞}PC((v − 1)/2) and full orbits
in B.

Now the nonexistence of an `-PARB(v, k, 1) can be shown.

Theorem 2.2 There exists no `-PARB(v, k, 1) for any integers ` ≥ 2, v ≥ `k and
k ≥ 3.

Proof. When k ≥ 4, (2.1) shows the nonexistence of the design. When k = 3,
on account of Lemma 2.1, let {a, a + (v − 1)/2,∞} and {a′, a′ + (v − 1)/2,∞},
a, a′ ∈ Zv−1, can be short initial blocks of B1 and B2, respectively. By the definition of
a 2-PARB(v, 3, 1), B∗12 must contain a set-union of two short initial blocks. However,
both of the two blocks contain the element ∞ in common. Hence there does not
exist the required design. �

Remark 2.3 By taking account of an idea used in the proof of Theorem 2.2, a
general result can be shown such that there exists no `-PARB(v, k, (k − 1)/2) for
any ` ≥ 2, any v ≥ `k and any odd integer k ≥ 3. Hence, it follows from (2.1) that
λ ≥ k − 1 in a PARB(v, k, λ).
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From now on, we will discuss the remaining case k = 2 for λ = 1 and any v ≥ 4
to obtain the main result of this paper.

3 Some combinatorial structures

In this section, cyclic difference matrices (CDMs) and cyclic relative difference fam-
ilies (CDFs) are reviewed and pairwise additive cyclic relative difference families
(PACDFs) are newly defined. In [4, 9, 24], CDFs are used to construct designs with
cyclic (or 1-rotational) automorphisms, and useful recursive constructions of CDFs
are given by use of CDMs. Similarly, some constructions of PACDFs are discussed
here.

At first CDMs are reviewed. A cyclic difference matrix on Zv, denoted by
CDM(k, v), is defined as a k×v array (a(m,n)), a(m,n) ∈ Zv, 1 ≤ m ≤ k, 1 ≤ n ≤ v,
that satisfies

Zv = {a(i, n)− a(j, n) (mod v) | 1 ≤ n ≤ v}

for each 1 ≤ i < j ≤ k, that is, the differences of any two distinct rows contain every
element of Zv exactly once (see [8]).

Lemma 3.1 [8] There exists a CDM(4, v) for any odd integer v ≥ 5 such that
gcd(v, 27) 6= 9.

Let G be a group and N be a subgroup of G. Then a family F = {Fi | i ∈ I}
of k-subsets of G is called a relative difference family, denoted by (G,N, k, λ)-DF,
if the list of differences (d − d′ | d, d′ ∈ Di, d 6= d′, i ∈ I) contains each element of
G−N exactly λ times and each element of N zero time. When G is the cyclic group
Zv and N is the subgroup of Zv of order n, the relative difference family is said to
be cyclic, denoted by (v, n, k, λ)-CDF (cf. [4, 24]).

Some results on the existence of (vg, g, 4, 1)-CDFs are known as follows.

Lemma 3.2 [5, 6] There exists a (2s+4, 2s, 4, 1)-CDF for any integer s ≥ 2.

Lemma 3.3 [6] There exist a (81, 9, 4, 1)-CDF and a (243, 27, 4, 1)-CDF.

A set of two families F1 and F2 is called a 2-pairwise additive (vg, g, k, λ)-CDF,
denoted by 2-(vg, g, k, λ)-PACDF, if both F1 and F2 are (vg, g, k, λ)-CDFs and the

family of set-unions of the jth k-subsets B
(1)
j ∈ F1 and B

(2)
j ∈ F2, 1 ≤ j ≤ |F1| =

|F2|, is also a (vg, g, 2k, λ′)-CDF with λ′ = 2λ(2k−1)/(k−1). Throughout the paper,
the above “2-(vg, g, k, λ)-PACDF” is simply denoted by “(vg, g, k, λ)-PACDF”.

Next, some constructions of (vg, g, 2, 1)-PACDFs are provided.

Lemma 3.4 The existence of a (vg, g, 4, 1)-CDF implies the existence of a (vg,
g, 2, 1)-PACDF.
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Proof. Let 4-subsets of the (vg, g, 4, 1)-CDF on Zvg be

{ai, bi, ci, di}, 1 ≤ i ≤ g(v − 1)

12
.

Then it is seen that the following families on subsets of Zvg yield the required
(vg, g, 2, 1)-PACDF:

F1 : {ai, bi}, {ai, ci}, {ai, di}, {ci, bi}, {bi, di}, {di, ci}
F2 : {ci, di}, {di, bi}, {bi, ci}, {di, ai}, {ci, ai}, {bi, ai}

for 1 ≤ i ≤ g(v − 1)/12. �

Note that in the proof of Lemma 3.4 the construction of F1 and F2 is skillful,
since an initial subset of the CDF might not arise from the union of initial subsets
belonging to families with other parameters.

Lemma 3.5 Let m be a divisor of g. Then the existence of a (vg, g, 2, 1)-PACDF
and a (g,m, 2, 1)-PACDF implies the existence of a (vg,m, 2, 1)-PACDF.

Proof. Let F1,F2 and F ′1,F ′2 be families of a (vg, g, 2, 1)-PACDF and a (g,m, 2, 1)-
PACDF, respectively. Then combined families F∗h = Fh ∪ {{vx, vy} | {x, y} ∈ F ′h}
on Zvg, h = 1, 2, can yield a (vg,m, 2, 1)-PACDF. �

Lemma 3.6 The existence of a (vg, g, 2, 1)-PACDF and a CDM(4, v′) implies the
existence of a (vv′g, v′g, 2, 1)-PACDF.

Proof. Let two families of a (vg, g, 2, 1)-PACDF be

Fh : {xhi, yhi}

for 1 ≤ i ≤ g(v − 1)/2 and h = 1, 2. Further let A be the CDM(4, v′) with a(m,n)
as the (m,n)-entry for 1 ≤ m ≤ 4 and 1 ≤ n ≤ v′. Then, it can be shown that the
following two families yield the required (vv′g, v′g, 2, 1)-PACDF on Zvv′g:

F∗h : {xhi + a(2h− 1, n)vg, yhi + a(2h, n)vg}

for 1 ≤ i ≤ g(v−1)/2, 1 ≤ n ≤ v′ and h = 1, 2. In fact, let {x∗hj, y∗hj} be the jth subset
of F∗h for 1 ≤ j ≤ v′g(v−1)/2 and h = 1, 2. Then, by the property of the CDM(4, v′),
it can be checked that the multiset of differences arising from the subsets of F∗h ,

h = 1, 2, is composed of (i) ∪v
′g(v−1)/2
j=1 {±(x∗hj − y∗hj)} = {±(xhi− yhi) +nvg | 1 ≤ i ≤

g(v−1)/2, 0 ≤ n ≤ v′−1} containing every element of Zvv′g−vZvv′g exactly once for

each h = 1, 2 and (ii) ∪v
′g(v−1)/2
j=1 {±(x∗1j−x∗2j),±(y∗1j−y∗2j),±(x∗1j−y∗2j),±(y∗1j−x∗2j)} =

{±(x1i−x2i+nvg),±(y1i−y2i+nvg),±(x1i−y2i+nvg),±(y1i−x2i+nvg) | 1 ≤ i ≤
g(v − 1)/2, 0 ≤ n ≤ v′ − 1} containing every element of Zvv′g − vZvv′g exactly four
times. Thus it is seen that both F∗1 and F∗2 are (vv′g, v′g, 2, 1)-CDFs, and the family
of set-unions {x∗1j, y∗1j}∪{x∗2j, y∗2j}, 1 ≤ j ≤ v′g(v−1)/2, yields a (vv′g, v′g, 4, 6)-CDF.
The proof is complete. �
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Note that full initial blocks of a 2-PACB(v, 2, 1) with no short initial blocks can
be considered as a (v, 1, 2, 1)-PACDF. Hence, it is clear that Lemma 3.6 provides a
(vg, g, 2, 1)-PACDF, by use of the 2-PACB(v, 2, 1) with no short initial blocks and a
CDM(4, g).

On the other hand, it is obvious that there does not exist a CDM(4, 2). Hence,
Lemma 3.6 cannot be utilized for the case of v′ = 2. However, the following recursive
construction can be presented.

Lemma 3.7 The existence of a (vg, g, 2, 1)-PACDF implies the existence of a
(2vg, 2g, 2, 1)-PACDF.

Proof. Let two families of a (vg, g, 2, 1)-PACDF be

Fh : {xhi, yhi}

for 1 ≤ i ≤ g(v−1)/2 and h = 1, 2. Then, by choosing arbitrary blocks in each orbit
of {x1i, y1i}∪{x2i, y2i}, without loss of generality it can be assumed that {x1i, y1i} =
{0, i}.

Now it can be shown that the following two families yield the required (2vg, 2g,
2, 1)-PACDF on Z2vg:

F∗1 : {x1i, y1i}, {x2i, y2i + δivg}
F∗2 : {x2i, y2i + δivg}, {x1i + vg, y1i + vg}

for 1 ≤ i ≤ g(v−1)/2, where δi = 1 or 0 according as |y2i−x2i| < vg/2 or otherwise.
In fact, let {x∗hj, y∗hj} be the jth subset of F∗h for 1 ≤ j ≤ g(v − 1) and h = 1, 2.

Then the definition of δi implies that ∪g(v−1)j=1 {±(x∗hj − y∗hj)} = {±(x1i− y1i),±(x2i−
y2i− δivg) | 1 ≤ i ≤ g(v− 1)/2} contains every element of Z2vg − vZ2vg exactly once

for each h = 1, 2. Furthermore, it can be checked that ∪g(v−1)j=1 {±(x∗1j − x∗2j),±(y∗1j −
y∗2j),±(x∗1j−y∗2j),±(y∗1j−x∗2j)} = {±(x1i−x2i+nvg),±(y1i−y2i+nvg),±(x1i−y2i+
nvg),±(y1i − x2i + nvg) | 1 ≤ i ≤ g(v − 1)/2, 0 ≤ n ≤ 1} contains every element of
Z2vg−vZ2vg exactly four times. Thus it is seen that both F∗1 and F∗2 are (2vg, 2g, 2, 1)-
CDFs, and the family of set-unions {x∗1j, y∗1j} ∪ {x∗2j, y∗2j}, 1 ≤ j ≤ g(v − 1), yields a
(2vg, 2g, 4, 6)-CDF. The proof is complete. �

The results obtained here will be used in the next section.

4 Existence of (vg, g, 2, 1)-PACDFs

In this section, the discussion on existence of (vg, g, 2, 1)-PACDFs is made by use of
direct and recursive methods.

Throughout Sections 4 and 5, let P be any odd integer such that gcd(P, 6) = 1
and P ≥ 5. Then any prime factor of P is not less than 5.

At first, two classes of (vg, g, 2, 1)-PACDFs are produced by use of direct con-
structions as the following shows.
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Lemma 4.1 Let P ≥ 5 be an odd integer with gcd(P, 6) = 1. Then there exists a
(2P, 2, 2, 1)-PACDF.

Proof. Since gcd(2, P ) = 1, the following two families on Z2 × ZP can yield the
required (2P, 2, 2, 1)-PACDF on Z2P , by corresponding the element j for 0 ≤ j ≤
2P − 1 to (z, w), where j ≡ z (mod 2) and j ≡ w (mod P ):

F1 : {(0, 0), (1, a)}, {(0, 0), (0, a)}
F2 : {(1, 2a), (1, 4a)}, {(0, 2a), (1, 4a)}

for any integer a with 1 ≤ a ≤ (P − 1)/2. �

Lemma 4.2 Let P ≥ 5 be an odd integer with gcd(P, 6) = 1. Then there exists a
(3P, 3, 2, 1)-PACDF.

Proof. Since gcd(3, P ) = 1, the following two families on Z3 × ZP can yield the
required (3P, 3, 2, 1)-PACDF on Z3P , by corresponding the element j for 0 ≤ j ≤
3P − 1 to (z, w), where j ≡ z (mod 3) and j ≡ w (mod P ):

F1 : {(0, 0), (1, a)}, {(0, a′), (0,−a′)}
F2 : {(0, 2a), (1, 3a)}, {(1, 2a′), (1,−2a′)}

for any integers a and a′ with 1 ≤ a ≤ P − 1 and 1 ≤ a′ ≤ (P − 1)/2. �

Next, some results on the existence of (vg, g, 2, 1)-PACDFs obtained from (vg, g,
4, 1)-CDFs are shown as follows.

Lemma 4.3 There exists a (24m+n, 2n, 2, 1)-PACDF for any n ∈ {2, 3, 4, 5} and any
positive integer m.

Proof. Lemma 3.4 with the (24m+n, 24m+n−4, 4, 1)-CDF obtained by Lemma 3.2 can
provide a (24m+n, 24m+n−4, 2, 1)-PACDF for any m ≥ 1 and any n ∈ {2, 3, 4, 5}.
Hence, for m = 1 the result can be shown. Furthermore, by Lemma 3.5 with a
(24(m+1)+n, 24m+n, 2, 1)-PACDF, the existence of a (24m+n, 2n, 2, 1)-PACDF implies
the existence of a (24(m+1)+n, 2n, 2, 1)-PACDF for m ≥ 1. Thus, the proof is complete
by mathematical induction on m. �

Lemma 4.4 There exist a (3n, 9, 2, 1)-PACDF and a (3n
′
, 3, 2, 1)-PACDF for any

even integer n ≥ 4 and any odd integer n′ ≥ 3.

Proof. By applying Lemma 3.4 with the (81, 9, 4, 1)-CDF and the (243, 27, 4, 1)-
CDF given in Lemma 3.3, it is shown that there are a (81, 9, 2, 1)-PACDF and a
(243, 27, 2, 1)-PACDF. Furthermore, a (27, 3, 2, 1)-PACDF is given in Example A.9.
Hence, for any n ≥ 3, a (3n, 3n−2, 2, 1)-PACDF can be obtained by applying Lemma
3.6 with the CDM(4, 27) given by Lemma 3.1. Thus, by applying Lemma 3.5 with a
(3n, 3n−2, 2, 1)-PACDF and a (3m, 3m−2, 2, 1)-PACDF for 3 ≤ m ≤ n− 2 repeatedly,
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a (3n, 9, 2, 1)-PACDF and a (3n
′
, 3, 2, 1)-PACDF can be obtained for any even integer

n ≥ 4 and any odd integer n′ ≥ 3, respectively. �

Finally, some results on the existence of (vg, g, 2, 1)-PACDFs are shown by use
of recursive constructions as follows.

Lemma 4.5 There exist a (2 · 3n, 18, 2, 1)-PACDF and a (2 · 3n′
, 6, 2, 1)-PACDF for

any even integer n ≥ 4 and any odd integer n′ ≥ 3.

Proof. By applying Lemma 3.7 with the (3n, 9, 2, 1)-PACDF and (3n
′
, 3, 2, 1)-PACDF

obtained by Lemma 4.4, the proof is complete. �

Lemma 4.6 There exists a (2m3, 2m−1, 2, 1)-PACDF for any integer m ≥ 2.

Proof. By applying Lemma 3.7 with the (12, 2, 2, 1)-PACDF given in Example A.8
repeatedly, the proof is complete. �

Lemma 4.7 There exists a (2m3n, 2m, 2, 1)-PACDF for any integers m ≥ 1 and
n ≥ 2.

Proof. It follows that a family of initial blocks of the 2-PACB(3n, 2, 1) for n ≥ 2
obtained by Theorem 1.1 yields a (3n, 1, 2, 1)-PACDF. Hence, by applying Lemma
3.7 repeatedly, the proof is complete. �

Lemma 4.8 Let P ≥ 5 be an odd integer with gcd(P, 6) = 1. Then there exists a
(2Pq, 2q, 2, 1)-PACDF for any odd prime q ≥ 5.

Proof. By applying Lemma 3.6 with the CDM(4, q) for a prime q and the (2P, 2, 2, 1)-
PACDF obtained by Lemmas 3.1 and 4.1, respectively, the proof is complete. �

Lemma 4.9 Let P ≥ 5 be an odd integer with gcd(P, 6) = 1. Then there exists a
(2nP, 2n, 2, 1)-PACDF for any positive integer n.

Proof. It follows that a family of initial blocks of the 2-PACB(P, 2, 1) obtained by
Theorem 1.1 yields a (P, 1, 2, 1)-PACDF. Hence, by applying Lemma 3.7 repeatedly,
the proof is complete. �

Lemma 4.10 Let P ≥ 5 be an odd integer with gcd(P, 6) = 1. Then there exists a
(3nP, P, 2, 1)-PACDF for any integer n ≥ 2.

Proof. For any n ≥ 2, it follows that a family of initial blocks of the 2-PACB(3n, 2, 1)
obtained by Theorem 1.1 yields a (3n, 1, 2, 1)-PACDF. Hence, by applying Lemma
3.6 with the CDM(4, P ) obtained by Lemma 3.1, the proof is complete. �

Lemma 4.11 Let P ≥ 5 be an odd integer with gcd(P, 6) = 1. Then there exists a
(2m3P, 2m3, 2, 1)-PACDF for any positive integer m.
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Proof. By applying Lemma 3.7 with the (3P, 3, 2, 1)-PACDF obtained by Lemma 4.2
repeatedly, the proof is complete. �

Lemma 4.12 Let P ≥ 5 be an odd integer with gcd(P, 6) = 1. Then there exists a
(2m3nP, 2mP, 2, 1)-PACDF for any integers m ≥ 1 and n ≥ 2.

Proof. By applying Lemma 3.7 with the (3nP, P, 2, 1)-PACDF obtained by Lemma
4.10 repeatedly, the proof is complete. �

Each of the above-mentioned results will play an important role to show the
existence of a 2-PARB(v, 2, 1) in the next section.

5 Proof of Theorem 1.3

In this section, Theorem 1.3 as the main result of this paper is established. At first
a class of 2-PARB(v, 2, 1)’s is formed.

Lemma 5.1 There exists a 2-PARB(v, 2, 1) for any v ≥ 6 with gcd(v − 1, 6) = 1.

Proof. First note that the condition gcd(v − 1, 6) = 1 implies {±ta | 2 ≤ a ≤
(v − 2)/2} = Zv−1\{0,±t} on Zv−1 for any t ∈ {1, 2, 3}. Then, it can be shown that
the following block families on Zv−1∪{∞} yield the required 2-PARB(v, 2, 1) having

B1 : {0, 1}, {0,∞}, {0, a} mod v − 1

B2 : {2,∞}, {2, 3}, {2a, 3a} mod v − 1

for any integer a with 2 ≤ a ≤ (v − 2)/2. �

Note that Lemma 5.1 reveals a generalization of Theorem 2.5 in [11], since any
odd prime v − 1 satisfies gcd(v − 1, 6) = 1.

Next, a class of 2-PARB(v, 2, 1)’s can be produced as the following shows.

Lemma 5.2 There exists a 2-PARB(2p+ 1, 2, 1) for any odd prime p.

Proof. When p = 3, 5, 7, Examples A.2, A.4 and A.6 yield the required designs.
Next let p ≥ 11. Then it can be shown that the following block families yield a
2-PAB(v, 2, 1) on Z2 × Zp ∪ {∞}:

B1 : {(0, 2), (1, 1)}, {(0, 4), (1, 2)}, {(0, 0), (1, 3)}, {(0, 0), (1, 4)},
{(0, 0),∞}, {(0, 0), (1, a)}, {(0, 0), (0, a′)},
{(0, 0), (1, 0)}PC(p) mod (2, p)

B2 : {(1, 2), (1, 4)}, {(1, 4), (1, 8)}, {(1, 6), (1, 12)}, {(0, 12),∞},
{(1, 8), (1, 16)}, {(1, 2a), (1, 4a)}, {(0, 2a′), (1, 4a′)},
{(0, 4), (1, 4)}PC(p) mod (2, p)
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for any integers a and a′ with 5 ≤ a ≤ (p − 1)/2 and 1 ≤ a′ ≤ (p − 1)/2. Since
gcd(2, p) = 1 implies Z2×Zp ∼= Z2p, the required 2-PARB(2p+ 1, 2, 1) on Z2p ∪{∞}
can be constructed, by corresponding the element j for 0 ≤ j ≤ 2p − 1 to (z, w),
where j ≡ z (mod 2) and j ≡ w (mod p). �

Next, some results on the existence of a 2-PARB(v, 2, 1) are shown by use of the
observation on (vg, g, 2, 1)-PACDFs given in Section 4 and the following recursive
construction.

Lemma 5.3 The existence of a (vg, g, 2, 1)-PACDF and a 2-PARB(g+1, 2, 1) implies
the existence of a 2-PARB(vg + 1, 2, 1).

Proof. Let F1,F2 be two families of a (vg, g, 2, 1)-PACDF. Further let two families
of initial blocks of a 2-PARB(g + 1, 2, 1) be

F ′h : {x(h)i , y
(h)
i }

for 1 ≤ i ≤ b(g + 2)/2c and h = 1, 2. Then F∗h = Fh ∪ vF ′h, h = 1, 2, can yield a
2-PARB(vg + 1, 2, 1) with

vF ′h : {vx(h)i , vy
(h)
i }

on Zvg ∪ {∞} for 1 ≤ i ≤ b(g + 2)/2c and h = 1, 2. �

The following example illustrates Lemma 5.3 with v = 9 and g = 3.

Example 5.4 Let F1 and F2 be two families of the (27, 3, 2, 1)-PACDF given in
Example A.9. Furthermore, two families of initial blocks on Z27 ∪ {∞} obtained
from the 2-PARB(4, 2, 1) given in Example A.1 can be

9F ′1 : {0,∞}, {9, 18}
9F ′2 : {9, 18}, {0,∞}.

Then combined families F∗h = Fh ∪ 9F ′h, h = 1, 2, yield a 2-PARB(28, 2, 1).

For a 2-PACB(v, 2, 1) with families B1,B2 of blocks, two initial blocks {a, a+ t} ∈
B1 and {b, b + t} ∈ B2, a, b, t ∈ Zv, t 6= v/2, such that a set-union of the two initial
blocks is an initial block of B∗12, are now called friend initial blocks.

Lemma 5.5 There exists a 2-PARB(2n + 1, 2, 1) for any integer n ≥ 2.

Proof. When n = 2, 3, 4, the respective existence of a 2-PACB(2n, 2, 1) with friend
initial blocks can be seen in [12], i.e., Example 3.4 with {0, 1}, {2, 3}, Example 3.5
with {0, 1}, {4, 5} and Example 3.9 with {0, 7}, {5, 12}. When n = 5, Lemma 3.2 in
[15] gives a 2-PACB(25, 2, 1) with friend initial blocks {0, 11}, {19, 30}.

By replacing the friend initial blocks {a, a+t} with {a, a+t} and {a,∞}, and also
{b, b+t} with {b,∞} and {b, b+t}, it is shown that there exists a 2-PARB(2n+1, 2, 1)
for n = 2, 3, 4, 5.
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On the other hand, for any n′ ∈ {2, 3, 4, 5} and any integer s ≥ 1, a (24s+n′
, 2n

′
,

2, 1)-PACDF can be obtained by Lemma 4.3. Hence, by applying Lemma 5.3 with a
2-PARB(2n

′
+ 1, 2, 1), the proof is complete. �

Lemma 5.6 There exists a 2-PARB(3n + 1, 2, 1) for any positive integer n.

Proof. When n = 1, 2, the existence of the required design is given in Examples
A.1 and A.3. On the other hand, Lemma 4.4 shows the existence of a (3n, 9, 2, 1)-
PACDF and a (3n

′
, 3, 2, 1)-PACDF for any even integer n ≥ 4 and any odd integer

n′ ≥ 3, respectively. Hence, based on these PACDFs, by applying Lemma 5.3 with
a 2-PARB(10, 2, 1) and a 2-PARB(4, 2, 1), the proof is complete. �

Lemma 5.7 There exists a 2-PARB(2m3n+1, 2, 1) for any positive integers m and n.

Proof. When (m,n) = (1, 1), (2, 1), (1, 2), Examples A.2, A.5 and A.7 show the
result, respectively.

Let m = 1. Then Lemma 4.5 shows the existence of a (2 · 3n, 18, 2, 1)-PACDF
and a (2 · 3n′

, 6, 2, 1)-PACDF for any even integer n ≥ 4 and any odd integer n′ ≥ 3,
respectively. Hence, based on these PACDFs, Lemma 5.3 with a 2-PARB(19, 2, 1)
and a 2-PARB(7, 2, 1) shows the existence of a 2-PARB(2 ·3n+1, 2, 1) for any integer
n ≥ 3.

Let m ≥ 3 and n = 1. Then the (2m · 3, 2m−1, 2, 1)-PACDF obtained by Lemma
4.6 and the 2-PARB(2m−1 + 1, 2, 1) as in Lemma 5.5 show the existence of a 2-
PARB(2m · 3 + 1, 2, 1), by applying Lemma 5.3.

Finally, let m ≥ 2, n ≥ 2. Then a 2-PARB(2m · 3n + 1, 2, 1) can be obtained by
applying Lemma 5.3 with the (2m ·3n, 2m, 2, 1)-PACDF and the 2-PARB(2m+1, 2, 1)
obtained by Lemmas 4.7 and 5.5, respectively. �

Lemma 5.8 Let P ≥ 5 be an odd integer with gcd(P, 6) = 1. Then there exists a
2-PARB(2nP + 1, 2, 1) for any positive integer n.

Proof. Let p ≥ 5 be a prime factor of P and P/p = Q. Then Q ≥ 1.

When n = 1, Lemma 5.2 itself shows the result for Q = 1. Next, for Q ≥ 5, a
(2P, 2p, 2, 1)-PACDF can be obtained by applying Lemma 4.8. Hence, Lemmas 5.2
and 5.3 show the existence of a 2-PARB(2P + 1, 2, 1).

When n ≥ 2, a (2nP, 2n, 2, 1)-PACDF can be obtained by Lemma 4.9. Hence, the
existence of a 2-PARB(2n + 1, 2, 1), on account of Lemma 5.5, implies the existence
of a 2-PARB(2nP + 1, 2, 1). �

Lemma 5.9 Let P ≥ 5 be an odd integer with gcd(P, 6) = 1. Then there exists a
2-PARB(3nP + 1, 2, 1) for any positive integer n.

Proof. Let n = 1. Then the existing (3P, 3, 2, 1)-PACDF obtained by Lemma 4.2
and the 2-PARB(4, 2, 1) given in Example A.1 show the existence of the required
design by Lemma 5.3.
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When n ≥ 2, Lemma 4.10 can provide a (3nP, P, 2, 1)-PACDF. On the other
hand, a 2-PARB(P + 1, 2, 1) can be given by Theorem 5.1. Hence, Lemma 5.3 can
be used to show the existence of a 2-PARB(3nP + 1, 2, 1). �

Lemma 5.10 Let P ≥ 5 be an odd integer with gcd(P, 6) = 1. Then there exists a
2-PARB(2m3nP + 1, 2, 1) for any positive integers m and n.

Proof. Let m ≥ 1 and n = 1. Then a (2m · 3P, 2m · 3, 2, 1)-PACDF can be given by
Lemma 4.11. Furthermore Lemmas 5.3 and 5.7 show the existence of a 2-PARB(2m ·
3P + 1, 2, 1).

When m ≥ 1 and n ≥ 2, a (2m · 3nP, 2mP, 2, 1)-PACDF can be obtained by
Lemma 4.12. Hence, Lemmas 5.3 and 5.8 can be used to show the existence of a
2-PARB(2m · 3nP + 1, 2, 1). �

Finally, the main result is now established as in Theorem 1.3 by taking Theorem
2.2 and Lemmas 5.1 and 5.5 to 5.10.

Proof of Theorem 1.3. When gcd(v − 1, 6) = 1, Lemma 5.1 shows the existence
of a 2-PARB(v, 2, 1). If gcd(v − 1, 6) 6= 1, then v − 1 = 2m3n or 2m3nP , where
m ≥ 0, n ≥ 0, (m,n) 6= (0, 0) and P ≥ 5 is any odd integer such that gcd(P, 6) = 1.
Then by using Lemmas 5.5 to 5.10 the existence of a 2-PARB(v, 2, 1) is shown for
any v ≥ 4. This fact with Theorem 2.2 completes the proof. �

Remark. Some results on the existence of a 2-PACB(v, 2, 1) are obtained in [12, 15].
Furthermore, some methods of constructing a 2-PARB(v, 2, 1) given in this paper can
be used to construct 2-PACB(v, 2, 1)’s. As a result, Theorem 1.2 on the existence
of 2-PACB designs would be improved. Even so, we cannot show the existence of a
2-PACB(v, 2, 1) for any v. The existence problem of this cyclic type will be discussed
in a forthcoming paper.

Appendix

Some individual examples which can be found by use of a computer are presented.
Note that each of these examples cannot be given by the construction methods
provided in this paper.

Example A.1 An ARB(4, 2, 1) on Z3 ∪ {∞}:

B1 : {0,∞}, {1, 2} mod 3

B2 : {1, 2}, {0,∞} mod 3.

Example A.2 A 3-PARB(7, 2, 1) on Z6 ∪ {∞}:

B1 : {0,∞}, {0, 1}, {0, 2}, {0, 3}PC(3) mod 6

B2 : {1, 3}, {2,∞}, {4, 5}, {1, 4}PC(3) mod 6

B3 : {4, 5}, {3, 5}, {3,∞}, {2, 5}PC(3) mod 6.
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Example A.3 A 2-PARB(10, 2, 1) on Z9 ∪ {∞}:

B1 : {0,∞}, {0, 1}, {0, 2}, {0, 3}, {0, 4} mod 9

B2 : {4, 7}, {2, 4}, {3, 4}, {4,∞}, {3, 7} mod 9.

Example A.4 A 2-PARB(11, 2, 1) on Z10 ∪ {∞}:

B1 : {0,∞}, {0, 1}, {0, 2}, {0, 3}, {0, 4}, {0, 5}PC(5) mod 10

B2 : {4, 7}, {7, 9}, {8, 9}, {4, 8}, {5,∞}, {2, 7}PC(5) mod 10.

Example A.5 A 2-PARB(13, 2, 1) on Z12 ∪ {∞}:

B1 : {0,∞}, {0, 1}, {0, 2}, {0, 3}, {0, 4}, {0, 5},
{0, 6}PC(6) mod 12

B2 : {6, 8}, {2, 11}, {6,∞}, {10, 5}, {7, 3}, {8, 9},
{1, 7}PC(6) mod 12.

Example A.6 A 2-PARB(15, 2, 1) on Z14 ∪ {∞}:

B1 : {0,∞}, {0, 1}, {0, 2}, {0, 3}, {0, 4}, {0, 5}, {0, 6},
{0, 7}PC(7) mod 14

B2 : {7, 10}, {3, 12}, {1, 9}, {9, 11}, {1,∞}, {9, 10}, {4, 8},
{6, 13}PC(7) mod 14.

Example A.7 A 2-PARB(19, 2, 1) on Z18 ∪ {∞}:

B1 : {0,∞}, {0, 1}, {0, 2}, {0, 3}, {0, 4}, {0, 5}, {0, 6},
{0, 7}, {0, 8}, {0, 9}PC(9) mod 18

B2 : {7, 10}, {4, 12}, {7,∞}, {9, 16}, {1, 5}, {9, 10}, {2, 8},
{1, 3}, {2, 15}, {1, 10}PC(9) mod 18.

The following examples of PACDFs are used for recursive constructions in Sec-
tion 4.

Example A.8 A (12, 2, 2, 1)-PACDF:

F1 : {0, 1}, {0, 2}, {0, 3}, {0, 4}, {0, 5}
F2 : {5, 10}, {7, 11}, {2, 4}, {8, 11}, {2, 3}.

Example A.9 A (27, 3, 2, 1)-PACDF:

F1 : {0, 1}, {0, 2}, {0, 3}, {0, 4}, {0, 5}, {0, 6}, {0, 7}, {0, 8},
{0, 10}, {0, 11}, {0, 12}, {0, 13}

F2 : {6, 7}, {7, 26}, {8, 13}, {2, 17}, {17, 24}, {1, 7}, {19, 23}, {14, 24},
{3, 14}, {15, 17}, {1, 4}, {11, 25}.
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