Pairwise additive 1-rotational BIB designs with $\lambda = 1$

Kazuki Matsubara

Faculty of Commerce, Chuo Gakuin University Chiba 270-1196 Japan additivestructure@gmail.com

SANPEI KAGEYAMA

Research Center for Math and Science Education Tokyo University of Science Tokyo 162-8601 Japan pkyfc055@ybb.ne.jp

Abstract

The existence of pairwise additive balanced incomplete block (BIB) designs and pairwise additive cyclic BIB designs with $\lambda = 1$ has been discussed through direct and recursive constructions in the literature. This paper takes BIB designs with 1-rotational automorphisms and then the existence of pairwise additive 1-rotational BIB designs is investigated for $\lambda = 1$. Finally, it is shown that there exists a 2-pairwise additive 1rotational BIB design with parameters v, k and $\lambda = 1$ if and only if any $v \ge 4$ and k = 2.

1 Introduction

A balanced incomplete block (BIB) design is a system (V, \mathcal{B}) , where V is a set of v points and $\mathcal{B}(|\mathcal{B}| = b)$ is a family of k-subsets (blocks) of V, such that each point of V appears in r different blocks of \mathcal{B} and any two different points of V appear in exactly λ blocks in \mathcal{B} [21]. This is denoted by BIBD (v, b, r, k, λ) or B (v, k, λ) .

For a BIB design (V, \mathcal{B}) , let σ be a permutation on V. For a block $B = \{v_1, \ldots, v_k\} \in \mathcal{B}$ and a permutation σ on V, let $B^{\sigma} = \{v_1^{\sigma}, \ldots, v_k^{\sigma}\}$. When $\mathcal{B} = \{B^{\sigma} \mid B \in \mathcal{B}\}, \sigma$ is called an *automorphism* of the design (V, \mathcal{B}) . If there exists an automorphism σ of order v = |V|, then the BIB design is said to be *cyclic*. On

the other hand, when there exists an automorphism σ of order v - 1 with one fixed point, the BIB design is said to be 1-*rotational with respect to the cyclic group of* order v - 1 [2, 19]. Throughout the paper, the BIB design being 1-rotational with respect to the cyclic group of order v - 1 is simply said to be 1-rotational. Note that 1-rotational BIB designs with respect to other algebraic groups are not said to be 1-rotational in this paper.

For a cyclic BIB design (V, \mathcal{B}) , the set V of v points can be identified with $Z_v = \{0, 1, \ldots, v-1\}$. In this case, the design has an automorphism $\sigma : i \mapsto i+1 \pmod{v}$. The block orbit containing $B = \{v_1, v_2, \ldots, v_k\} \in \mathcal{B}$ is a set of distinct blocks $B + i = \{v_1 + i, v_2 + i, \ldots, v_k + i\} \pmod{v}$ for $i \in Z_v$. A block orbit is said to be full or short according as $|\{B + i \mid 0 \leq i \leq v - 1\}| = v$ or not.

For a 1-rotational BIB design (V, \mathcal{B}) , the set V of v points can be identified with $Z_{v-1} \cup \{\infty\}$ and the block orbit containing $B = \{v_1, v_2, \ldots, v_k\} \in \mathcal{B}$ is a set of distinct blocks $B + i = \{v_1 + i, v_2 + i, \ldots, v_k + i\} \pmod{v-1}$ for $i \in Z_{v-1}$. When $B = \{\infty, v_2, \ldots, v_k\}$, $B + i = \{\infty, v_2 + i, \ldots, v_k + i\}$. Moreover, if $\lambda = 1$, then the orbit of $B = \{\infty, v_2, \ldots, v_k\}$ has cardinality (v-1)/(k-1). Similarly, a block orbit is said to be full or short according as $|\{B + i \mid 0 \le i \le v-2\}| = v - 1$ or not.

Choose an arbitrary block from each block orbit and call it an *initial block*. The initial block in a full block orbit and a short block orbit is called a full initial block and a short initial block, respectively. It is clear that a cyclic B(2t, 2, 1) or a 1-rotational B(2t + 1, 2, 1) has a short orbit given by the 2-subset $\{0, t\}$ for any $t \ge 1$. This short orbit is denoted by $\{0, t\}PC(t)$, where PC(t) means a short cycle of order t, i.e., only $0, 1, \ldots, t - 1$ are to be added to the initial block.

Let s = v/k, where s need not be an integer, unlike other design parameters. A set of ℓ BIBD (v, b, r, k, λ) 's, namely, $(V, \mathcal{B}_1), (V, \mathcal{B}_2), \ldots, (V, \mathcal{B}_\ell)$, is called an ℓ pairwise additive BIB design, denoted by ℓ -PAB (v, k, λ) , if it is possible to pair the designs $(V, \mathcal{B}_1), (V, \mathcal{B}_2), \ldots, (V, \mathcal{B}_\ell)$, in such a way that every pair $(V, \mathcal{B}_{i_1}), (V, \mathcal{B}_{i_2}), (V, \mathcal{B$ where $1 \leq i_1, i_2 \leq \ell, i_1 \neq i_2$, gives rise to a new design $(V, \mathcal{B}^*_{i_1 i_2})$ with parameters $v^* = v = sk, b^* = b, r^* = 2r, k^* = 2k, \lambda^* = 2r(2k-1)/(sk-1)$. The family $\mathcal{B}_{i_1i_2}^*$ is defined by $\mathcal{B}_{i_1i_2}^* = \{B_{i_1j} \cup B_{i_2j} \mid 1 \leq j \leq b\}$ with B_{ij} being the *j*th block of an *i*th block family \mathcal{B}_i . When $\ell = s$, this is called an *additive BIB design* [16, 23], denoted by AB (v, k, λ) . An ℓ -PAB (v, k, λ) is said to be cyclic or 1-rotational, denoted by ℓ -PACB (v, k, λ) or ℓ -PARB (v, k, λ) , if (i) every design $(V, \mathcal{B}_1), (V, \mathcal{B}_2), \dots, (V, \mathcal{B}_\ell)$ is cyclic or 1-rotational, respectively, and (ii) every design $(V, \mathcal{B}_{i_1 i_2}^*)$ arising from the pair $(V, \mathcal{B}_{i_1}), (V, \mathcal{B}_{i_2})$ is cyclic or 1-rotational and its initial blocks are obtained by joining an initial block in (V, \mathcal{B}_{i_1}) to an initial block in (V, \mathcal{B}_{i_2}) , where two orbits given by B_{i_1j} and B_{i_2j} have the same cardinality for each $1 \leq j \leq b$. Note that if we join an initial block of a $B(v, k, \lambda)$ to an initial block of another $B(v, k, \lambda)$, then the resulting block might not be an initial block of a $B(v, 2k, \lambda')$. When $\ell = s$, this is called an additive cyclic BIB design or an additive 1-rotational BIB design, denoted by $ACB(v, k, \lambda)$ or $ARB(v, k, \lambda)$, respectively. For example, it is checked that the

four block families

\mathcal{B}_1	:	$\{0,1\},\{4,2\},\{3,6\},\{5,\infty\}$	$\mod 7$
\mathcal{B}_2	:	$\{4,2\},\{0,1\},\{5,\infty\},\{3,6\}$	$\mod 7$
\mathcal{B}_3	:	$\{5,\infty\},\{3,6\},\{0,1\},\{4,2\}$	$\mod 7$
\mathcal{B}_4	:	$\{3,6\},\{5,\infty\},\{4,2\},\{0,1\}$	$\mod 7$

yield an ARB(8, 2, 1). Note that we allow repeated blocks in $(V, \mathcal{B}_{i_1i_2}^*)$.

Some results on existence are reviewed. In a PAB(v, k, 1), it is shown that there are an AB $(2^n, 2, 1)$ and an AB $(3^n, 3, 1)$ for any integer $n \ge 2$ [22, 23], and there are a 2-PAB(v, 2, 1) for any $v \ge 4$ and a 3-PAB(v, 2, 1) for any $v \ge 6$ [11, 14]. Furthermore, partial results on asymptotic existence of ℓ -PAB (v, k, λ) 's and the existence of 2-PACB(v, k, 1)'s are also shown in [12, 13, 15]. However, for an ℓ -PACB(v, k, 1), its complete existence is not yet known in the literature, even if $\ell = 2$ and k = 2, as the following shows.

Theorem 1.1 [12] There exists a 2-PACB(v, 2, 1) for any odd integer $v \ge 5$ such that $gcd(v, 9) \ne 3$.

Theorem 1.2 [15] There exists a 2-PACB $(2^m t, 2, 1)$ for any integer $m \ge 2$ and any odd integer $t(\ge 1)$ such that $gcd(t, 27) \ne 3, 9$.

We now focus on 1-rotational BIB designs and the complete existence of a 2-PARB(v, k, 1) will be established in Section 5 as follows. This will be the main result of the present paper.

Theorem 1.3 There exists a 2-PARB(v, k, 1) if and only if any $v \ge 4$ and k = 2.

Note that the existence of ℓ -pairwise additive BIB designs is equivalent to the existence of some kind of decompositions of a λ -fold complete graph λK_v into edgedisjoint subgraphs isomorphic to a complete graph K_k , denoted by a (v, K_k, λ) design, in terms of graph embeddings (cf. [3, 7]). In fact, Theorem 1.3 is equivalent to say that there are two 1-rotational $(v, K_2, 1)$ -designs simultaneously embedded into a 1-rotational $(v, K_4, 6)$ -design allowed the repeated blocks such that two K_2 's simultaneously embedded into each K_4 are vertex-disjoint. However, as far as the authors know, any existence result on graphs which is equivalent to Theorem 1.3 has not been provided in literature.

On the other hand, [14] gives a construction of an ℓ -PAB (v, k, λ) by use of nested BIB designs defined in [20]. A survey of nested BIB designs is given in [18] and a more general class of nested BIB designs is further discussed in [10, 17] with wide applicability for other designs. Unfortunately, to the best of our knowledge, by utilizing any result on nested BIB designs we cannot show the complete existence of a 2-PARB(v, 2, 1).

In particular, Z-cyclic whist tournament designs of order 4n in [1] coincide with a special class of nested BIB designs having both a 1-rotational automorphism and the property of resolvability. It is seen that the Z-cyclic whist tournament designs of order 4n can give the 2-PARB(4n, 2, 1) with resolvability by use of the construction method in [14]. However, the investigation of existence of a 2-PARB(v, 2, 1) with resolvability may be as difficult as showing the existence of Z-cyclic whist tournament designs. The resolvability of a 2-PARB(v, k, 1) will be discussed in another paper.

In Section 2, fundamental results for PAB(v, k, 1)'s and 1-rotational BIB designs will be reviewed and the nonexistence of a 2-PARB(v, k, 1) for any $k \ge 3$ will be shown. In Section 3, a pairwise additive cyclic relative difference family (PACDF) used in the proof of Theorem 1.3 will be defined and recursive constructions used in [4, 9, 24] will be developed for the PACDF. Section 4 shows some existence of PACDFs and Section 5 is devoted to the proof of Theorem 1.3. As the appendix, individual examples will be presented.

2 Fundamental results

It is known [23] that in a PAB (v, k, λ)

$$2\lambda \equiv 0 \pmod{k-1} \tag{2.1}$$

which implies k = 2 or 3 when $\lambda = 1$.

A B(v, 3, 1) is known as a Steiner triple system (STS). The existence of 1rotational STSs with respect to an arbitrary group is studied in [2]. Moreover, a characterization of 1-rotational STSs with respect to the cyclic group of order v - 1is known as follows.

Lemma 2.1 [19] Any 1-rotational B(v, 3, 1) (V, \mathcal{B}) with a point set $V = Z_{v-1} \cup \{\infty\}$ contains the short orbit of the block $\{0, (v-1)/2, \infty\}$ PC((v-1)/2) and full orbits in \mathcal{B} .

Now the nonexistence of an ℓ -PARB(v, k, 1) can be shown.

Theorem 2.2 There exists no ℓ -PARB(v, k, 1) for any integers $\ell \ge 2$, $v \ge \ell k$ and $k \ge 3$.

Proof. When $k \geq 4$, (2.1) shows the nonexistence of the design. When k = 3, on account of Lemma 2.1, let $\{a, a + (v - 1)/2, \infty\}$ and $\{a', a' + (v - 1)/2, \infty\}$, $a, a' \in \mathbb{Z}_{v-1}$, can be short initial blocks of \mathcal{B}_1 and \mathcal{B}_2 , respectively. By the definition of a 2-PARB(v, 3, 1), \mathcal{B}_{12}^* must contain a set-union of two short initial blocks. However, both of the two blocks contain the element ∞ in common. Hence there does not exist the required design.

Remark 2.3 By taking account of an idea used in the proof of Theorem 2.2, a general result can be shown such that there exists no ℓ -PARB(v, k, (k-1)/2) for any $\ell \geq 2$, any $v \geq \ell k$ and any odd integer $k \geq 3$. Hence, it follows from (2.1) that $\lambda \geq k-1$ in a PARB (v, k, λ) .

From now on, we will discuss the remaining case k = 2 for $\lambda = 1$ and any $v \ge 4$ to obtain the main result of this paper.

3 Some combinatorial structures

In this section, cyclic difference matrices (CDMs) and cyclic relative difference families (CDFs) are reviewed and pairwise additive cyclic relative difference families (PACDFs) are newly defined. In [4, 9, 24], CDFs are used to construct designs with cyclic (or 1-rotational) automorphisms, and useful recursive constructions of CDFs are given by use of CDMs. Similarly, some constructions of PACDFs are discussed here.

At first CDMs are reviewed. A cyclic difference matrix on Z_v , denoted by CDM(k, v), is defined as a $k \times v$ array $(a(m, n)), a(m, n) \in Z_v, 1 \le m \le k, 1 \le n \le v$, that satisfies

$$Z_v = \{a(i, n) - a(j, n) \pmod{v} \mid 1 \le n \le v\}$$

for each $1 \leq i < j \leq k$, that is, the differences of any two distinct rows contain every element of Z_v exactly once (see [8]).

Lemma 3.1 [8] There exists a CDM(4, v) for any odd integer $v \ge 5$ such that $gcd(v, 27) \ne 9$.

Let G be a group and N be a subgroup of G. Then a family $\mathcal{F} = \{F_i \mid i \in I\}$ of k-subsets of G is called a *relative difference family*, denoted by (G, N, k, λ) -DF, if the list of differences $(d - d' \mid d, d' \in D_i, d \neq d', i \in I)$ contains each element of G - N exactly λ times and each element of N zero time. When G is the cyclic group Z_v and N is the subgroup of Z_v of order n, the relative difference family is said to be *cyclic*, denoted by (v, n, k, λ) -CDF (cf. [4, 24]).

Some results on the existence of (vg, g, 4, 1)-CDFs are known as follows.

Lemma 3.2 [5, 6] There exists a $(2^{s+4}, 2^s, 4, 1)$ -CDF for any integer $s \ge 2$.

Lemma 3.3 [6] There exist a (81, 9, 4, 1)-CDF and a (243, 27, 4, 1)-CDF.

A set of two families \mathcal{F}_1 and \mathcal{F}_2 is called a 2-*pairwise additive* (vg, g, k, λ) -CDF, denoted by 2- (vg, g, k, λ) -PACDF, if both \mathcal{F}_1 and \mathcal{F}_2 are (vg, g, k, λ) -CDFs and the family of set-unions of the *j*th *k*-subsets $B_j^{(1)} \in \mathcal{F}_1$ and $B_j^{(2)} \in \mathcal{F}_2$, $1 \leq j \leq |\mathcal{F}_1| =$ $|\mathcal{F}_2|$, is also a $(vg, g, 2k, \lambda)$ -CDF with $\lambda' = 2\lambda(2k-1)/(k-1)$. Throughout the paper, the above "2- (vg, g, k, λ) -PACDF" is simply denoted by " (vg, g, k, λ) -PACDF".

Next, some constructions of (vg, g, 2, 1)-PACDFs are provided.

Lemma 3.4 The existence of a (vg, g, 4, 1)-CDF implies the existence of a (vg, g, 2, 1)-PACDF.

Proof. Let 4-subsets of the (vg, g, 4, 1)-CDF on Z_{vg} be

$$\{a_i, b_i, c_i, d_i\}, \ 1 \le i \le \frac{g(v-1)}{12}.$$

Then it is seen that the following families on subsets of Z_{vg} yield the required (vg, g, 2, 1)-PACDF:

$$\mathcal{F}_{1} : \{a_{i}, b_{i}\}, \{a_{i}, c_{i}\}, \{a_{i}, d_{i}\}, \{c_{i}, b_{i}\}, \{b_{i}, d_{i}\}, \{d_{i}, c_{i}\}$$
$$\mathcal{F}_{2} : \{c_{i}, d_{i}\}, \{d_{i}, b_{i}\}, \{b_{i}, c_{i}\}, \{d_{i}, a_{i}\}, \{c_{i}, a_{i}\}, \{b_{i}, a_{i}\}$$

for $1 \le i \le g(v-1)/12$.

Note that in the proof of Lemma 3.4 the construction of \mathcal{F}_1 and \mathcal{F}_2 is skillful, since an initial subset of the CDF might not arise from the union of initial subsets belonging to families with other parameters.

Lemma 3.5 Let m be a divisor of g. Then the existence of a (vg, g, 2, 1)-PACDF and a (g, m, 2, 1)-PACDF implies the existence of a (vg, m, 2, 1)-PACDF.

Proof. Let $\mathcal{F}_1, \mathcal{F}_2$ and $\mathcal{F}'_1, \mathcal{F}'_2$ be families of a (vg, g, 2, 1)-PACDF and a (g, m, 2, 1)-PACDF, respectively. Then combined families $\mathcal{F}_h^* = \mathcal{F}_h \cup \{\{vx, vy\} \mid \{x, y\} \in \mathcal{F}'_h\}$ on $Z_{vg}, h = 1, 2$, can yield a (vg, m, 2, 1)-PACDF.

Lemma 3.6 The existence of a (vg, g, 2, 1)-PACDF and a CDM(4, v') implies the existence of a (vv'g, v'g, 2, 1)-PACDF.

Proof. Let two families of a (vg, g, 2, 1)-PACDF be

$$\mathcal{F}_h$$
 : $\{x_{hi}, y_{hi}\}$

for $1 \le i \le g(v-1)/2$ and h = 1, 2. Further let A be the CDM(4, v') with a(m, n) as the (m, n)-entry for $1 \le m \le 4$ and $1 \le n \le v'$. Then, it can be shown that the following two families yield the required (vv'g, v'g, 2, 1)-PACDF on $Z_{vv'g}$:

$$\mathcal{F}_{h}^{*}$$
: { $x_{hi} + a(2h-1, n)vg, y_{hi} + a(2h, n)vg$ }

for $1 \leq i \leq g(v-1)/2$, $1 \leq n \leq v'$ and h = 1, 2. In fact, let $\{x_{hj}^*, y_{hj}^*\}$ be the *j*th subset of \mathcal{F}_h^* for $1 \leq j \leq v'g(v-1)/2$ and h = 1, 2. Then, by the property of the CDM(4, v'), it can be checked that the multiset of differences arising from the subsets of \mathcal{F}_h^* , h = 1, 2, is composed of (i) $\bigcup_{j=1}^{v'g(v-1)/2} \{\pm (x_{hj}^* - y_{hj}^*)\} = \{\pm (x_{hi} - y_{hi}) + nvg \mid 1 \leq i \leq g(v-1)/2, 0 \leq n \leq v'-1\}$ containing every element of $Z_{vv'g} - vZ_{vv'g}$ exactly once for each h = 1, 2 and (ii) $\bigcup_{j=1}^{v'g(v-1)/2} \{\pm (x_{1j}^* - x_{2j}^*), \pm (y_{1j}^* - y_{2j}^*), \pm (x_{1j}^* - y_{2j}^*), \pm (y_{1j}^* - x_{2j}^*)\} = \{\pm (x_{1i} - x_{2i} + nvg), \pm (y_{1i} - y_{2i} + nvg), \pm (y_{1i} - y_{2i} + nvg), \pm (y_{1i} - x_{2i} + nvg) \mid 1 \leq i \leq g(v-1)/2, 0 \leq n \leq v'-1\}$ containing every element of $Z_{vv'g} - vZ_{vv'g}$ exactly four times. Thus it is seen that both \mathcal{F}_1^* and \mathcal{F}_2^* are (vv'g, v'g, 2, 1)-CDFs, and the family of set-unions $\{x_{1j}^*, y_{1j}^*\} \cup \{x_{2j}^*, y_{2j}^*\}, 1 \leq j \leq v'g(v-1)/2$, yields a (vv'g, v'g, 4, 6)-CDF. The proof is complete.

Note that full initial blocks of a 2-PACB(v, 2, 1) with no short initial blocks can be considered as a (v, 1, 2, 1)-PACDF. Hence, it is clear that Lemma 3.6 provides a (vg, g, 2, 1)-PACDF, by use of the 2-PACB(v, 2, 1) with no short initial blocks and a CDM(4, g).

On the other hand, it is obvious that there does not exist a CDM(4, 2). Hence, Lemma 3.6 cannot be utilized for the case of v' = 2. However, the following recursive construction can be presented.

Lemma 3.7 The existence of a (vg, g, 2, 1)-PACDF implies the existence of a (2vg, 2g, 2, 1)-PACDF.

Proof. Let two families of a (vg, g, 2, 1)-PACDF be

$$\mathcal{F}_h$$
 : $\{x_{hi}, y_{hi}\}$

for $1 \le i \le g(v-1)/2$ and h = 1, 2. Then, by choosing arbitrary blocks in each orbit of $\{x_{1i}, y_{1i}\} \cup \{x_{2i}, y_{2i}\}$, without loss of generality it can be assumed that $\{x_{1i}, y_{1i}\} = \{0, i\}$.

Now it can be shown that the following two families yield the required (2vg, 2g, 2, 1)-PACDF on Z_{2vg} :

$$\begin{aligned} \mathcal{F}_1^* &: & \{x_{1i}, y_{1i}\}, \{x_{2i}, y_{2i} + \delta_i vg\} \\ \mathcal{F}_2^* &: & \{x_{2i}, y_{2i} + \delta_i vg\}, \{x_{1i} + vg, y_{1i} + vg\} \end{aligned}$$

for $1 \leq i \leq g(v-1)/2$, where $\delta_i = 1$ or 0 according as $|y_{2i} - x_{2i}| < vg/2$ or otherwise. In fact, let $\{x_{hj}^*, y_{hj}^*\}$ be the *j*th subset of \mathcal{F}_h^* for $1 \leq j \leq g(v-1)$ and h = 1, 2. Then the definition of δ_i implies that $\cup_{j=1}^{g(v-1)} \{\pm (x_{hj}^* - y_{hj}^*)\} = \{\pm (x_{1i} - y_{1i}), \pm (x_{2i} - y_{2i} - \delta_i vg) \mid 1 \leq i \leq g(v-1)/2\}$ contains every element of $Z_{2vg} - vZ_{2vg}$ exactly once for each h = 1, 2. Furthermore, it can be checked that $\cup_{j=1}^{g(v-1)} \{\pm (x_{1j}^* - x_{2j}^*), \pm (y_{1j}^* - y_{2j}^*), \pm (x_{1j}^* - x_{2j}^*), \pm (y_{1j}^* - x_{2j}^*), \pm (x_{1j}^* - x_{2j}^*)\} = \{\pm (x_{1i} - x_{2i} + nvg), \pm (y_{1i} - y_{2i} + nvg), \pm (y_{1i} - y_{2i} + nvg)\} \mid 1 \leq i \leq g(v-1)/2, 0 \leq n \leq 1\}$ contains every element of $Z_{2vg} - vZ_{2vg}$ exactly four times. Thus it is seen that both \mathcal{F}_1^* and \mathcal{F}_2^* are (2vg, 2g, 2, 1)-CDFs, and the family of set-unions $\{x_{1j}^*, y_{1j}^*\} \cup \{x_{2j}^*, y_{2j}^*\}, 1 \leq j \leq g(v-1)$, yields a (2vg, 2g, 4, 6)-CDF. The proof is complete.

The results obtained here will be used in the next section.

4 Existence of (vg, g, 2, 1)-PACDFs

In this section, the discussion on existence of (vg, g, 2, 1)-PACDFs is made by use of direct and recursive methods.

Throughout Sections 4 and 5, let P be any odd integer such that gcd(P, 6) = 1 and $P \ge 5$. Then any prime factor of P is not less than 5.

At first, two classes of (vg, g, 2, 1)-PACDFs are produced by use of direct constructions as the following shows. **Lemma 4.1** Let $P \ge 5$ be an odd integer with gcd(P, 6) = 1. Then there exists a (2P, 2, 2, 1)-PACDF.

Proof. Since gcd(2, P) = 1, the following two families on $Z_2 \times Z_P$ can yield the required (2P, 2, 2, 1)-PACDF on Z_{2P} , by corresponding the element j for $0 \le j \le 2P - 1$ to (z, w), where $j \equiv z \pmod{2}$ and $j \equiv w \pmod{P}$:

$$\mathcal{F}_1 : \{(0,0), (1,a)\}, \{(0,0), (0,a)\}$$

$$\mathcal{F}_2 : \{(1,2a), (1,4a)\}, \{(0,2a), (1,4a)\}$$

for any integer a with $1 \le a \le (P-1)/2$.

Lemma 4.2 Let $P \ge 5$ be an odd integer with gcd(P, 6) = 1. Then there exists a (3P, 3, 2, 1)-PACDF.

Proof. Since gcd(3, P) = 1, the following two families on $Z_3 \times Z_P$ can yield the required (3P, 3, 2, 1)-PACDF on Z_{3P} , by corresponding the element j for $0 \le j \le 3P - 1$ to (z, w), where $j \equiv z \pmod{3}$ and $j \equiv w \pmod{P}$:

$$\begin{aligned} \mathcal{F}_1 &: \ \{(0,0),(1,a)\},\{(0,a'),(0,-a')\} \\ \mathcal{F}_2 &: \ \{(0,2a),(1,3a)\},\{(1,2a'),(1,-2a')\} \end{aligned}$$

for any integers a and a' with $1 \le a \le P - 1$ and $1 \le a' \le (P - 1)/2$.

Next, some results on the existence of (vg, g, 2, 1)-PACDFs obtained from (vg, g, 4, 1)-CDFs are shown as follows.

Lemma 4.3 There exists a $(2^{4m+n}, 2^n, 2, 1)$ -PACDF for any $n \in \{2, 3, 4, 5\}$ and any positive integer m.

Proof. Lemma 3.4 with the $(2^{4m+n}, 2^{4m+n-4}, 4, 1)$ -CDF obtained by Lemma 3.2 can provide a $(2^{4m+n}, 2^{4m+n-4}, 2, 1)$ -PACDF for any $m \ge 1$ and any $n \in \{2, 3, 4, 5\}$. Hence, for m = 1 the result can be shown. Furthermore, by Lemma 3.5 with a $(2^{4(m+1)+n}, 2^{4m+n}, 2, 1)$ -PACDF, the existence of a $(2^{4m+n}, 2^n, 2, 1)$ -PACDF implies the existence of a $(2^{4(m+1)+n}, 2^n, 2, 1)$ -PACDF for $m \ge 1$. Thus, the proof is complete by mathematical induction on m. □

Lemma 4.4 There exist a $(3^n, 9, 2, 1)$ -PACDF and a $(3^{n'}, 3, 2, 1)$ -PACDF for any even integer $n \ge 4$ and any odd integer $n' \ge 3$.

Proof. By applying Lemma 3.4 with the (81, 9, 4, 1)-CDF and the (243, 27, 4, 1)-CDF given in Lemma 3.3, it is shown that there are a (81, 9, 2, 1)-PACDF and a (243, 27, 2, 1)-PACDF. Furthermore, a (27, 3, 2, 1)-PACDF is given in Example A.9. Hence, for any $n \ge 3$, a $(3^n, 3^{n-2}, 2, 1)$ -PACDF can be obtained by applying Lemma 3.6 with the CDM(4, 27) given by Lemma 3.1. Thus, by applying Lemma 3.5 with a $(3^n, 3^{n-2}, 2, 1)$ -PACDF for $3 \le m \le n-2$ repeatedly,

a $(3^n, 9, 2, 1)$ -PACDF and a $(3^{n'}, 3, 2, 1)$ -PACDF can be obtained for any even integer $n \ge 4$ and any odd integer $n' \ge 3$, respectively.

Finally, some results on the existence of (vg, g, 2, 1)-PACDFs are shown by use of recursive constructions as follows.

Lemma 4.5 There exist a $(2 \cdot 3^n, 18, 2, 1)$ -PACDF and a $(2 \cdot 3^{n'}, 6, 2, 1)$ -PACDF for any even integer $n \ge 4$ and any odd integer $n' \ge 3$.

Proof. By applying Lemma 3.7 with the $(3^n, 9, 2, 1)$ -PACDF and $(3^{n'}, 3, 2, 1)$ -PACDF obtained by Lemma 4.4, the proof is complete.

Lemma 4.6 There exists a $(2^m3, 2^{m-1}, 2, 1)$ -PACDF for any integer $m \ge 2$.

Proof. By applying Lemma 3.7 with the (12, 2, 2, 1)-PACDF given in Example A.8 repeatedly, the proof is complete.

Lemma 4.7 There exists a $(2^m 3^n, 2^m, 2, 1)$ -PACDF for any integers $m \ge 1$ and $n \ge 2$.

Proof. It follows that a family of initial blocks of the 2-PACB $(3^n, 2, 1)$ for $n \ge 2$ obtained by Theorem 1.1 yields a $(3^n, 1, 2, 1)$ -PACDF. Hence, by applying Lemma 3.7 repeatedly, the proof is complete.

Lemma 4.8 Let $P \ge 5$ be an odd integer with gcd(P, 6) = 1. Then there exists a (2Pq, 2q, 2, 1)-PACDF for any odd prime $q \ge 5$.

Proof. By applying Lemma 3.6 with the CDM(4, q) for a prime q and the (2P, 2, 2, 1)-PACDF obtained by Lemmas 3.1 and 4.1, respectively, the proof is complete. \Box

Lemma 4.9 Let $P \ge 5$ be an odd integer with gcd(P, 6) = 1. Then there exists a $(2^n P, 2^n, 2, 1)$ -PACDF for any positive integer n.

Proof. It follows that a family of initial blocks of the 2-PACB(P, 2, 1) obtained by Theorem 1.1 yields a (P, 1, 2, 1)-PACDF. Hence, by applying Lemma 3.7 repeatedly, the proof is complete.

Lemma 4.10 Let $P \ge 5$ be an odd integer with gcd(P, 6) = 1. Then there exists a $(3^n P, P, 2, 1)$ -PACDF for any integer $n \ge 2$.

Proof. For any $n \ge 2$, it follows that a family of initial blocks of the 2-PACB $(3^n, 2, 1)$ obtained by Theorem 1.1 yields a $(3^n, 1, 2, 1)$ -PACDF. Hence, by applying Lemma 3.6 with the CDM(4, P) obtained by Lemma 3.1, the proof is complete.

Lemma 4.11 Let $P \ge 5$ be an odd integer with gcd(P, 6) = 1. Then there exists a $(2^m 3P, 2^m 3, 2, 1)$ -PACDF for any positive integer m.

Proof. By applying Lemma 3.7 with the (3P, 3, 2, 1)-PACDF obtained by Lemma 4.2 repeatedly, the proof is complete.

Lemma 4.12 Let $P \ge 5$ be an odd integer with gcd(P, 6) = 1. Then there exists a $(2^m 3^n P, 2^m P, 2, 1)$ -PACDF for any integers $m \ge 1$ and $n \ge 2$.

Proof. By applying Lemma 3.7 with the $(3^n P, P, 2, 1)$ -PACDF obtained by Lemma 4.10 repeatedly, the proof is complete.

Each of the above-mentioned results will play an important role to show the existence of a 2-PARB(v, 2, 1) in the next section.

5 Proof of Theorem 1.3

In this section, Theorem 1.3 as the main result of this paper is established. At first a class of 2-PARB(v, 2, 1)'s is formed.

Lemma 5.1 There exists a 2-PARB(v, 2, 1) for any $v \ge 6$ with gcd(v - 1, 6) = 1.

Proof. First note that the condition gcd(v-1,6) = 1 implies $\{\pm ta \mid 2 \leq a \leq (v-2)/2\} = Z_{v-1} \setminus \{0, \pm t\}$ on Z_{v-1} for any $t \in \{1, 2, 3\}$. Then, it can be shown that the following block families on $Z_{v-1} \cup \{\infty\}$ yield the required 2-PARB(v, 2, 1) having

$$\mathcal{B}_1 : \{0,1\}, \{0,\infty\}, \{0,a\} \mod v - 1$$

$$\mathcal{B}_2 : \{2,\infty\}, \{2,3\}, \{2a,3a\} \mod v - 1$$

for any integer a with $2 \le a \le (v-2)/2$.

Note that Lemma 5.1 reveals a generalization of Theorem 2.5 in [11], since any odd prime v - 1 satisfies gcd(v - 1, 6) = 1.

Next, a class of 2-PARB(v, 2, 1)'s can be produced as the following shows.

Lemma 5.2 There exists a 2-PARB(2p + 1, 2, 1) for any odd prime p.

Proof. When p = 3, 5, 7, Examples A.2, A.4 and A.6 yield the required designs. Next let $p \ge 11$. Then it can be shown that the following block families yield a 2-PAB(v, 2, 1) on $Z_2 \times Z_p \cup \{\infty\}$:

$$\begin{split} \mathcal{B}_1 &: \ \{(0,2),(1,1)\}, \{(0,4),(1,2)\}, \{(0,0),(1,3)\}, \{(0,0),(1,4)\}, \\ &\{(0,0),\infty\}, \{(0,0),(1,a)\}, \{(0,0),(0,a')\}, \\ &\{(0,0),(1,0)\} \mathrm{PC}(p) \mod (2,p) \\ \mathcal{B}_2 &: \ \{(1,2),(1,4)\}, \{(1,4),(1,8)\}, \{(1,6),(1,12)\}, \{(0,12),\infty\}, \\ &\{(1,8),(1,16)\}, \{(1,2a),(1,4a)\}, \{(0,2a'),(1,4a')\}, \\ &\{(0,4),(1,4)\} \mathrm{PC}(p) \mod (2,p) \end{split}$$

for any integers a and a' with $5 \le a \le (p-1)/2$ and $1 \le a' \le (p-1)/2$. Since gcd(2,p) = 1 implies $Z_2 \times Z_p \cong Z_{2p}$, the required 2-PARB(2p+1,2,1) on $Z_{2p} \cup \{\infty\}$ can be constructed, by corresponding the element j for $0 \le j \le 2p-1$ to (z,w), where $j \equiv z \pmod{2}$ and $j \equiv w \pmod{p}$.

Next, some results on the existence of a 2-PARB(v, 2, 1) are shown by use of the observation on (vg, g, 2, 1)-PACDFs given in Section 4 and the following recursive construction.

Lemma 5.3 The existence of a (vg, g, 2, 1)-PACDF and a 2-PARB(g+1, 2, 1) implies the existence of a 2-PARB(vg + 1, 2, 1).

Proof. Let $\mathcal{F}_1, \mathcal{F}_2$ be two families of a (vg, g, 2, 1)-PACDF. Further let two families of initial blocks of a 2-PARB(g + 1, 2, 1) be

 \mathcal{F}'_h : $\{x^{(h)}_i, y^{(h)}_i\}$

for $1 \leq i \leq \lfloor (g+2)/2 \rfloor$ and h = 1, 2. Then $\mathcal{F}_h^* = \mathcal{F}_h \cup v\mathcal{F}_h'$, h = 1, 2, can yield a 2-PARB(vg + 1, 2, 1) with

$$v\mathcal{F}'_{h}$$
 : $\{vx^{(h)}_{i},vy^{(h)}_{i}\}$

on $Z_{vg} \cup \{\infty\}$ for $1 \le i \le \lfloor (g+2)/2 \rfloor$ and h = 1, 2.

The following example illustrates Lemma 5.3 with v = 9 and g = 3.

Example 5.4 Let \mathcal{F}_1 and \mathcal{F}_2 be two families of the (27, 3, 2, 1)-PACDF given in Example A.9. Furthermore, two families of initial blocks on $Z_{27} \cup \{\infty\}$ obtained from the 2-PARB(4, 2, 1) given in Example A.1 can be

$$\begin{array}{rcl} 9\mathcal{F}_1' & : & \{0,\infty\}, \{9,18\} \\ 9\mathcal{F}_2' & : & \{9,18\}, \{0,\infty\}, \end{array}$$

Then combined families $\mathcal{F}_h^* = \mathcal{F}_h \cup 9\mathcal{F}_h'$, h = 1, 2, yield a 2-PARB(28, 2, 1).

For a 2-PACB(v, 2, 1) with families $\mathcal{B}_1, \mathcal{B}_2$ of blocks, two initial blocks $\{a, a+t\} \in \mathcal{B}_1$ and $\{b, b+t\} \in \mathcal{B}_2, a, b, t \in \mathbb{Z}_v, t \neq v/2$, such that a set-union of the two initial blocks is an initial block of \mathcal{B}_{12}^* , are now called *friend initial blocks*.

Lemma 5.5 There exists a 2-PARB $(2^n + 1, 2, 1)$ for any integer $n \ge 2$.

Proof. When n = 2, 3, 4, the respective existence of a 2-PACB $(2^n, 2, 1)$ with friend initial blocks can be seen in [12], i.e., Example 3.4 with $\{0, 1\}, \{2, 3\}$, Example 3.5 with $\{0, 1\}, \{4, 5\}$ and Example 3.9 with $\{0, 7\}, \{5, 12\}$. When n = 5, Lemma 3.2 in [15] gives a 2-PACB $(2^5, 2, 1)$ with friend initial blocks $\{0, 11\}, \{19, 30\}$.

By replacing the friend initial blocks $\{a, a+t\}$ with $\{a, a+t\}$ and $\{a, \infty\}$, and also $\{b, b+t\}$ with $\{b, \infty\}$ and $\{b, b+t\}$, it is shown that there exists a 2-PARB($2^n+1, 2, 1$) for n = 2, 3, 4, 5.

On the other hand, for any $n' \in \{2, 3, 4, 5\}$ and any integer $s \ge 1$, a $(2^{4s+n'}, 2^{n'}, 2, 1)$ -PACDF can be obtained by Lemma 4.3. Hence, by applying Lemma 5.3 with a 2-PARB $(2^{n'} + 1, 2, 1)$, the proof is complete.

Lemma 5.6 There exists a 2-PARB $(3^n + 1, 2, 1)$ for any positive integer n.

Proof. When n = 1, 2, the existence of the required design is given in Examples A.1 and A.3. On the other hand, Lemma 4.4 shows the existence of a $(3^n, 9, 2, 1)$ -PACDF and a $(3^{n'}, 3, 2, 1)$ -PACDF for any even integer $n \ge 4$ and any odd integer $n' \ge 3$, respectively. Hence, based on these PACDFs, by applying Lemma 5.3 with a 2-PARB(10, 2, 1) and a 2-PARB(4, 2, 1), the proof is complete.

Lemma 5.7 There exists a 2-PARB $(2^m3^n+1, 2, 1)$ for any positive integers m and n.

Proof. When (m, n) = (1, 1), (2, 1), (1, 2), Examples A.2, A.5 and A.7 show the result, respectively.

Let m = 1. Then Lemma 4.5 shows the existence of a $(2 \cdot 3^n, 18, 2, 1)$ -PACDF and a $(2 \cdot 3^{n'}, 6, 2, 1)$ -PACDF for any even integer $n \ge 4$ and any odd integer $n' \ge 3$, respectively. Hence, based on these PACDFs, Lemma 5.3 with a 2-PARB(19, 2, 1) and a 2-PARB(7, 2, 1) shows the existence of a 2-PARB($2 \cdot 3^n + 1, 2, 1$) for any integer $n \ge 3$.

Let $m \ge 3$ and n = 1. Then the $(2^m \cdot 3, 2^{m-1}, 2, 1)$ -PACDF obtained by Lemma 4.6 and the 2-PARB $(2^{m-1} + 1, 2, 1)$ as in Lemma 5.5 show the existence of a 2-PARB $(2^m \cdot 3 + 1, 2, 1)$, by applying Lemma 5.3.

Finally, let $m \ge 2, n \ge 2$. Then a 2-PARB $(2^m \cdot 3^n + 1, 2, 1)$ can be obtained by applying Lemma 5.3 with the $(2^m \cdot 3^n, 2^m, 2, 1)$ -PACDF and the 2-PARB $(2^m + 1, 2, 1)$ obtained by Lemmas 4.7 and 5.5, respectively.

Lemma 5.8 Let $P \ge 5$ be an odd integer with gcd(P, 6) = 1. Then there exists a 2-PARB $(2^nP + 1, 2, 1)$ for any positive integer n.

Proof. Let $p \ge 5$ be a prime factor of P and P/p = Q. Then $Q \ge 1$.

When n = 1, Lemma 5.2 itself shows the result for Q = 1. Next, for $Q \ge 5$, a (2P, 2p, 2, 1)-PACDF can be obtained by applying Lemma 4.8. Hence, Lemmas 5.2 and 5.3 show the existence of a 2-PARB(2P + 1, 2, 1).

When $n \ge 2$, a $(2^n P, 2^n, 2, 1)$ -PACDF can be obtained by Lemma 4.9. Hence, the existence of a 2-PARB $(2^n + 1, 2, 1)$, on account of Lemma 5.5, implies the existence of a 2-PARB $(2^n P + 1, 2, 1)$.

Lemma 5.9 Let $P \ge 5$ be an odd integer with gcd(P, 6) = 1. Then there exists a 2-PARB $(3^nP + 1, 2, 1)$ for any positive integer n.

Proof. Let n = 1. Then the existing (3P, 3, 2, 1)-PACDF obtained by Lemma 4.2 and the 2-PARB(4, 2, 1) given in Example A.1 show the existence of the required design by Lemma 5.3.

When $n \ge 2$, Lemma 4.10 can provide a $(3^n P, P, 2, 1)$ -PACDF. On the other hand, a 2-PARB(P + 1, 2, 1) can be given by Theorem 5.1. Hence, Lemma 5.3 can be used to show the existence of a 2-PARB $(3^n P + 1, 2, 1)$.

Lemma 5.10 Let $P \ge 5$ be an odd integer with gcd(P, 6) = 1. Then there exists a 2-PARB $(2^m 3^n P + 1, 2, 1)$ for any positive integers m and n.

Proof. Let $m \ge 1$ and n = 1. Then a $(2^m \cdot 3P, 2^m \cdot 3, 2, 1)$ -PACDF can be given by Lemma 4.11. Furthermore Lemmas 5.3 and 5.7 show the existence of a 2-PARB $(2^m \cdot 3P + 1, 2, 1)$.

When $m \ge 1$ and $n \ge 2$, a $(2^m \cdot 3^n P, 2^m P, 2, 1)$ -PACDF can be obtained by Lemma 4.12. Hence, Lemmas 5.3 and 5.8 can be used to show the existence of a 2-PARB $(2^m \cdot 3^n P + 1, 2, 1)$.

Finally, the main result is now established as in Theorem 1.3 by taking Theorem 2.2 and Lemmas 5.1 and 5.5 to 5.10.

Proof of Theorem 1.3. When gcd(v-1,6) = 1, Lemma 5.1 shows the existence of a 2-PARB(v,2,1). If $gcd(v-1,6) \neq 1$, then $v-1 = 2^m 3^n$ or $2^m 3^n P$, where $m \geq 0, n \geq 0, (m,n) \neq (0,0)$ and $P \geq 5$ is any odd integer such that gcd(P,6) = 1. Then by using Lemmas 5.5 to 5.10 the existence of a 2-PARB(v,2,1) is shown for any $v \geq 4$. This fact with Theorem 2.2 completes the proof. \Box

Remark. Some results on the existence of a 2-PACB(v, 2, 1) are obtained in [12, 15]. Furthermore, some methods of constructing a 2-PARB(v, 2, 1) given in this paper can be used to construct 2-PACB(v, 2, 1)'s. As a result, Theorem 1.2 on the existence of 2-PACB designs would be improved. Even so, we cannot show the existence of a 2-PACB(v, 2, 1) for any v. The existence problem of this cyclic type will be discussed in a forthcoming paper.

Appendix

Some individual examples which can be found by use of a computer are presented. Note that each of these examples cannot be given by the construction methods provided in this paper.

Example A.1 An ARB(4, 2, 1) on $Z_3 \cup \{\infty\}$:

\mathcal{B}_1	:	$\{0,\infty\},\{1,2\}$	$\mod 3$
\mathcal{B}_2	:	$\{1,2\},\{0,\infty\}$	$\mod 3.$

Example A.2 A 3-PARB(7,2,1) on $Z_6 \cup \{\infty\}$:

\mathcal{B}_1	:	$\{0,\infty\},\{0,1\},\{0,2\},\{0,3\}$ PC(3)	mod 6
\mathcal{B}_2	:	$\{1,3\},\{2,\infty\},\{4,5\},\{1,4\}PC(3)$	$\mod 6$
\mathcal{B}_3	:	$\{4,5\},\{3,5\},\{3,\infty\},\{2,5\}$ PC(3)	$\mod 6.$

Example A.3 A 2-PARB(10, 2, 1) on $Z_9 \cup \{\infty\}$:

 $\mathcal{B}_1 : \{0,\infty\}, \{0,1\}, \{0,2\}, \{0,3\}, \{0,4\} \mod 9 \\ \mathcal{B}_2 : \{4,7\}, \{2,4\}, \{3,4\}, \{4,\infty\}, \{3,7\} \mod 9.$

Example A.4 A 2-PARB(11, 2, 1) on $Z_{10} \cup \{\infty\}$:

- $\mathcal{B}_1 \ : \ \{0,\infty\}, \{0,1\}, \{0,2\}, \{0,3\}, \{0,4\}, \{0,5\} \mathrm{PC}(5) \mod 10$
- \mathcal{B}_2 : {4,7}, {7,9}, {8,9}, {4,8}, {5,\infty}, {2,7} PC(5) mod 10.

Example A.5 A 2-PARB(13, 2, 1) on $Z_{12} \cup \{\infty\}$:

 $\begin{array}{rcl} \mathcal{B}_1 &:& \{0,\infty\}, \{0,1\}, \{0,2\}, \{0,3\}, \{0,4\}, \{0,5\}, \\ && \{0,6\} \mathrm{PC}(6) \mod 12 \\ \\ \mathcal{B}_2 &:& \{6,8\}, \{2,11\}, \{6,\infty\}, \{10,5\}, \{7,3\}, \{8,9\}, \\ && \{1,7\} \mathrm{PC}(6) \mod 12. \end{array}$

Example A.6 A 2-PARB(15, 2, 1) on $Z_{14} \cup \{\infty\}$:

- $\begin{aligned} \mathcal{B}_1 &: & \{0,\infty\}, \{0,1\}, \{0,2\}, \{0,3\}, \{0,4\}, \{0,5\}, \{0,6\}, \\ & \{0,7\} \mathrm{PC}(7) \mod 14 \\ \mathcal{B}_2 &: & \{7,10\}, \{3,12\}, \{1,9\}, \{9,11\}, \{1,\infty\}, \{9,10\}, \{4,8\}, \end{aligned}$
- $\mathcal{B}_2 : \{7, 10\}, \{3, 12\}, \{1, 9\}, \{9, 11\}, \{1, \infty\}, \{9, 10\}, \{4, 8\}, \{6, 13\} \text{PC}(7) \mod 14.$

Example A.7 A 2-PARB(19, 2, 1) on $Z_{18} \cup \{\infty\}$:

$$\begin{split} \mathcal{B}_1 &: & \{0,\infty\}, \{0,1\}, \{0,2\}, \{0,3\}, \{0,4\}, \{0,5\}, \{0,6\}, \\ & \{0,7\}, \{0,8\}, \{0,9\} \mathrm{PC}(9) \mod 18 \\ \mathcal{B}_2 &: & \{7,10\}, \{4,12\}, \{7,\infty\}, \{9,16\}, \{1,5\}, \{9,10\}, \{2,8\}, \\ & \{1,3\}, \{2,15\}, \{1,10\} \mathrm{PC}(9) \mod 18. \end{split}$$

The following examples of PACDFs are used for recursive constructions in Section 4.

Example A.8 A (12, 2, 2, 1)-PACDF:

 $\mathcal{F}_1 : \{0,1\}, \{0,2\}, \{0,3\}, \{0,4\}, \{0,5\} \\ \mathcal{F}_2 : \{5,10\}, \{7,11\}, \{2,4\}, \{8,11\}, \{2,3\}.$

Example A.9 A (27, 3, 2, 1)-PACDF:

 $\begin{aligned} \mathcal{F}_1 &: & \{0,1\}, \{0,2\}, \{0,3\}, \{0,4\}, \{0,5\}, \{0,6\}, \{0,7\}, \{0,8\}, \\ & \{0,10\}, \{0,11\}, \{0,12\}, \{0,13\} \\ \\ \mathcal{F}_2 &: & \{6,7\}, \{7,26\}, \{8,13\}, \{2,17\}, \{17,24\}, \{1,7\}, \{19,23\}, \{14,24\}, \end{aligned}$

 $\{3, 14\}, \{15, 17\}, \{1, 4\}, \{11, 25\}.$

Acknowledgments

The authors would like to thank one of the referees for constructive comments through pointing out an error. They make the paper much more readable.

References

- I. Anderson and N. J. Finizio, Some new Z-cyclic whist tournament designs, Discrete Math. 293 (2005), 19–28.
- [2] S. Bonvicini, M. Buratti, G. Rinaldi and T. Traetta, Some progress on the existence of 1-rotational Steiner triple systems, *Des. Codes Cryptogr.* 62 (2012), 63–78.
- [3] D. Bryant and S. El-Zanati, Graph decompositions, In: The CRC Handbook of Combinatorial Designs (2nd ed.) (Eds.: C. J. Colbourn and J. H. Dinitz), CRC Press, Boca Raton (2007), 477–486.
- [4] M. Buratti, Recursive constructions for difference matrices and relative difference families, J. Combin. Des. 6 (1998), 165–182.
- [5] Y. Chang, Some cyclic BIBDs with block size four, J. Combin. Des. 12 (2004), 177–183.
- [6] Y. Chang and Y. Miao, Constructions for optimal optical orthogonal codes, Discrete Math. 261 (2003), 127–139.
- [7] R. Diestel, *Graph Theory*, 4th ed., Springer-Verlag, 2010.
- [8] G. Ge, On (g, 4; 1)-difference matrices, Discrete Math. **301** (2005), 164–174.
- [9] M. Jimbo, Recursive constructions for cyclic BIB designs and their generalizations, *Discrete Math.* 116 (1993), 79–95.
- [10] S. Kageyama and Y. Miao, Nested designs with block size five and subblock size two, J. Statist. Plann. Inference 64 (1997), 125–139.
- [11] K. Matsubara and S. Kageyama, The existence of two pairwise additive BIBD(v, 2, 1) for any v, J. Stat. Theory Pract. 7 (2013), 783–790.
- [12] K. Matsubara and S. Kageyama, Some pairwise additive cyclic BIB designs, Stat. Appl. 11 (2013), 55–77.
- [13] K. Matsubara and S. Kageyama, The construction of pairwise additive minimal BIB designs with asymptotic results, *Applied Math.* 5 (2014), 2130–2136.

- [14] K. Matsubara and S. Kageyama, The existence of 3 pairwise additive B(v, 2, 1) for any $v \ge 6$, J. Combin. Math. Combin. Comput. 95 (2015), 27–32.
- [15] K. Matsubara, M. Hirao and S. Kageyama, The existence of 2 pairwise additive cyclic BIB designs with an even number of points, *Bull. Inst. Combin. Appl.* 75 (2015), 91–94.
- [16] K. Matsubara, M. Sawa, D. Matsumoto, H. Kiyama and S. Kageyama, An addition structure on incidence matrices of a BIB design, Ars Combin. 78 (2006), 113–122.
- [17] M. Mishima, Y. Miao, S. Kageyama and M. Jimbo, Constructions of nested directed BIB designs, Australas. J. Combin. 18 (1998), 157–172.
- [18] J. P. Morgan, D. A. Preece and D. H. Rees, Nested balanced incomplete block designs, *Discrete Math.* 231 (2001), 351–389.
- [19] K. T. Phelps and A. Rosa, Steiner triple systems with rotational automorphisms, Discrete Math. 33 (1981), 57–66.
- [20] D. A. Preece, Nested balanced incomplete block designs, *Biometrika* 54 (1976), 479–486.
- [21] D. Raghavarao, Constructions and Combinatorial Problems in Design of Experiments, Dover, New York, 1988.
- [22] M. Sawa, S. Kageyama and M. Jimbo, Compatibility of BIB designs, Stat. Appl. 6 (2008), 73–89.
- [23] M. Sawa, K. Matsubara, D. Matsumoto, H. Kiyama and S. Kageyama, The spectrum of additive BIB designs, J. Combin. Des. 15 (2007), 235–254.
- [24] J. Yin, Some combinatorial constructions for optical orthogonal codes, Discrete Math. 185 (1998), 201–219.

(Received 24 June 2016; revised 29 Dec 2016, 5 Apr 2017)