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Abstract

Recently, the first author and his coauthor proved a kth-order homoge-
neous linear recursion for the genus polynomials of any H-linear family
of graphs (called path-like graph families by Mohar). Cubic outerplanar
graphs are tree-like graph families. In this paper, we derive a recursive
formula for the total embedding distribution of any cubic outerplanar
graph. We also obtain explicit formulas for the number of embeddings
of cubic outerplanar graphs into the plane, torus, projective plane and
Klein bottle. In addition, we present a O (n(h +Δ))-time algorithm to
compute the genus distribution and the crosscap number distribution of
any cubic outerplanar graph, where h and Δ are the height and maxi-
mum degree of the characteristic tree, respectively. We have written an
efficient enumeration program in C++ for computing this recursive func-
tion and constructing tables of genus distributions of cubic outerplanar
graphs. Our program is documented and available on request.
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1 Introduction

Counting graph embeddings on surfaces has frequently been investigated in the past
quarter century. It has many connections with various other areas of mathematics,
such as the characters of symmetric groups, geometry and topology. For the applica-
tions of genus distribution into physics, we may call attention to a paper of Visentin
and Wieler [10]. It is well-known that the genus distribution is NP-complete. How-
ever, as noted by Gross [7], the genus distribution of a graph with bounded tree-width
and bounded degree has a polynomial time algorithm. It is known that outerplanar
graphs have tree-width at most 2. In [8], Gross presented a quadratic-time algorithm
for computing the genus distribution of any cubic outerplanar graph. This is the first
class of graphs whose genus distribution is known to be computable in polynomial
time. The above results were obtained by the powerful techniques which were de-
veloped by Gross. In this paper, we focus our attention on the total embedding
distributions of cubic outerplanar graphs.

A graph G = (V (G), E(G)) may have both loops and multiple edges. A surface is
a compact 2-manifold without boundary. In topology theory, compact and connected
surfaces are classified into the orientable surfaces Sg, with g handles (g ≥ 0), and
the nonorientable surfaces Nk, with k crosscaps (k > 0). A graph embedding into
a surface means a cellular embedding. For any spanning tree of G, the number of
cotree edges is called the Betti number of G, denoted by β(G).

A rotation at a vertex v of a graph G is a cyclic order of all edge-ends incident
with v. A pure rotation system ρ of a graph G is an assignment of a rotation to each
vertex ofG. As there are two rotations of each trivalent vertex, we color a vertex black
if the rotation of the edge-ends incident on it is clockwise, and we color it white if the
rotation is counterclockwise. We call any drawing of a graph that uses this convention
to indicate a rotation system a Gustin coloring (called a Gustin representation in
[4]). It follows that there is a bijection between the pure rotation systems of a cubic
graph and the Gustin colorings of its vertices. Under this convention, we use Gustin
colorings to indicate the pure rotation systems of a cubic graph.

A general rotation system for a graph G is a pair (ρ, λ), where ρ is a pure rotation
system and λ is a mapping: E(G) −→ {0, 1}. The edge e is said to be twisted
(respectively, untwisted) if λ(e) = 1 (respectively, λ(e) = 0). It is well-known that
every orientable embedding of a graphG can be described uniquely by a pure rotation
system. By allowing the parameter λ to take non-zero values, we can describe the
non-orientable embeddings of a graph G.

For any fixed spanning tree T , a T -rotation system (ρ, λ) of G is a general rotation
system (ρ, λ) such that λ(e) = 0 for all e ∈ E(T ). Two embeddings of G are
considered to be equivalent if their T -rotation systems are the same. Let ΦT

G denote
the set of all T -rotation systems of G. Suppose that among these |ΦT

G| embeddings
of G, there are ai embeddings, for i = 0, 1, . . . , into the orientable surface Si, and
that there are bj embeddings, for j = 1, 2, . . . , into the non-orientable surface Nj.
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We call the bivariate polynomial

I
T
G(x, y) =

∞∑
i=0

aix
i +

∞∑
j=1

bjy
j

the T -distribution polynomial of G.

It should be noted that the T -distribution polynomial is independent of the choice
of spanning tree T . Thus, we define the total embedding polynomial of G to be the
bivariate polynomial IG(x, y) = I

T
G(x, y), for any choice of a spanning tree T . The

genus distribution and crosscap number distribution are defined to be the sequences
{ai(G)|i ≥ 0} and {bj(G)|j ≥ 1}, respectively. The sequence {ai(G)|i ≥ 0} ∪
{bj(G)|j ≥ 1} is called the total embedding distribution of the graph G. Also, we
call the first and second parts of IG(x, y) the genus polynomial of G and the crosscap

number polynomial of G, respectively, and we denote them by gG(x) =
∞∑
i=0

aix
i and

fG(y) =
∞∑
i=1

biy
i, respectively. Thus, we have IG(x, y) = gG(x) + fG(y).

Remark 1.1. An example from Chen’s thesis [1] shows that the crosscap number
distribution is more difficult than the genus distribution. However the recent ap-
proach of Chen and Gross [3] shows this is just a good disguise, or alternatively, that
there is not much difference in the difficulty.

A bar-amalgamation G ⊕e H of two disjoint graphs H and G is obtained by
running an edge between a vertex of G and a vertex of H . The following two
theorems can be founded in [5] and [2].

Theorem 1.2. (See [5]) gG⊕eH(x) = dG(u)dH(v)gG(x)gH(x), where dG(u) is the
vertex degree of u in G and dG(v) is the vertex degree of v in H.

Theorem 1.3. (See [2])

fG⊕eH(y) = dG(u)dH(v)

[
fG(y)fH(y) + fG(y)gH(y

2) + gG(y
2)fH(y)

]
,

where dG(u) is the vertex degree of u in G and dG(v) is the vertex degree of v in H.

Note that a 3-regular graph G is 2-edge connected if and only if G is 2-connected.
It follows from Theorem 1.2 and Theorem 1.3 that all cubic outerplanar graphs in
the paper are 2-connected.

2 Total embedding polynomials for cubic outerplanar graphs

2.1 Characteristic tree

A graph is an outerplanar graph if it can be embedded in the plane without crossings
in such a way that all of the vertices belong to the unbounded region f∞ of the
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embedding. An outerplane embedding is said to be normalized if all loops of the
graph lie on the face-boundary walk of the unbounded region f∞. By an outerplane
graph we mean an outerplanar graph with a fixed outerplane embedding. A tree is
called a rooted tree if one vertex has been designated the root, in which case the
edges have a natural orientation, towards or away from the root.

The dual G∗∗ of a planar graph G is a graph defined as follows: each region in G
is a vertex in G∗∗, and two vertices in G∗∗ are adjacent if and only if the regions share
an edge in G. The weak dual G∗ of G is obtained from the dual G∗∗ by removing
the vertex corresponding to the unbounded region f∞ in G. It is easy to see that
the weak dual of an outerplanar graph is a plane tree, since a cycle in G∗ would
represent a set of bounded regions in G that separate a vertex v from the unbounded
region. We call this plane tree a characteristic tree of the outerplanar embedding of
G, as shown in Figure 1. It follows that a characteristic tree (T, ρ) is a tree T with
a rotation system ρ.

If G = G1∪G2 and G1∩G2 = {e}, then we say that G is the edge-amalgamation
of G1 and G2 on the edge e. The preorder traversal of a rooted tree T with n vertices
is defined recursively as follows:

Basis: If n = 1, then the root is the only vertex, so we traverse the root.

Recursive Step: When n > 1, consider the subtrees T1, T2, T3, . . . , Tk of T whose
roots are all the children of the root of T . Traverse each of these subtrees from left
to right.

Figure 1: An outerplanar graph (solid lines) and its characteristic tree (dashed
lines)

Property 2.1. There is a mapping between all cubic outerplanar graphs and all trees
(T, ρ), where ρ is a pure rotation system of T .

Proof. Given a cubic outerplanar graph, by definition, its characteristic tree (T, ρ)
is uniquely determined.

Furthermore, once the plane tree (T, ρ) is given, we replace each vertex v of (T, ρ)
by the cycle graph C2d(v) with 2d(v) vertices. According to the preorder traversal,
we can obtained an outerplanar graph by a series of edge amalgamations of the cycle
graphs, as shown in Figure 2. The result follows.

In the following discussion, a cubic outplanar graph will be denoted by (T, ρ).
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Figure 2: From a tree to a cubic outerplanar graph

2.2 Overlap matrices for cubic outerplanar graphs

Let T be a spanning tree of a graph G and let (ρ, λ) be a T -rotation system. Let
e1, e2, . . . , eβ(G) be the cotree edges of T , where β(G) is the cycle rank of G. The
overlap matrix of (ρ, λ) is the β(G)× β(G) matrix M = [mij ] over Z2 = {0, 1} such
that

mij =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
1, if i = j and ei is twisted;

1, if i 	= j and the restriction of the underlying pure

rotation system to the subgraph T + ei + ej is nonplanar;

0, otherwise.

When the restriction of the underlying pure rotation system to the subgraph T+ei+ej
is nonplanar, we say that edges ei and ej overlap. The following theorem is obtained
by Mohar [9].

Theorem 2.2. Let (ρ, λ) be a general rotation system for a graph. Then the rank of
any overlap matrix M for the corresponding embedding equals twice the genus of the
embedding surface, if that surface is orientable, and it equals the crosscap number
otherwise. The rank is independent of the choice of a spanning tree.

Note that the degree of a vertex in the dual graph G∗∗ of an outerplane graph
G is at most the size of the corresponding region in G, especially when G is a cubic
outerplanar graph, and the degree of a vertex in the characteristic tree is half the
size of the corresponding region in G. Let G be a cubic outerplanar graph and let T
be its characteristic tree. Suppose a vertex v in T has degree d; we divide the edges
of the corresponding region fv into two parts, one part belonging to the intersection
of fv and the unbounded region f∞, the other part belonging to the intersection of
fv and the bounded regions. We call the part of edges that belongs to f∞ adjoint
edges. Recall that a chord is an edge joining two non-adjacent vertices in a cycle.
We have the following property.

Property 2.3. For a cubic outerplanar graph G, a vertex v of degree d(v) in the
characteristic tree of G corresponding to d(v) adjoint edges in G.

Proof. Suppose the degree of vertex v is d(v). By the definition of a characteristic
tree, the vertex v crosses d(v) chords of G. Note that each region of the outerplanar
graph is a cycle, since all the chords are independent and the degree of v in a
characteristic tree is half the size of the corresponding region in G; so the property
follows.
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In a Gustin coloring for a cubic graph, an edge is called matched if it has the same
color at both endpoints; otherwise, it is called unmatched. In the following discussion,
we label the adjoint edges of the vertex v by e1v, e

2
v, . . . , e

d(v)
v in a counterclockwise

order, as shown in Figure 3.

1

e11

e31

e21
e41

2
e12

7
e17

3

e13

e23
4e14 5

e15

6

e16

e26

Figure 3: The adjoint edges of a cubic outerplanar graph

A matching in a graph is a set of edges having no common vertices. A perfect
matching is a matching which matches all vertices of the graph. Let G2n be a cubic
outerplanar graph with 2n vertices. By Euler’s formula, the number of vertices of
the weak dual T of G2n is n+1. By the definition of weak dual of a cubic outerplanar
graph, each chord intersects one edge of T ; this means the number of chords is n.
Furthermore, all the chords of G2n form a perfect match. Let v1, v2, . . . , vn+1 be
vertices of T . By Property 2.3, each vertex vi corresponds to d(vi) adjoint edges in
G. For each vertex vi (1 ≤ i ≤ n + 1), we delete an adjoint edge e1vi of vi, and the
resulting graph is a spanning tree of G2n. Thus we assume e1v1 , e

1
v2 , . . . , e

1
vn+1

are the
cotree edges of G2n. Let Mn(e

1
v1
, e1v2 , . . . , e

1
vn+1

) be the overlap matrices of G2n over
Z2. By face-tracing, we have the following result.

Lemma 2.4. Two cotree edges e1vi and e1vj overlap if and only if vi and vj are adjacent
in T and the edge crossing vivj is unmatched (i 	= j).

The following property follows directly from the lemma above. We give a detailed
proof here.

Lemma 2.5. For a fixed overlap matrix of the form Mn(e
1
v1
, e1v2 , . . . , e

1
vn+1

), corre-
sponding to a spanning tree T in a cubic outerplanar graph G2n there are exactly 2n

different T -rotation systems corresponding to the matrix.

Proof. Note that there are four different assignments of colors to a chord of G2n;
two of them are matched while the other two are unmatched. Furthermore, all the
n chords form a perfect match of G2n (i.e. they are independent). From Lemma 2.4,
each matrix Mn(e

1
v1
, e1v2 , . . . , e

1
vn+1

) corresponds to 2n different Gustin colorings. The
property follows.

2.3 A characterization

In graph theory, an isomorphism of simple graphs G and H is a bijection between the
vertex sets of G and H , f : V (G) −→ V (H), such that any two vertices u and v of G
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are adjacent in G if and only if f(u) and f(v) are adjacent in H . If an isomorphism
exists between two graphs, then the graphs are called isomorphic and are denoted
by G ∼= H .

Theorem 2.6. Let (Ti, ρi) be the characteristic tree of the cubic outerplanar graph
Gi, i = 1, 2. If T1 and T2 are isomorphic, then the two graphs G1 and G2 have the
same total embedding distributions.

Proof. Suppose V (T1) = {v1, v2, . . . , vn+1} and V (T2) = {u1, u2, . . . , un+1}. Let e1vi
be the adjoint edge of vi and e1ui

be the adjoint edge of ui, for i = 1, 2, . . . , n +
1. Let Mn+1(e

1
v1
, e1v2 , . . . , e

1
vn+1

) be the overlap matrices of G1 over Z2, and let
Mn+1(e

1
u1
, e1u2

, . . . , e1un+1
) be the overlap matrices of G2 over Z2. Since T1 and T2 are

isomorphic, there exists an isomorphism mapping such that f : V (G1) −→ V (G2).
For simplicity, we may assume that f(vi) = ui. By Lemma 2.4, the following condi-
tions are equivalent:

Two cotree edges e1vi and e1vj overlap ⇐⇒ vi and vj are adjacent in T1 ⇐⇒ ui and

uj are adjacent in T2 ⇐⇒ two cotree edges e1ui
and e1uj

overlap.

In other words, Mn+1(e
1
v1
, e1v2 , . . . , e

1
vn+1

) = Mn+1(e
1
u1
, e1u2

, . . . , e1un+1
). By Lemma

2.5, the result follows.

G H

Figure 4: Two non-isomorphic Cubic outerplanar graphs have non-isomorphic
characteristic trees

However, the reverse of Theorem 2.6 is not true. We illustrate with an example.
Let G and H be two graphs of Figure 4. Although we have

IG(x, y) =IH(x, y)

=29(1 + 21x+ 122x2 + 240x3 + 128x4)

+ 29(19y + 183y2 + 1432y3 + 6990y4 + 25536y5

+ 66192y6 + 122368y7 + 151296y8 + 112384y9 + 37376y10),

the two graphs G and H still have non-isomorphic characteristic trees.

Theorem 2.6 shows that the embedding distribution of any cubic outerplanar
graph is related to its characteristic tree. In the following discussion, we shall use
gT (x) and fT (y) to denote the genus polynomial and crosscap number polynomial of
the cubic outerplanar graph G2n, respectively.
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2.4 Recursive formula for the rank-distribution polynomial

Let G2n be a cubic outerplanar graph of order 2n and let T be a characteristic
tree of G2n. Suppose V (T ) = {v1, v2, . . . , vn+1} and E(T ) = {e1, e2, . . . , en}. Let
e1v1 , e

1
v2 , . . . , e

1
vn+1

be cotree edges of G2n described in the previous section. Let

Mn+1(e
1
v1
, e1v2 , . . . , e

1
vn+1

) = M
(X,Y )
n+1 be the overlap matrix corresponding to a given

general rotation system of G2n, where X = (x1, x2, . . . , xn+1), Y = (ye1, ye2, . . . , yen).
Recall that xi = 1 if and only if the edge e1vi is twisted, for i = 1, 2, . . . , n + 1 and
that yei = 1 if and only if the chord f of G2n which crosses ei is unmatched, for
i = 1, 2, . . . , n.

We now consider the set Cn+1 of all (n+1)× (n+1) matrices M
(X,Y )
n+1 of G2n over

Z2. We define the rank-distribution polynomial of the set Cn+1 as

NT (z) =

n+1∑
j=0

Nn+1(j)z
j ,

where Nn(j) is the number of different assignments of the variables xi and yek , with
1 ≤ i ≤ n + 1 and 1 ≤ k ≤ n, for which the matrix MX,Y

n+1 in Cn+1 has rank j.
Similarly, we consider the set

On+1 = {M0,Y
n+1 | Y ∈ Z

n
2},

and define the rank-distribution polynomial of OT to be the polynomial

OT (z) =
n+1∑
j=0

On+1(j)z
j , (1)

where On+1(j) is the number of different assignments of the variables ye1, ye2, . . . , yen
for which the matrix MY

n+1 = M0,Y
n+1 in On+1 has rank j.

A leaf of T is a vertex of degree 1. Let the vertex u be a leaf of T and let v be
its neighbor. Let u, v1, v2, . . . , vd(v)−1 be the neighbors of v. Let T1, T2, . . . , Td(v)−1,
(d(v) ≥ 2), and u be the connected components of T − v, as shown in Figure 5.
Similarly, we define the rank distribution polynomials of OTi

(z) and NTi
(z). We

have the following recursive formula for the rank distribution polynomial OT (z) of
G2n.

Theorem 2.7. Let u be a leaf of T and let v be its neighbor. Let T1, T2, . . . , Td(v)−1

and u be the connected components of T − v. Then the rank-distribution polynomial
OT for (n+ 1)× (n + 1) matrices M

(O,Y )
n+1 satisfies the recurrence relation

OT (z) = OT−u(z) + 2d(v)−1z2
d(v)−1∏
i=1

OTi
(z). (2)

with the initial conditions

OP0(z) = OP1(z) = 1 and OP2(z) = z2 + 1. (3)
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Td(v)−1

T1

T2

u v

v1

v2

vd(v)−1

Figure 5: A tree T and its connected components T1, T2, . . . , Td(v)−1 and u

Proof. Suppose the overlap matrix M
(O,Y )
n+1 has the following form⎛

⎜⎜⎜⎜⎜⎝

0 xuv 0 · · · 0
xuv 0 ∗ · · · ∗
0 ∗
...

... A
0 ∗

⎞
⎟⎟⎟⎟⎟⎠

where xuv = 1 if and only if e1u and e1v overlap. The following two cases are considered.

• Case 1: xuv = 0. In this case, we delete the first row and the first column; the
resulting matrix is the overlap matrix of the outerplanar graph whose charac-
teristic tree is T − u. This case contributes a term OT−u(z) to the polynomial
OT (z).

• Case 2: xuv = 1. In this case, we can transfer the above matrix to the following
form. ⎛

⎜⎜⎜⎜⎜⎝

0 1 0 · · · 0
1 0 0 · · · 0
0 0
...

... A
0 0

⎞
⎟⎟⎟⎟⎟⎠

By Lemma 2.4, the cotree edge e1v can overlap the edges e1v1 , e
1
v2
, . . . , e1vd(v)−1

. It

will be convenient to use variable xvvi = 1 or xvvi = 0 to denote that e1v overlaps
e1vi , or does not, respectively, for i = 1, 2, . . . , d(v) − 1. There are a total of

2d(v)−1 different combinations of values for the variables xvv1 , xvv2 , . . . , xvvd(v)−1
.

Note that A is the overlap matrix of the outerplanar graph whose overlap
matrix is T1 ∪ T2 ∪ · · · ∪ Td(v)−1. By using Lemma 2.4 again, we have the
following form of A:

A =

⎛
⎜⎜⎜⎝

A1 0
A2

. . .

0 Ad(v)−1

⎞
⎟⎟⎟⎠
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where Ai is the overlap matrix of the cubic outer plane graph whose characteris-
tic tree is Ti, for i = 1, 2, . . . , d(v)−1. Note that rank(M

(O,Y )
n+1 ) = rank(A)+2 =

d(v)−1∑
i=1

rank(Ai) + 2; this case contributes in all a term 2d(v)−1z2
∏d(v)−1

i=1 OTi
(z)

to the polynomial OT (z).

Summarizing the two cases above, the proof is now complete.

For the nonorientable case, we have the following theorem.

Theorem 2.8. Let u be a leaf of T and let v be its neighbor. Let T1, T2, . . . , Td(v)−1

and u be the connected components of T −v. The rank-distribution polynomial NT (z)

for (n+ 1)× (n+ 1) matrices M
(X,Y )
n+1 satisfies the recurrence relation

NT (z) = (1 + 2z)NT−u(z) + 2d(v)z2
d(v)−1∏
i=1

NTi
(z). (4)

with the initial conditions

NP0(z) = 1,NP1(z) = 1 + z and NP2(z) = 4z2 + 3z + 1. (5)

Proof. Suppose that overlap matrix M
(X,Y )
n+1 has the following form⎛

⎜⎜⎜⎜⎜⎝

y1 xuv 0 · · · 0
xuv y2 ∗ · · · ∗
0 ∗
...

... A
0 ∗

⎞
⎟⎟⎟⎟⎟⎠

where xuv = 1 if and only if e1u and e1v overlap, y1 = 1 if and only if e1u is twisted,
and y2 = 1 if and only if e1v is twisted. The following four cases can be proved in the
same way as Cases 1 and 2 of Theorem 2.7 above.

Cases Contributions to NT (z)

xuv = 0, y1 = 0 NT−u(z)

xuv = 0, y1 = 1 zNT−u(z)

xuv = 1, y1 = 1 zNT−u(z)

xuv = 1, y1 = 0 2d(v)z2
∏d(v)−1

i=1 NTi
(z)

Combining the cases above, we have the desired result.
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2.5 Total embedding polynomial

By Lemma 2.5, we have the following two theorems.

Theorem 2.9. Let G2n be a cubic outerplanar graph and T be its characteristic tree.
The genus polynomial gT (x) of G2n equals

gT (x) = 2nOT (
√
x). (6)

Theorem 2.10. Let G2n be a cubic outerplanar graph and T be its characteristic
tree. The crosscap polynomial fT (y) of G2n equals

fT (y) = 2n(NT (y)− OT (y).) (7)

0

1 2 5

3 4 6

7 8

9

T

0

1 2 5

3 4 6

7 8

T − 5

= +22z2×

×

0

1 2

3 4 6

7 8

Figure 6: A tree and its decomposition

Example 2.11. Suppose T is the tree in Figure 6. Let us find the exact values for
the polynomial OT (z). By applying Theorem 2.7 recursively, we obtain

OT (z) = (1 + 25z2 + 162z4 + 252z6 + 72z8)

From Theorem 2.9, gT (x) = 29OT (
√
x) = 29(1 + 25x+ 162x2 + 252x3 + 72x4).

2.6 Embeddings of G2n into surfaces of small genus

An internal vertex of a tree is a vertex of degree at least 2. We now go on to find
explicit formulas for embeddings of G2n into a plane, torus, projective plane and
Klein bottle.

Theorem 2.12. Let T be the characteristic tree of G2n. Let di be the number of inter-
nal vertices of degree i in T , for 2 ≤ i ≤ n. Then the number of embeddings of cubic

outerplanar graphs G2n into a plane and torus are 2n and 2n

(
n∑

i=2

di(2
i − 2) + 1

)
,

respectively.

Proof. Let the genus polynomial of the cubic outerplanar graph G2n be gT (z) =∑
i≥0

gi(T )z
i. Let the rank distribution of G2n be OT (z) =

n+1∑
j=0

On+1(j)z
j .
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By the recursive formula (2) in Theorem 2.7, we have

On+1(0) = On(0) = · · · = O1(0) = 1 (8)

On+1(2) = 1 + d2 × 2 + d3
(
22 + 2

)
+ · · ·+ dn

(
2n−1 + 2n−2 + · · ·+ 2

)
=

n∑
i=2

di(2
i − 2) + 1. (9)

By formula (6) in Theorem 2.9, we have

g0(T ) = 2nOn+1(0) = 2n

g1(T ) = 2nOn+1(2) = 2n

(
n∑

i=2

di(2
i − 2) + 1

)
.

The result follows.

Similarly, we have the following theorem.

Theorem 2.13. Let T be the characteristic tree of G2n. Let di be the number of
internal vertices of degree i in T , for 2 ≤ i ≤ n. Then the number of embeddings of
cubic outerplanar graphs G2n into a projective plane and Klein bottle are 2n(2n+ 1)

and 2n

(
2n2 + 1 +

n∑
i=2

di(2
i − 2)

)
, respectively.

3 The algorithm

3.1 Tree structures of Theorem 2.7 and Theorem 2.8

We now restate Theorems 2.7 and 2.8 with tree structures. We need to use some
definitions of rooted trees. Each element of a tree is called a node of the tree. Every
node in a tree defines a subtree, namely the tree defined by this node and all its
children. The vertex v is an ancestor of w if there is a path from v to w; we then
also call w a descendent of v. Two nodes are called brothers if they are sons of the
same father.

Given a tree T , we choose a vertex as its root, and then label the vertex of T
by preorder traversal; the labeling set is {0, 1, . . . , n}. Suppose T is a labeled tree.
Let A(i) be the set of all ancestors of i and let B(i) be the set of left brothers of i.
Let F (i) be the father of node i and let T (i) be the subtree of node i. Let L(i) be
the maximum labeling of T (i). Figure 7 gives an example to illustrate this concept,
where A(5) = {0}, B(5) = {1, 2}, F (5) = 0 and L(5) = 9.

For any integers i, k, 0 ≤ i, k ≤ n, if node i is the ancestor of k then we denote
by T [i, k] the subtree which contains the nodes i, i + 1, . . . , k. In particular, T [i, i]
and T [k, k] are isolated vertex sets. Let G[i, k] be the rank distribution polynomial
of T [i, k]. We have G[i, i] = G[k, k] = 1. We also have the following property.
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0

1 2 5

3 4 6 9

7 8

T = T [0, 9]

0

1 2 5

3 4 6

T = T [0, 6]

5

6 9

7 8

T = T [5, 9]

Figure 7: A preorder traverse labeling of a tree

Property 3.1. For any i ∈ A(k + 1) we have i ∈ A(k) ∪ {k}, (0 ≤ k ≤ n− 1).

Property 3.2. For any i ∈ A(k+1), the tree T [i, k] can be obtained from T [i, k+1]
by deleting edges which are incident to the node k + 1, (0 ≤ k ≤ n− 1).

By Properties 3.1 and 3.2, and Theorem 2.7, we restate Theorem 2.7 as the
following recursive formula.

Theorem 3.3. We have that

G[i, k] = G[i, k − 1] + 2|B(k)|+1z2G[i, F (k)− 1]
∏

j∈B(k)

G[j, L(j)].

In particular, when F (k) = i,

G[i, k] = G[i, k − 1] + 2|B(k)|z2
∏

j∈B(k)

G[j, L(j)].

Also, we have another expression of Theorem 2.8.

Theorem 3.4. We have

G[i, k] = (1 + 2z)G[i, k − 1] + 2|B(k)|+2z2G[i, F (k)− 1]
∏

j∈B(k)

G[j, L(j)].

In particular, when F (k) = i, then

G[i, k] = (1 + 2z)G[i, k − 1] + 2|B(k)|+1z2
∏

j∈B(k)

G[j, L(j)].

3.2 Algorithm aspect

With the help of the analysis and notation above, we propose the following algorithm
that computes the rank distribution polynomial G[0, n] efficiently.

Begin Algorithm 1
Input: A tree T with pre-order labels 0, 1, . . . , n.
Output: The rank distribution polynomial G[0, n] of T.
// A(i) is the set of all ancestors of i
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// B(i) is the set of left brothers of i.
// F (i) is the father of node i
// T (i) is the subtree of node i.
// L(i) is the maximum labeling of T (i).
// T [i, k] is the subtree which contains the nodes i, i+ 1, . . . , k.
// G[i, k] is the rank distribution polynomial of T [i, k].
// Let G be an (n+ 1) ∗ (n+ 1) matrix

1 Pre-processing: for every node v in T , compute the sets A(v), B(v) and L(v);

2 G[0, 0] = 1;

3 for k = 1 to n do

4 G[k, k] = 1;

5 a = z ∗ z;
6 for all j ∈ B(k) do

7 a = aG[j, L(j)];

8 end for

9 for all i ∈ A(k) do

10 if i = F (k) then

11 G[i, k] = G[i, k − 1] + a ∗ 2|B(k)|;

12 else

13 G[i, k] = G[i, k − 1] + a ∗ 2|B(k)|+1 ∗G[i, F (k)− 1];

14 end if

15 end for

16 end for

17 return G[0, n];

End Algorithm 1

The pre-processing in Algorithm 1 (line 1) can be finished in O(n) time. This
algorithm contains a 2-loop: the outer loop runs n times, and computes a column
in matrix G each time. There are two inner loops: the first loop (lines 6 to 8) is to
compute the item

∏
j∈B(k)G[j, L(j)] described in Theorem 3.3, and it runs Δ times

in the worst case (where Δ is the maximum degree of T ); the second loop (lines 9
to 15) is to compute elements in the k-th column of matrix G, and it runs h times
in the worst case (where h is the height of T ). So the complexity of this algorithm
is O(n(h+Δ)) (on average, h and Δ are far less than n). Similarly, we can encode
Theorem 3.4 as anO(n(h+w))-time algorithm and the details are omitted. According
to the algorithm above, we build the embedding-distribution computer program.

Example 3.5. Let T be the tree of Figure 8. Suppose T is the characteristic tree
of the cubic outerplanar graph G124. The computer program shows that the genus
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polynomial gT (x) of G124 equals.

gT (x)

262
=1 + 183x+ 15504x2 + 808392x3 + 29090400x4 + 767987472x5

+ 15435671040x6 + 241930272384x7 + 3004569543168x8

+ 29877836739840x9 + 239410877976576x10

+ 1550357283483648x11 + 8111720263237632x12

+ 34174289079189504x13 + 115119139150430208x14

+ 306551896452071424x15 + 634256725446623232x16

+ 993604844419743744x17 + 1132860542331912192x18

+ 881351152818978816x19 + 415275675304329216x20

+ 88557124429283328x21

Note that the running time of the program is less than 1 second. We also input two
trees: one tree is 226 vertices, the other is 280 vertices. The running time is about
1 second and 2 seconds, respectively.

Figure 8: A complete binary tree with 63 vertices

In [6], Gross, Robbins and Tucker conjectured that the genus distribution of a
graph is log-concave. With the help of an embedding-distribution computer program,
we also verified the log-concavity for the genus distribution of any cubic outerplanar
graph with fewer than 33 vertices. This provides further evidence that the genus
distribution of any graph is log-concave.
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