Fans are cycle-antimagic

Ali Ovais Muhammad Awais Umar
Abdus Salam School of Mathematical Sciences
GC University, Lahore
Pakistan
aligureja_2@hotmail.com owais054@gmail.com

Martin Bača* Andrea Semaničová-Feñovčíková ${ }^{\dagger}$
Department of Applied Mathematics and Informatics
Technical University, Košice
Slovakia
martin.baca@tuke.sk andrea.fenovcikova@tuke.sk

Abstract

A simple graph $G=(V, E)$ admits an H-covering if every edge in E belongs at least to one subgraph of G isomorphic to a given graph H. Then the graph G admitting an H-covering is (a, d) - H-antimagic if there exists a bijection $f: V \cup E \rightarrow\{1,2, \ldots,|V|+|E|\}$ such that, for all subgraphs H^{\prime} of G isomorphic to H, the H^{\prime}-weights, $w t_{f}\left(H^{\prime}\right)=$ $\sum_{v \in V\left(H^{\prime}\right)} f(v)+\sum_{e \in E\left(H^{\prime}\right)} f(e)$, form an arithmetic progression with the initial term a and the common difference d. Such a labeling is called super if the smallest possible labels appear on the vertices.

This paper is devoted to studying the existence of super $(a, d)-H$ antimagic labelings for fans when subgraphs H are cycles.

1 Introduction

We consider finite and simple graphs. Let the vertex and edge sets of a graph G be denoted by $V=V(G)$ and $E=E(G)$, respectively. An edge-covering of G is a family of subgraphs $H_{1}, H_{2}, \ldots, H_{t}$ such that each edge of E belongs to at least one of the subgraphs $H_{i}, i=1,2, \ldots, t$. Then it is said that G admits an $\left(H_{1}, H_{2}, \ldots, H_{t}\right)$ (edge) covering. If every subgraph H_{i} is isomorphic to a given graph H, then the

[^0]graph G admits an H-covering. Note that in this case all subgraphs of G isomorphic to H must be in the H-covering. A bijective function $f: V \cup E \rightarrow\{1,2, \ldots,|V|+|E|\}$ is an (a, d) - H-antimagic labeling of a graph G admitting an H-covering whenever, for all subgraphs H^{\prime} isomorphic to H, the H^{\prime}-weights
$$
w t_{f}\left(H^{\prime}\right)=\sum_{v \in V\left(H^{\prime}\right)} f(v)+\sum_{e \in E\left(H^{\prime}\right)} f(e)
$$
form an arithmetic progression $a, a+d, a+2 d, \ldots, a+(t-1) d$, where $a>0$ and $d \geq 0$ are two integers, and t is the number of all subgraphs of G isomorphic to H. Such a labeling is called super if the smallest possible labels appear on the vertices. A graph that admits a (super) (a, d)- H -antimagic labeling is called (super) (a,d)-H-antimagic. For $d=0$ it is called H-magic and H-supermagic, respectively.

The notion of H-supermagic graphs was introduced by Gutiérrez and Lladó [8] as an extension of the edge-magic and super edge-magic labelings introduced by Kotzig and Rosa [11] and Enomoto, Lladó, Nakamigawa and Ringel [7], respectively. They proved that some classes of connected graphs are H-supermagic, such as the stars $K_{1, n}$ and the complete bipartite graphs $K_{n, m}$ are $K_{1, h}$-supermagic for some h. They also proved that the path P_{n} and the cycle C_{n} are P_{h}-supermagic for some h. More precisely they proved that the cycle C_{n} is P_{h}-supermagic for any $2 \leq h \leq n-1$ such that $\operatorname{gcd}(n, h(h-1))=1$. Lladó and Moragas [12] studied the cycle-(super)magic behavior of several classes of connected graphs. They proved that wheels, windmills, books and prisms are C_{h}-magic for some h. Maryati, Salman, Baskoro, Ryan and Miller [16] and also Salman, Ngurah and Izzati [18] proved that certain families of trees are path-supermagic. Ngurah, Salman and Susilowati [17] proved that chains, wheels, triangles, ladders and grids are cycle-supermagic. Maryati, Salman and Baskoro [15] investigated the G-supermagicness of a disjoint union of c copies of a graph G and showed that the disjoint union of any paths is $c P_{h}$-supermagic for some c and h.

The (a, d)- H-antimagic labeling was introduced by Inayah, Salman and Simanjuntak [9]. In [10] the authors investigate the super (a, d) - H-antimagic labelings for some families of connected graphs H. In [19] was proved that wheels $W_{n}, n \geq 3$, are super (a, d) - C_{k}-antimagic for every $k=3,4, \ldots, n-1, n+1$ and $d=0,1,2$.

The (super) (a, d) - H-antimagic labeling is related to a super d-antimagic labeling of type $(1,1,0)$ of a plane graph that is the generalization of a face-magic labeling introduced by Lih [13]. Further information on super d-antimagic labelings can be found in $[2,5]$.

For $H \cong K_{2}$, (super) (a, d) - H-antimagic labelings are also called (super) (a, d) -edge-antimagic total labelings and have been introduced in [20]. More results on (a, d)-edge-antimagic total labelings, can be found in [4, 14]. The vertex version of these labelings for generalized pyramid graphs is given in [1].

The existence of super (a, d)-H-antimagic labelings for disconnected graphs is studied in [6] and there is proved that if a graph G admits a (super) (a,d)-Hantimagic labeling, where $d=|E(H)|-|V(H)|$, then the disjoint union of m copies
of the graph G, denoted by $m G$, admits a (super) (b, d) - H-antimagic labeling as well. In [3] is shown that the disjoint union of multiple copies of a (super) ($a, 1$)-treeantimagic graph is also a (super) $(b, 1)$-tree-antimagic. A natural question is whether the similar result holds also for another differences and another H -antimagic graphs.

A $\operatorname{fan} F_{n}, n \geq 2$, is a graph obtained by joining all vertices of the path P_{n} to a further vertex, called the centre. The vertices on the path we will call the path vertices. The edges adjacent to the central vertex we will call the spokes and the remaining edges we will call the path edges. Thus F_{n} contains $n+1$ vertices, say, $v_{1}, v_{2}, \ldots, v_{n+1}$, and $2 n-1$ edges, say, $v_{n+1} v_{i}, 1 \leq i \leq n$, and $v_{i} v_{i+1}, 1 \leq i \leq n-1$.

In this paper we investigate the existence of super (a, d) - H-antimagic labelings for fans when subgraphs H are cycles.

2 Super (a, d)-cycle-antimagic labeling of fan

Let C_{k} be a cycle on k vertices. Every cycle C_{k} in F_{n} is of the form $C_{k}^{j}=v_{j} v_{j+1} v_{j+2} \ldots$ $v_{j+k-2} v_{n+1} v_{j}$, where $j=1,2, \ldots, n-k+2$. It is easy to see that each edge of F_{n} belongs to at least one cycle C_{k}^{j} if $k=3,4, \ldots,\left\lfloor\frac{n}{2}\right\rfloor+2$.

For the C_{k}-weight of the cycle $C_{k}^{j}, j=1,2, \ldots, n-k+2$, under a total labeling f we get

$$
\begin{align*}
w t_{f}\left(C_{k}^{j}\right)= & \sum_{v \in V\left(C_{k}^{j}\right)} f(v)+\sum_{e \in E\left(C_{k}^{j}\right)} f(e) \\
= & \sum_{s=0}^{k-3}\left(f\left(v_{j+s}\right)+f\left(v_{j+s} v_{j+s+1}\right)\right)+\left(f\left(v_{j+k-2}\right)+f\left(v_{j+k-2} v_{n+1}\right)\right) \\
& +f\left(v_{n+1}\right)+f\left(v_{j} v_{n+1}\right) \tag{1}
\end{align*}
$$

2.1 Differences $d=1,3$

The next theorem shows that F_{n} admits super cycle-antimagic labelings for differences $d=1$ and $d=3$.

Theorem 1. Let $n \geq 3$ be a positive integer and $3 \leq k \leq\left\lfloor\frac{n}{2}\right\rfloor+2$. Then the fan F_{n} admits a super (a, d)-C C_{k}-antimagic labeling for $d=1,3$.

Proof. Let us consider the total labelings f_{1} and f_{2} of F_{n} defined in the following way

$$
\begin{aligned}
f_{1}\left(v_{i}\right)=f_{2}\left(v_{i}\right) & =i, & & \text { for } i=1,2, \ldots, n+1 \\
f_{1}\left(v_{i} v_{n+1}\right) & =2 n+2-i, & & \text { for } i=1,2, \ldots, n \\
f_{2}\left(v_{i} v_{n+1}\right) & =n+1+i, & & \text { for } i=1,2, \ldots, n \\
f_{1}\left(v_{i} v_{i+1}\right)=f_{2}\left(v_{i} v_{i+1}\right) & =3 n+1-i, & & \text { for } i=1,2, \ldots, n-1 .
\end{aligned}
$$

It is easy to see that f_{1} and f_{2} are super labelings as the vertices of F_{n} are labeled by the labels $1,2, \ldots, n+1$.

Under both labelings the spokes attain the labels $n+2, n+3, \ldots, 2 n+1$ and the path edges are labeled by the numbers $2 n+2,2 n+3, \ldots, 3 n$.

The sum of the path vertex label and the corresponding incident path edge label is a constant. More precisely, for every $i=1,2, \ldots, n-1$ and for $m=1,2$ we have

$$
\begin{equation*}
f_{m}\left(v_{i}\right)+f_{m}\left(v_{i} v_{i+1}\right)=i+(3 n+1-i)=3 n+1 \tag{2}
\end{equation*}
$$

Under the labeling f_{1} the sum of the path vertex label and the incident spoke label is a constant, that is, for every $i=1,2, \ldots, n$

$$
\begin{equation*}
f_{1}\left(v_{i}\right)+f_{1}\left(v_{i} v_{n+1}\right)=i+(2 n+2-i)=2 n+2 \tag{3}
\end{equation*}
$$

On the other side under the labeling f_{2} the sums of the path vertex label and corresponding spoke label form an arithmetic sequence with difference 2 , that is, for every $i=1,2, \ldots, n$

$$
\begin{equation*}
f_{2}\left(v_{i}\right)+f_{2}\left(v_{i} v_{n+1}\right)=i+(n+1+i)=n+1+2 i \tag{4}
\end{equation*}
$$

According to (1), (2) and (3) we obtain

$$
\begin{aligned}
w t_{f_{1}}\left(C_{k}^{j}\right) & =(k-2)(3 n+1)+(2 n+2)+(n+1)+(2 n+2-j) \\
& =(k-2)(3 n+1)+5 n+5-j
\end{aligned}
$$

and with respect to (1), (2) and (4) we obtain

$$
\begin{aligned}
w t_{f_{2}}\left(C_{k}^{j}\right) & =(k-2)(3 n+1)+(n+1+2(j+k-2))+(n+1)+(n+1+j) \\
& =(k-1)(3 n+3)+3 j
\end{aligned}
$$

Thus under the labeling f_{1} the set of all the C_{k}-weights consists of consecutive integers and under the labeling f_{2} the C_{k}-weights form the arithmetic sequence with the difference 3. This concludes the proof.

2.2 Differences depending on the length of cycle

The following theorem proves the existence of super cycle-antimagic labelings for differences $2 k-5,2 k-1$ and $3 k-1$.

Theorem 2. Let $n \geq 3$ be a positive integer and $3 \leq k \leq\left\lfloor\frac{n}{2}\right\rfloor+2$. Then the fan F_{n} admits a super $(a, d)-C_{k}$-antimagic labeling for $d=2 k-5,2 k-1,3 k-1$.

Proof. Let us consider the total labelings f_{3}, f_{4} and f_{5} of F_{n} defined in the following
way

$$
\begin{aligned}
f_{m}\left(v_{i}\right) & =i, \\
f_{m}\left(v_{i} v_{n+1}\right) & = \begin{cases}3 n+1-i, & \text { for } i=1,2, \ldots, n+1 \text { and } m=3,4,5 \\
2 n+i, & \text { for } i=1,2, \ldots, n \text { and } m=3 \\
n+2 i, & \text { for } i=1,2, \ldots, n \text { and } m=4\end{cases} \\
f_{m}\left(v_{i} v_{i+1}\right) & = \begin{cases}n+1+i, & \text { for } i=1,2, \ldots, n-1 \text { and } m=3,4 \\
n+1+2 i, & \text { for } i=1,2, \ldots, n-1 \text { and } m=5 .\end{cases}
\end{aligned}
$$

It is easy to see that f_{m} is a super labeling for every $m=3,4,5$. Under the labelings f_{3} and f_{4} the path edges are labeled with the numbers $n+2, n+3, \ldots, 2 n$ and under the labeling f_{5} they attain the numbers $n+3, n+5, \ldots, 3 n-1$. The labelings f_{3} and f_{4} assign to spokes the labels $2 n+1,2 n+2, \ldots, 3 n$ and the labeling f_{5} assigns labels $n+2, n+4, \ldots, 3 n$.

For every $i=1,2, \ldots, n-1$ we have

$$
\begin{array}{rlr}
f_{m}\left(v_{i}\right)+f_{m}\left(v_{i} v_{i+1}\right) & =i+(n+1+i)=n+1+2 i, & \text { if } m=3,4 \\
f_{5}\left(v_{i}\right)+f_{5}\left(v_{i} v_{i+1}\right) & =i+(n+1+2 i)=n+1+3 i . \tag{6}
\end{array}
$$

For every $i=1,2, \ldots, n$ we get

$$
\begin{align*}
& f_{3}\left(v_{i}\right)+f_{3}\left(v_{i} v_{n+1}\right)=i+(3 n+1-i)=3 n+1, \tag{7}\\
& f_{4}\left(v_{i}\right)+f_{4}\left(v_{i} v_{n+1}\right)=i+(2 n+i)=2 n+2 i, \tag{8}\\
& f_{5}\left(v_{i}\right)+f_{5}\left(v_{i} v_{n+1}\right)=i+(n+2 i)=n+3 i . \tag{9}
\end{align*}
$$

For C_{k}-weights from (1), (5) and (7) it follows

$$
\begin{aligned}
w t_{f_{3}}\left(C_{k}^{j}\right) & =\sum_{s=0}^{k-3}(n+1+2(j+s))+(3 n+1)+(n+1)+(3 n+1-j) \\
& =(k-2)(n+k-2)+7 n+3+j(2 k-5)
\end{aligned}
$$

by (1), (5) and (8) we obtain

$$
\begin{aligned}
w t_{f_{4}}\left(C_{k}^{j}\right) & =\sum_{s=0}^{k-3}(n+1+2(j+s))+(2 n+2(j+k-2))+(n+1)+(2 n+j) \\
& =(k-2)(n+k)+5 n+1+j(2 k-1)
\end{aligned}
$$

and by (1), (6) and (9) we get

$$
\begin{aligned}
w t_{f_{5}}\left(C_{k}^{j}\right) & =\sum_{s=0}^{k-3}(n+1+3(j+s))+(n+3(j+k-2))+(n+1)+(n+2 j) \\
& =(k+1)(n+4)+\frac{3(k-3)(k-2)}{2}-11+j(3 k-1)
\end{aligned}
$$

Thus under the labelings $f_{m}, m=3,4,5$, the C_{k}-weights form the arithmetic sequence with the differences $2 k-5,2 k-1$ and $3 k-1$, respectively.

The existence of super cycle-antimagic labelings of a fan for differences $3 k-9$, $k-7$ and $k+1$ follows from the next theorem.

Note that for some of these values of difference d is negative, which only means that the cycle-weights form decreasing sequence, or alternatively the difference in the corresponding increasing arithmetic sequence is $|d|$. Note that if $d=0$ then the cycle-weights are the same.
Theorem 3. Let $n \geq 3$ be a positive integer and $3 \leq k \leq\left\lfloor\frac{n}{2}\right\rfloor+2$. Then the fan F_{n} is super $(a, d)-C_{k}$-antimagic for $d=3 k-9, k-7, k+1$.

Proof. Define the total labeling $f_{m}, m=6,7,8$, of F_{n} as follows

$$
\begin{gathered}
f_{m}\left(v_{i}\right)= \begin{cases}i, & \text { for } i=1,2, \ldots, n+1 \text { and } m=6 \\
n+1-i, & \text { for } i=1,2, \ldots, n \text { and } m=7,8 \\
n+1, & \text { for } i=n+1 \text { and } m=7,8\end{cases} \\
f_{m}\left(v_{i} v_{n+1}\right)= \begin{cases}3 n+2-2 i, & \text { for } i=1,2, \ldots, n \text { and } m=6,7 \\
n+2 i, & \text { for } i=1,2, \ldots, n \text { and } m=8\end{cases} \\
f_{m}\left(v_{i} v_{i+1}\right)=n+1+2 i, \quad \text { for } i=1,2, \ldots, n-1 \text { and } m=6,7,8 .
\end{gathered}
$$

Since the labelings $f_{m}, m=6,7,8$, assign the smallest possible labels to the vertices of F_{n}, they are super. For each labeling $f_{m}, m=6,7,8$, the path edges attain the labels $n+3, n+5, \ldots, 3 n-1$ and the spokes are labeled by the labels $n+2, n+4, \ldots, 3 n$.

For every $i=1,2, \ldots, n-1$ we get

$$
\begin{align*}
f_{6}\left(v_{i}\right)+f_{6}\left(v_{i} v_{i+1}\right) & =i+(n+1+2 i)=n+1+3 i \tag{10}\\
f_{m}\left(v_{i}\right)+f_{m}\left(v_{i} v_{i+1}\right) & =(n+1-i)+(n+1+2 i)=2 n+2+i, \text { if } m=7,8 \tag{11}
\end{align*}
$$

For every $i=1,2, \ldots, n$ we have

$$
\begin{align*}
& f_{6}\left(v_{i}\right)+f_{6}\left(v_{i} v_{n+1}\right)=i+(3 n+2-2 i)=3 n+2-i, \tag{12}\\
& f_{7}\left(v_{i}\right)+f_{7}\left(v_{i} v_{n+1}\right)=(n+1-i)+(3 n+2-2 i)=4 n+3-3 i, \tag{13}\\
& f_{8}\left(v_{i}\right)+f_{8}\left(v_{i} v_{n+1}\right)=(n+1-i)+(n+2 i)=2 n+1+i . \tag{14}
\end{align*}
$$

According to (1), (10) and (12)

$$
\begin{aligned}
w t_{f_{6}}\left(C_{k}^{j}\right)= & \sum_{s=0}^{k-3}(n+1+3(j+s))+(3 n+2-(j+k-2))+(n+1) \\
& +(3 n+2-2 j)=n(k+5)+\frac{3(k-3)(k-2)}{2}+5+j(3 k-9)
\end{aligned}
$$

with respect to (1), (11) and (13)

$$
\begin{aligned}
w t_{f_{7}}\left(C_{k}^{j}\right)= & \sum_{s=0}^{k-3}(2 n+2+(j+s))+(4 n+3-3(j+k-2))+(n+1) \\
& +(3 n+2-2 j)=(2 n-1)(k+2)+\frac{(k-3)(k-2)}{2}+10 \\
& +j(k-7)
\end{aligned}
$$

and from (1), (11) and (14) it follows

$$
\begin{aligned}
w t_{f_{8}}\left(C_{k}^{j}\right)= & \sum_{s=0}^{k-3}(2 n+2+(j+s))+(2 n+1+(j+k-2))+(n+1) \\
& +(n+2 j)=(2 n+3) k+\frac{(k-3)(k-2)}{2}-4+j(k+1)
\end{aligned}
$$

One can see that under the labelings $f_{m}, m=6,7,8$, the C_{k}-weights constitute the arithmetic sequences with the differences $3 k-9, k-7$ and $k+1$, respectively.

$3 \quad C_{3}$-antimagicness of fans

In [13] Lih proved that F_{n} is C_{3}-supermagic for every n except when $n \equiv 2(\bmod 4)$. Ngurah, Salman and Susilowati [17] completed this result and they proved that for any integer $n \geq 2$ the fan F_{n} is C_{3}-supermagic.

Immediately from Theorems 1 through 3 we obtain that if F_{n} satisfies the necessary condition for covering by C_{3}, then there exist super $(a, d)-C_{k}$-antimagic labelings of F_{n} for every $d \in\{0,1,3,4,5,8\}$. Moreover, in the next theorem we are able to prove also that differences $d=2$ and $d=6$ are feasible.
Theorem 4. The fan $F_{n}, n \geq 4$, is super (a, d) - C_{3}-antimagic for $d=0,1,2,3,4$, 5, 6, 8 .

Proof. The existence of such labelings for $d=0,1,3,4,5,8$ immediately follows from Theorems 1 through 3. For $d=2,6$ let us consider the following.

Construct the total labelings $g_{m}, m=1,2$, of F_{n} such that

$$
\begin{aligned}
& g_{m}\left(v_{i}\right)= \begin{cases}\frac{i+1}{2}, & \text { for } 1 \leq i \leq n, i \equiv 1 \quad(\bmod 2) \text { and } m=1 \\
\left\lceil\frac{n}{2}\right\rceil+\frac{i}{2}, & \text { for } 2 \leq i \leq n, i \equiv 0 \quad(\bmod 2) \text { and } m=1 \\
n+1, & \text { for } i=n+1 \text { and } m=1 \\
i, & \text { for } i=1,2, \ldots, n+1 \text { and } m=2\end{cases} \\
& g_{m}\left(v_{i} v_{n+1}\right)= \begin{cases}2 n+i, & \text { for } i=1,2, \ldots, n \text { and } m=1 \\
n+1+i, & \text { for } 1 \leq i \leq n, i \equiv 1 \quad(\bmod 2) \text { and } m=2 \\
n+2\left\lceil\frac{n}{2}\right\rceil+i, & \text { for } 2 \leq i \leq n, i \equiv 0 \quad(\bmod 2) \text { and } m=2\end{cases} \\
& g_{m}\left(v_{i} v_{i+1}\right)= \begin{cases}2 n+1-i, & \text { for } i=1,2, \ldots, n-1 \text { and } m=1 \\
n+1+2 i, & \text { for } i=1,2, \ldots, n-1 \text { and } m=2 .\end{cases}
\end{aligned}
$$

The labelings g_{1} and g_{2} are super as the vertices of F_{n} are labeled with the smallest possible labels. Under the labeling g_{1} or g_{2} the path edges attain the labels $n+2, n+$ $3, \ldots, 2 n$ or $n+3, n+5, \ldots, 3 n-1$, respectively, and the spokes admit the labels $2 n+1,2 n+2, \ldots, 3 n$ or $n+2, n+4, \ldots, 3 n$, respectively.

For the C_{3}-weights of the cycle $C_{3}^{j}=v_{j} v_{j+1} v_{n+1} v_{j}, j=1,2, \ldots, n-1$, we get

$$
\begin{aligned}
& w t_{g_{1}}\left(C_{3}^{j}\right)= \\
& \quad g_{1}\left(v_{j}\right)+g_{1}\left(v_{j} v_{j+1}\right)+g_{1}\left(v_{j+1}\right)+g_{1}\left(v_{j+1} v_{n+1}\right)+g_{1}\left(v_{n+1}\right) \\
& \\
& +g_{1}\left(v_{j} v_{n+1}\right) \\
& =\left\{\begin{array}{r}
\frac{j+1}{2}+(2 n+1-j)+\left(\left\lceil\frac{n}{2}\right\rceil+\frac{j+1}{2}\right)+(2 n+(j+1))+(n+1) \\
+(2 n+j)=7 n+\left\lceil\frac{n}{2}\right\rceil+4+2 j \\
\text { for } 1 \leq j \leq n-1, j \equiv 1 \quad(\bmod 2) \\
\left(\left\lceil\frac{n}{2}\right\rceil+\frac{j}{2}\right)+(2 n+1-j)+\frac{j+2}{2}+(2 n+(j+1))+(n+1) \\
+(2 n+j)=7 n+\left\lceil\frac{n}{2}\right\rceil+4+2 j \\
\text { for } 2 \leq j \leq n-1, j \equiv 0 \quad(\bmod 2)
\end{array}\right.
\end{aligned}
$$

and

$$
\begin{aligned}
w t_{g_{2}}\left(C_{3}^{j}\right)= & g_{2}\left(v_{j}\right)+g_{2}\left(v_{j} v_{j+1}\right)+g_{2}\left(v_{j+1}\right)+g_{2}\left(v_{j+1} v_{n+1}\right)+g_{2}\left(v_{n+1}\right) \\
& +g_{2}\left(v_{j} v_{n+1}\right) \\
= & \left\{\begin{array}{r}
j+(n+1+2 j)+(j+1)+\left(n+2\left\lceil\frac{n}{2}\right\rceil+(j+1)\right)+(n+1) \\
+(n+1+j)=4 n+2\left\lceil\frac{n}{2}\right\rceil+5+6 j \\
\text { for } 1 \leq j \leq n-1, j \equiv 1 \quad(\bmod 2) \\
j+(n+1+2 j)+(j+1)+(n+1+(j+1))+(n+1) \\
+\left(n+2\left\lceil\frac{n}{2}\right\rceil+j\right)=4 n+2\left\lceil\frac{n}{2}\right\rceil+5+6 j \\
\text { for } 2 \leq j \leq n-1, j \equiv 0 \quad(\bmod 2) .
\end{array}\right.
\end{aligned}
$$

For $j=1,2, \ldots, n-1$ that is

$$
w t_{g_{1}}\left(C_{3}^{j}\right)=7 n+\left\lceil\frac{n}{2}\right\rceil+4+2 j
$$

and

$$
w t_{g_{2}}\left(C_{3}^{j}\right)=4 n+2\left\lceil\frac{n}{2}\right\rceil+5+6 j .
$$

This means that under the labelings g_{1} and g_{2} the C_{3}-weights form the arithmetic sequences with the differences 2 and 6 , respectively.

$4 \quad C_{4}$-antimagicness of fans

Every cycle C_{4} in F_{n} is of the form $C_{4}^{j}=v_{j} v_{j+1} v_{j+2} v_{n+1} v_{j}, j=1,2, \ldots, n-2$, and for $n \geq 4$, each edge of F_{n} belongs to at least one cycle of C_{4}^{j}. For the C_{4}-weight of
the cycle $C_{4}^{j}, j=1,2, \ldots, n-2$, under a total labeling f we have

$$
\begin{align*}
w t_{f}\left(C_{4}^{j}\right)= & f\left(v_{j}\right)+f\left(v_{j} v_{j+1}\right)+f\left(v_{j+1}\right)+f\left(v_{j+1} v_{j+2}\right)+f\left(v_{j+2}\right)+f\left(v_{j+2} v_{n+1}\right) \\
& +f\left(v_{n+1}\right)+f\left(v_{j} v_{n+1}\right) \tag{15}
\end{align*}
$$

From Theorems 1 through 3 it follows that F_{n}, provided necessary condition for the covering by C_{4} cycles is met, then there exist super (a, d)- C_{4}-antimagic labelings for every $d \in\{1,3,5,7,11\}$. The following theorem shows also that differences $d=0,2,4$ and $d=6$ are feasible.
Theorem 5. The fan $F_{n}, n \geq 4$, is super (a, d) - C_{4}-antimagic for $d=0,1,2,3,4$, $5,6,7,11$.

Proof. For $d=1,3,5,7,11$ the results follow from Theorems 1 through 3. If $d=$ $0,2,4,6$ let us consider the following.

For $F_{n}, n \geq 4$, define the total labelings $h_{m}, 1 \leq t \leq 4$, in the following way

$$
\begin{gathered}
h_{m}\left(v_{i}\right)= \begin{cases}n+1-i, & \text { for } i=1,2, \ldots, n \text { and } m=1,3 \\
n+1, & \text { for } i=n+1 \text { and } m=1,3 \\
i, & \text { for } i=1,2, \ldots, n+1 \text { and } m=2,4\end{cases} \\
h_{m}\left(v_{i} v_{n+1}\right)= \begin{cases}2 n+i, & \text { for } i=1,2, \ldots, n \text { and } m=1,4 \\
3 n+1-i, & \text { for } i=1,2, \ldots, n \text { and } m=2,3\end{cases} \\
h_{m}\left(v_{i} v_{i+1}\right)=\left\{\begin{array}{rr}
n+1+\frac{i+1}{2}, & \text { for } 1 \leq i \leq n-1, i \equiv 1 \quad(\bmod 2), \\
n+\left\lfloor\frac{n}{2}\right\rfloor+1+\frac{i}{2}, & \text { for } 2 \leq i \leq n-1, i \equiv 0 \quad(\bmod 2), \\
\text { and } m=1,2,3,4 .
\end{array}\right.
\end{gathered}
$$

It is easy to see that h_{m} is a super labeling for every $m=1,2,3,4$. Under all labelings the path edges attain the labels $n+2, n+3, \ldots, 2 n$ and the spokes are labeled by the labels $2 n+1,2 n+2, \ldots, 3 n$.

According to (15)

$$
w t_{h_{1}}\left(C_{4}^{j}\right)=\left\{\begin{array}{c}
(n+1-j)+\left(n+1+\frac{j+1}{2}\right)+(n+1-(j+1)) \\
\quad+\left(n+\left\lfloor\frac{n}{2}\right\rfloor+1+\frac{j+1}{2}\right)+(n+1-(j+2)) \\
\quad+(2 n+(j+2))+(n+1)+(2 n+j) \\
=10 n+\left\lfloor\frac{n}{2}\right\rfloor+6 \\
\text { for } 1 \leq j \leq n-2, j \equiv 1 \quad(\bmod 2) \\
(n+1-j)+\left(n+\left\lfloor\frac{n}{2}\right\rfloor+1+\frac{j}{2}\right)+(n+1-(j+1)) \\
\quad+\left(n+1+\frac{(j+1)+1}{2}\right)+(n+1-(j+2)) \\
+(2 n+(j+2))+(n+1)+(2 n+j) \\
=10 n+\left\lfloor\frac{n}{2}\right\rfloor+6 \\
\text { for } 2 \leq j \leq n-2, j \equiv 0 \quad(\bmod 2)
\end{array}\right.
$$

$$
\begin{aligned}
& \left\{\begin{array}{l}
j+\left(n+1+\frac{j+1}{2}\right)+(j+1) \\
+\left(n+\left\lfloor\frac{n}{2}\right\rfloor+1+\frac{j+1}{2}\right)+(j+2)
\end{array}\right. \\
& +(3 n+1-(j+2))+(n+1)+(3 n+1-j) \\
& =9 n+\left\lfloor\frac{n}{2}\right\rfloor+7+2 j
\end{aligned}
$$

$$
\begin{aligned}
& \left\{\begin{array}{r}
(n+1-j)+\left(n+1+\frac{j+1}{2}\right)+(n+1-(j+1)) \\
+\left(n+\left\lfloor\frac{n}{2}\right\rfloor+1+\frac{j+1}{2}\right)+(n+1-(j+2))
\end{array}\right. \\
& +(3 n+1-(j+2))+(n+1)+(3 n+1-j) \\
& =12 n+\left\lfloor\frac{n}{2}\right\rfloor+4-4 j \\
& w t_{h_{3}}\left(C_{4}^{j}\right)=\left\{\begin{array}{c}
=12 n+\left\lfloor\frac{2}{2}\right\rfloor \\
\text { for } 1 \leq j \leq n-2, j \equiv 1 \quad(\bmod 2) \\
(n+1-j)+\left(n+\left\lfloor\frac{n}{2}\right\rfloor+1+\frac{j}{2}\right)+(n+1-(j+1)) \\
+\left(n+1+\frac{(j+1)+1}{2}\right)+(n+1-(j+2)) \\
+(3 n+1-(j+2))+(n+1)+(3 n+1-j) \\
=12 n+\left\lfloor\frac{n}{2}\right\rfloor+4-4 j \\
\text { for } 2 \leq j \leq n-2, j \equiv 0 \quad(\bmod 2),
\end{array}\right.
\end{aligned}
$$

and

$$
w t_{h_{4}}\left(C_{4}^{j}\right)=\left\{\begin{array}{c}
j+\left(n+1+\frac{j+1}{2}\right)+(j+1) \\
\quad+\left(n+\left\lfloor\frac{n}{2}\right\rfloor+1+\frac{j+1}{2}\right)+(j+2) \\
\quad+(2 n+(j+2))+(n+1)+(2 n+j) \\
\quad=7 n+\left\lfloor\frac{n}{2}\right\rfloor+9+6 j \\
\quad \text { for } 1 \leq j \leq n-2, j \equiv 1 \quad(\bmod 2) \\
j+\left(n+\left\lfloor\frac{n}{2}\right\rfloor+1+\frac{j}{2}\right)+(j+1) \\
\\
+\left(n+1+\frac{(j+1)+1}{2}\right)+(j+2) \\
\\
+(2 n+(j+2))+(n+1)+(2 n+j) \\
=7 n+\left\lfloor\frac{n}{2}\right\rfloor+9+6 j \\
\quad \text { for } 2 \leq j \leq n-2, j \equiv 0 \quad(\bmod 2)
\end{array}\right.
$$

This means that under the labelings $h_{m}, m=1,2,3,4$, the C_{4}-weights form the arithmetic sequences with the differences $d=0,2,4$ and 6 , respectively.

5 Conclusion

In this paper we examined the existence of super $(a, d)-C_{k}$-antimagic labelings for fans. We proved that the fan $F_{n}, n \geq 3$, admits a super $(a, d)-C_{k}$-antimagic labeling for $k=3,4, \ldots,\left\lfloor\frac{n}{2}\right\rfloor+2$ and $d \in\{1,3, k-7, k+1,2 k-5,2 k-1,3 k-9,3 k-1\}$. We showed that there exists a super (a, d)- C_{3}-antimagic labeling for $d=0,1,2,3,4,5,6,8$ and a super (a, d) - C_{4}-antimagic labeling for $d=0,1,2,3,4,5,6,7,11$ of $F_{n}, n \geq 4$.

For further investigation we propose the following open problem.
Open Problem 1. Find a super $(a, d)-C_{k}$-antimagic labeling of the fan F_{n} for $d \neq$ $1,3, k-7, k+1,2 k-5,2 k-1,3 k-9,3 k-1$.

Acknowledgements

The research for this article was supported by APVV-15-0116.

References

[1] S. Arumugam, M. Miller, O. Phanalasy and J. Ryan, Antimagic labeling of generalized pyramid graphs, Acta Math. Sin. (Engl. Ser.) 30 (2014), 283-290.
[2] M. Bača, L. Brankovic and A. Semaničová-Feňovčíková, Labelings of plane graphs containing Hamilton path, Acta Math. Sin. (Engl. Ser.) 27(4) (2011), 701-714.
[3] M. Bača, Z. Kimáková, A. Semaničová-Feňovčíková and M. A. Umar, Treeantimagicness of disconnected graphs, Math. Probl. Eng. 2015 (2015), Article ID 504251, 4 pp.
[4] M. Bača and M. Miller, Super edge-antimagic graphs: A wealth of problems and some solutions, Brown Walker Press, Boca Raton, Florida, 2008.
[5] M. Bača, M. Miller, O. Phanalasy and A. Semaničová-Feňovčíková, Super dantimagic labelings of disconnected plane graphs, Acta Math. Sin. (Engl. Ser.) 26(12) (2010), 2283-2294.
[6] M. Bača, M. Miller, J. Ryan and A. Semaničová-Feňovčíková, On H-antimagicness of disconnected graphs, Bull. Aust. Math. Soc. 94(2) (2016), 201-207.
[7] H. Enomoto, A. S. Lladó, T. Nakamigawa and G. Ringel, Super edge-magic graphs, SUT J. Math. 34 (1998), 105-109.
[8] A. Gutiérrez and A. Lladó, Magic coverings, J. Combin. Math. Combin. Comput. 55 (2005), 43-56.
[9] N. Inayah, A. N. M. Salman and R. Simanjuntak, On (a, d) - H-antimagic coverings of graphs, J. Combin. Math. Combin. Comput. 71 (2009), 273-281.
[10] N. Inayah, R. Simanjuntak, A. N. M. Salman and K. I. A. Syuhada, On (a, d)-H-antimagic total labelings for shackles of a connected graph H, Australas. J. Combin. 57 (2013), 127-138.
[11] A. Kotzig and A. Rosa, Magic valuations of finite graphs, Canad. Math. Bull. 13 (1970), 451-461.
[12] A. Lladó and J. Moragas, Cycle-magic graphs, Discrete Math. 307 (2007), 29252933.
[13] K. W. Lih, On magic and consecutive labelings of plane graphs, Utilitas Math. 24 (1983), 165-197.
[14] A. M. Marr and W. D. Wallis, Magic Graphs, Birkhäuser, New York, 2013.
[15] T. K. Maryati, A. N. M. Salman and E. T. Baskoro, Supermagic coverings of the disjoint union of graphs and amalgamations, Discrete Math. 313 (2013), 397-405.
[16] T. K. Maryati, A. N. M. Salman, E. T. Baskoro, J. Ryan and M. Miller, On H-supermagic labelings for certain shackles and amalgamations of a connected graph, Utilitas Math. 83 (2010), 333-342.
[17] A. A. G. Ngurah, A. N. M. Salman and L. Susilowati, H-supermagic labelings of graphs, Discrete Math. 310 (2010), 1293-1300.
[18] A. N. M. Salman, A. A. G. Ngurah and N. Izzati, On (super)-edge-magic total labelings of subdivision of stars S_{n}, Utilitas Math. 81 (2010), 275-284.
[19] A. Semaničová-Feňovčíková, M. Bača, M. Lascsáková, M. Miller and J. Ryan, Wheels are cycle-antimagic, Electron. Notes Discrete Math. 48 (2015), 11-18.
[20] R. Simanjuntak, M. Miller and F. Bertault, Two new (a, d)-antimagic graph labelings, Proc. Eleventh Australas. Workshop Combin. Alg. (AWOCA) (2000), 179-189.

[^0]: * Also at Abdus Salam School of Mathematical Sciences, GC University, Lahore, Pakistan. Corresponding author.
 \dagger Also at Abdus Salam School of Mathematical Sciences, GC University, Lahore, Pakistan.

