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Abstract

Let AG(n,Fq) be the n-dimensional affine space over the finite field Fq.
For 0 ≤ m ≤ n − 1, define a graph G(m) whose vertex set is the set of
all m-flats of AG(n,Fq), such that two vertices F1 and F2 are adjacent if
dim(F1∨F2) = m+1, where F1∨F2 is the minimum flat containing both
F1 and F2. Let ASG(2ν,Fq) be the 2ν-dimensional affine-symplectic space
over Fq. Define a graph S(ν) whose vertex set is the set of all maximal
totally isotropic flats of ASG(2ν,Fq) such that two vertices F1 and F2 are
adjacent if dim(F1 ∨ F2) = ν + 1. In this paper we study structures of
the maximal cliques for the graph S(ν) and present several bounds on the
size of error-correcting codes for the graphs G(m) and S(ν).

1 Introduction

Let Fq be the finite field with q elements, where q is a prime power. Let Fn
q be

the n-dimensional row vector space over Fq. For an m-dimensional subspace P of
Fn
q , we mean by a matrix representation of P an m × n matrix whose rows form a

basis of P , denoted by the same symbol P . For 1 ≤ i ≤ n, we use ei to denote
the n-dimensional row vector whose ith component is 1 and the other components
are 0. For any α1, α2, . . . , αm ∈ Fn

q , denote by 〈α1, α2, . . . , αm〉 the subspace of Fn
q

generated by α1, α2, . . . , αm. The general linear group of degree n over Fq, denoted
by GLn(Fq), consists of all n× n nonsingular matrices over Fq. There is an action of
GLn(Fq) on Fn

q as follows:

F
n
q ×GLn(Fq) → F

n
q

(x, T ) �→ xT.

Then the set of all m-dimensional subspaces of Fn
q forms an orbit under GLn(Fq),

denoted by
[
[n]
m

]
. Suppose that P is an m-dimensional subspace of Fn

q . Then a coset
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P +x of Fn
q relative to P is called an m-flat. The dimension of the m-flat P +x is m,

denoted by dim(P +x). A flat F1 is said to be incident with a flat F2, if F1 contains
or is contained in F2. The point set Fn

q with all the flats and the incidence relation
among them defined above is said to be the n-dimensional affine space, denoted by
AG(n,Fq). Denote by F1 ∩F2 the intersection of the flats F1 and F2, and by F1 ∨F2

the minimum flat containing both F1 and F2.

Lemma 1.1 [6, 12] Let F1 = V1+x1 and F2 = V2+x2 be any two flats of AG(n,Fq),
where V1 and V2 are two subspaces of Fn

q , and x1, x2 ∈ Fn
q . Then

(i) F1 ∩ F2 
= ∅ if and only if x2 − x1 ∈ V1 + V2.

(ii) If F1 ∩ F2 
= ∅, then F1 ∩ F2 = V1 ∩ V2 + x, where x ∈ F1 ∩ F2.

(iii) F1 ∨ F2 = V1 + V2 + 〈x2 − x1〉+ x1. In particular,

dim(F1 ∨ F2) =

{
dimF1 + dimF2 − dim(F1 ∩ F2), if F1 ∩ F2 
= ∅,
dimF1 + dimF2 − dim(V1 ∩ V2) + 1, if F1 ∩ F2 = ∅.

For 0 ≤ m ≤ n− 1, define a graph G(m) whose vertex set is the set of all m-flats
of AG(n,Fq); two vertices F1 and F2 are adjacent if dim(F1 ∨ F2) = m + 1. The
graph G(m) is called the m-flat graph in AG(n,Fq). Note that G(0) is a clique with
qn vertices and G(n−1) is a clique with q(qn − 1)/(q − 1) vertices. So we assume
1 ≤ m ≤ n− 2 in the rest of this paper. Li [9, 10] determined the distance function
and the maximal cliques for the graph G(m). As an application, we study error-
correcting codes for the graph G(m) and present several bounds on the size of codes
in Section 2.

Let K be a 2ν × 2ν nonsingular alternate matrix over Fq. A 2ν × 2ν matrix T
over Fq is called a symplectic matrix with respect to K if TKT t = K, where T t is
the transpose of T . The symplectic group of degree 2ν with respect to K over Fq,
denoted by Sp2ν(Fq, K), consists of all 2ν×2ν symplectic matrices with respect to K
over Fq. Let K and K ′ be two 2ν× 2ν nonsingular alternate matrices over Fq. Then
there is a 2ν×2ν nonsingular matrix Q over Fq such that QKQt = K ′, which implies
that T ∈ Sp2ν(Fq, K) if and only if QTQ−1 ∈ Sp2ν(Fq, K

′), and therefore Sp2ν(Fq, K)
is isomorphic to Sp2ν(Fq, K

′). Thus, in discussing symplectic groups, we can choose
any particular 2ν × 2ν nonsingular alternate matrix K and study Sp2ν(Fq, K).

From now on let us take

K =

(
0 I(ν)

−I(ν) 0

)
.

The symplectic group of degree 2ν over Fq, denoted by Sp2ν(Fq), consists of all 2ν×2ν
matrices T over Fq satisfying TKT t = K. The vector space F2ν

q together with the
right multiplication action of Sp2ν(Fq) is called the 2ν-dimensional symplectic space
over Fq. An m-dimensional subspace P in 2ν-dimensional symplectic space is said to
be of type (m, s) if PKP t is of rank 2s. In particular, subspaces of type (m, 0) are
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called m-dimensional totally isotropic subspaces, and ν-dimensional totally isotropic
subspaces are called maximal totally isotropic subspaces. By [12], subspaces of type
(m, s) exist if and only if 2s ≤ m ≤ ν + s. Suppose that P is a subspace of type
(m, s) in F

2ν
q . Then a coset P + x of F2ν

q relative to P is called an (m, s)-flat. The
dimension of the (m, s)-flat P + x is m, denoted by dim(P + x). The point set F2ν

q

with all the flats and the incidence relation among them defined above is said to be
the 2ν-dimensional affine-symplectic space, denoted by ASG(2ν,Fq).

For 1 ≤ ν, define a graph S(ν) whose vertex set is the set of all maximal totally
isotropic flats of ASG(2ν,Fq); two vertices F1 and F2 are adjacent if dim(F1 ∨F2) =
ν+1. The graph S(ν) is called the maximal totally isotropic flat graph in ASG(2ν,Fq).
In Section 3 we determine the distance function and the maximal cliques, study error-
correcting codes, and present several bounds on the size of codes for the graph S(ν).

The Grassmann graphs and dual polar graphs are important distance-regular
graphs. So the study of their features is of interest to many mathematicians; see [1].
Applying the matrix method, Wan, Dai, Feng and Yang [13] computed all parameters
of the Grassmann graphs and dual polar graphs. Wang, Li and Huo [11, 15, 16]
gave in matrix form the structure of all subconstituents of the dual polar graphs.
The reason we study the graphs G(m) and S(ν) is that they contain as subgraphs
Grassmann graphs and dual polar graphs.

The author and Gao [5, 7] discussed the maximal totally isotropic flat graphs
based on affine-unitary spaces and affine-orthogonal spaces, and determined their
distance functions and maximal cliques. It seems to be interesting to discuss the
error-correcting codes in these graphs. Affine polar spaces were first introduced by
Cohen and Shult in [3]. The idea of that new concept resembles the affine reducing
of a projective space. Start with a polar space and simply delete a fixed hyperplane
in it. It seems to be interesting to discuss the general flat graphs based on affine
polar spaces.

2 The affine case

The Grassmann graph Jq(n,m) has the vertex set
[
[n]
m

]
, and two vertices are adjacent

if their intersection has dimension m − 1. Two vertices of Jq(n,m) are at distance
i if and only if their intersection has dimension m − i. It is well known that the
Grassmann graph Jq(n,m) is a distance-regular graph of diameter min{m,n −m},
see [1].

By Chapters 5 and 6 in [2], we may obtain the following lemma.

Lemma 2.1 For a given x ∈ Fn
q , let G

(m)(x) be the subgraph of G(m) induced by all

m-flats of AG(n,Fq) containing x. Then G(m)(x) is isomorphic to the Grassmann
graph Jq(n,m).

Since the graph G(m)(x) is a subgraph of G(m), the graph G(m) is a generalization
of the Grassmann graph Jq(n,m).



JUN GUO/AUSTRALAS. J. COMBIN. 68 (1) (2017), 1–14 4

The set of matrices of the form (
T 0
v 1

)
,

where T ∈ GLn(Fq) and v ∈ Fn
q , forms a group under matrix multiplication, which

is denoted by AGLn(Fq) and called the affine group of degree n over Fq. Define the
action of AGLn(Fq) on AG(n,Fq) as follows:

AG(n,Fq)× AGLn(Fq) → AG(n,Fq)(
x,

(
T 0
v 1

))
�→ xT + v.

The above action induces an action on the set of flats of AG(n,Fq), i.e., a flat P + x
is carried by (

T 0
v 1

)
∈ AGLn(Fq)

to the flat PT + (xT + v). By Theorem 1.21 in [12] AGLn(Fq) is transitive on the
set of m-flats in AG(n,Fq) for a given 0 ≤ m ≤ n.

Lemma 2.2 For any (
T 0
v 1

)
∈ AGLn(Fq),

where T ∈ GLn(Fq) and v ∈ Fn
q , define

σ(T,v) : G
(m) → G(m)

P + x �→ PT + (xT + v).

Then σ(T,v) ∈ Aut (G(m)).

Proof. Note that P + x = Q + y if and only if P = Q and y − x ∈ P , if and only
if PT = QT and (y − x)T ∈ PT , if and only if PT + (xT + v) = QT + (yT + v).
It follows that σ(T,v) is a bijection. For any P + x,Q + y ∈ G(m), we have that
dim((P +x)∨ (Q+y)) = m+1 if and only if either dim(P +Q) = m+1 and y−x ∈
P+Q, or P = Q and y−x 
∈ P , if and only if dim(σ(T,v)(P+x)∨σ(T,v)(Q+y)) = m+1.
It follows that P+x and Q+y are adjacent if and only if σ(T,v)(P+x) and σ(T,v)(Q+y)
are adjacent. Hence, σ(T,v) ∈ Aut (G(m)). �

Li [9] determined the distance function of the graph G(m) and obtained the fol-
lowing result.

Theorem 2.3 [9] For any two vertices F1, F2 of G(m), let d(F1, F2) be the distance
between F1 and F2. Then dim(F1 ∨ F2) = m + r if and only if d(F1, F2) = r. In
particular, G(m) is a vertex transitive graph of diameter min{m + 1, n − m} with
|G(m)| = qn−m

[
n
m

]
q
.
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Lemma 2.4 [1] Suppose max{0, r + s − n} ≤ i ≤ min{r, s}. Let P0 be an r-
dimensional subspace of Fn

q . Then the number of s-dimensional subspaces Q of Fn
q

satisfying dim(P0 ∩Q) = i is q(r−i)(s−i)
[
r
i

]
q

[
n−r
s−i

]
q
.

For a given vertex F inG(m) and a given integer r with 0 ≤ r ≤ min{m+1, n−m},
let G

(m)
r (F ) denote the set of vertices F ′ in G(m) satisfying d(F, F ′) = r.

Lemma 2.5 Let r be an integer with 0 ≤ r ≤ min{m+ 1, n−m} and F be a given
vertex in G(m). Then

|G(m)
r (F )| = (qm−r+1 − 1)qr(r−1)

[
m

r − 1

]
q

[
n−m

r − 1

]
q

+ qr(r+1)

[
m

r

]
q

[
n−m

r

]
q

.

Proof. Since G(m) is vertex transitive, the size of G
(m)
r (F ) is independent of the spe-

cial choice for F . Without loss of generality, assume that F is a fixed m-dimensional
subspace of Fn

q . Let F ′ = U + x be any element of G
(m)
r (F ). From Theorem 2.3 we

deduce that dim(F ∨F ′) = m+ r, which implies that either dim(F ∩U) = m− r+1
and x 
∈ F + U , or dim(F ∩ U) = m− r and x ∈ F + U . If dim(F ∩ U) = m− r + 1
and x 
∈ F + U , by Lemma 2.4 there are q(r−1)2

[
m
r−1

]
q

[
n−m
r−1

]
q
choices for U . For a

given U with dim(F ∩ U) = m − r + 1, by Lemma 1.1 there are qr−1 choices for
U + x satisfying (U + x) ∩ F 
= ∅, which implies that there are qm − qr−1 choices for
U +x satisfying (U +x)∩F = ∅. Therefore there are (qm−r+1−1)qr(r−1)

[
m
r−1

]
q

[
n−m
r−1

]
q

choices for U + x. If dim(F ∩ U) = m − r and x ∈ F + U , similar to the above
discussion we obtain that there are qr(r+1)

[
m
r

]
q

[
n−m
r

]
q
choices for U + x. Hence the

desired result follows. �

Li [10] determined the structures of the maximal cliques of the graph G(m) and
obtained the following result.

Theorem 2.6 [10] Any maximal clique in G(m) is isomorphic to

Ω1 = {F ∈ G(m) | F ⊆ 〈e1, e2, . . . , em+1〉},
Ω2 = {F ∈ G(m) | F ⊇ 〈e1, e2, . . . , em−1〉},

or
Ω3 = {〈e1, e2, . . . , em〉+ x | x ∈ F

n
q }.

The size of the maximal clique in G(m) is q(qm+1 − 1)/(q − 1), (qn−m+1 − 1)/(q − 1)
or qn−m.

Coding in the projective space has received recently a lot of attention due to its
application in network coding. The determination of bounds on the size of codes
with given minimum distance is the main problem in the context of coding theory.
Bounds on the size of codes in the projective space are considered in recent years: see
[8] for the Sphere-packing bound, [14] for the Wang-Xing-Safavi-Naini bound, [17]
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for the Johnson bound and [4] for the Gilbert-Varshamov bound. Next, we study the
error-correcting codes and present several bounds on the size of codes in the graph
G(m).

We say that nonempty subset C of the vertex set of G(m) is an (n,M, d,m) code in
G(m) if |C| = M and d(C) ≥ d, where d(C) = min{d(U + x,W + y) | U + x,W + y ∈
C, U + x 
= W + y}. Let A(n, d,m) denote the maximum number of codewords
in an (n,M, d,m) code. An (n,M, d,m) code is called optimal if it has A(n, d,m)
codewords.

The sphere of radius t centered at a vertex F is defined to be the set of all vertices
whose distance from F is less than or equal to t, i.e., the set

St(F ) = {S ∈ G(m) | d(F, S) ≤ t}.

By Lemma 2.5 one obtains that

|St(F )| =
t∑

r=0

|G(m)
r (F )|

=
t∑

r=0

(
(qm−r+1−1)qr(r−1)

[
m

r − 1

]
q

[
n−m

r − 1

]
q

+ qr(r+1)

[
m

r

]
q

[
n−m

r

]
q

)
.(1)

Theorem 2.7 (Sphere-packing bound) Let t = �(d− 1)/2�. Then

A(n, d,m) ≤
qn−m

[
n
m

]
q

t∑
r=0

(
(qm−r+1 − 1)qr(r−1)

[
m
r−1

]
q

[
n−m
r−1

]
q
+ qr(r+1)

[
m
r

]
q

[
n−m
r

]
q

) .

Proof. Let C be an (n,M, d,m) code inG(m). Then the spheres of radius t about dis-

tinct codewords in C are disjoint. By (1) each of these spheres contains
t∑

r=0

|G(m)
r (F )|

vertices in G(m). Since M
t∑

r=0

|G(m)
r (F )| cannot exceed the total number of vertices,

which implies that M
t∑

r=0

|G(m)
r (F )| ≤ qn−m

[
n
m

]
q
. Therefore the desired result follows.

�

The following result is an analog of the Wang-Xing-Safavi-Naini bound [14] in
G(m).

Theorem 2.8 (Wang-Xing-Safavi-Naini bound) Let d ≤ min{m+ 1, n−m}. Then

A(n, d,m) ≤
qn−m

[
n

m−d+1

]
q[

m
m−d+1

]
q

.
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Proof. Let C be an (n,M, d,m) code in G(m). Then each codeword of C contains
exactly qd−1

[
m

m−d+1

]
q
many (m−d+1)-flats. On the other hand, any given (m−d+1)-

flat of AG(n,Fq) cannot be contained in two distinct codewords of C. In fact, suppose
that F and S are two distinct codewords of C with dim(F ∩ S) ≥ m− d+ 1. Then
F ∩ S 
= ∅ by m− d+ 1 ≥ 0. By Theorem 2.3 we have that

d(F, S) = dim(F ∨ S)−m = m− dim(F ∩ S) ≤ m− (m− d+ 1) = d− 1,

a contradiction. Therefore Mqd−1
[

m
m−d+1

]
q
cannot exceed the total number of (m−

d + 1)-flats, which implies that Mqd−1
[

m
m−d+1

]
q
≤ qn+d−m−1

[
n

m−d+1

]
q
. Therefore the

desired result follows. �

The following result is an analog of the Johnson bound [17] in G(m).

Theorem 2.9 (Johnson bound) Let m ≤ n− 1. Then

A(n, d,m) ≤ q(qn − 1)

qn−m − 1
A(n− 1, d,m).

Proof. Let C be an (n,M, d,m) code in G(m). For each (n− 1)-flat S of AG(n,Fq),
define

CS = {F ∈ C | F ⊆ S}.
Then CS is an (n − 1,MS, d

′, m) code with d′ ≥ d. For any given m-flat F of
AG(n,Fq), there are (qn−m − 1)/(q − 1) many (n− 1)-flats of AG(n,Fq) containing
F . It follows that each codeword of C belongs to (qn−m − 1)/(q − 1) distinct codes
CS, and therefore ∑

S

|CS| = M
qn−m − 1

q − 1
.

Since the number of (n−1)-flats is q(qn−1)/(q−1), there exists at least one (n−1)-flat

S such that |CS| ≥ M qn−m−1
q−1

/ q(qn−1)
q−1

. Since A(n− 1, d,m) ≥ |CS|, we have

A(n, d,m) ≤ q(qn − 1)A(n− 1, d,m)

qn−m − 1
,

as desired. �

The following result is an analog of the Gilbert-Varshamov bound [4] in G(m).

Theorem 2.10 (Gilbert-Varshamov bound) Let d ≤ min{m+ 1, n−m}. Then

A(n, d,m) ≥
qn−m

[
n
m

]
q

d−1∑
r=0

(
(qm−r+1 − 1)qr(r−1)

[
m
r−1

]
q

[
n−m
r−1

]
q
+ qr(r+1)

[
m
r

]
q

[
n−m
r

]
q

) .
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Proof. Let C be an (n,M, d,m) code in G(m) with M = A(n, d,m). Then there is
no vertex S in G(m) such that d(F, S) ≥ d for all F ∈ C. Therefore for any vertex
S in G(m), there exists a sphere of radius d − 1 centered at some F ∈ C such that
S ∈ Sd−1(F ), which implies that

∑
F∈C

|Sd−1(F )| ≥ qn−m

[
n

m

]
q

.

By the transitivity of AGLn(Fq), we have∑
F∈C

|Sd−1(F )| = M |Sd−1(F )|,

and therefore M ≥ qn−m
[
n
m

]
q
/|Sd−1(F )|, as desired. �

Remark. Let n = 4. The bounds listed in Theorems 2.7, 2.8 and 2.10 are given in
the following table:

Name (d,m) = (1, 2) (d,m) = (1, 1) (d,m) = (2, 2)
Theorem 2.7 q2(q2 + 1)(q2 + q + 1) q3(q + 1)(q2 + 1) q2(q2 + 1)(q2 + q + 1)
Theorem 2.8 q2(q2 + 1)(q2 + q + 1) q3(q + 1)(q2 + 1) q2(q2 + 1)

Theorem 2.10 q2(q2 + 1)(q2 + q + 1) q3(q + 1)(q2 + 1) (q2+1)(q2+q+1)
q2+2q+2

The above table tells us that the (4, q2(q2 + 1)(q2 + q + 1), 1, 2) code and
(4, q3(q + 1)(q2 + 1), 1, 1) code are optimal.

3 The affine-symplectic case

For a given x ∈ F
2ν
q , let M(x) be the set of all maximal totally isotropic flats of

ASG(2ν,Fq) containing x. The dual polar graph Cν(q) has the vertex set M(0), and
two vertices are adjacent if their intersection has dimension ν − 1. Two vertices of
Cν(q) are at distance i if and only if their intersection has dimension ν − i. It is
well known that Cν(q) is a distance-regular graph of diameter ν with the following
parameters:

bi = qi+1

[
ν − i

1

]
q

(0 ≤ i ≤ ν − 1), ci =

[
i

1

]
q

(1 ≤ i ≤ ν). (2)

Lemma 3.1 For a given x ∈ F2ν
q , let S(ν)(x) be the subgraph of S(ν) induced by

M(x). Then S(ν)(x) is isomorphic to the dual polar graph Cν(q).

Since the graph S(ν)(x) is a subgraph of S(ν), the graph S(ν) is a generalization
of the dual polar graph Cν(q).

The set of matrices of the form (
T 0
v 1

)
,
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where T ∈ Sp2ν(Fq) and v ∈ F
2ν
q , forms a group under matrix multiplication, which

is denoted by ASp2ν(Fq) and called the affine-symplectic group of degree 2ν over Fq.
Define the action of ASp2ν(Fq) on ASG(2ν,Fq) as follows:

ASG(2ν,Fq)×ASp2ν(Fq) → ASG(2ν,Fq)(
x,

(
T 0
v 1

))
�→ xT + v.

The above action induces an action on the set of flats of ASG(2ν,Fq) and ASp2ν(Fq)
is transitive on the set of (m, s)-flats in ASG(2ν,Fq) for a given (m, s).

Lemma 3.2 For any (
T 0
v 1

)
∈ ASp2ν(Fq),

where T ∈ Sp2ν(Fq) and v ∈ F2ν
q , define

σ(T,v) : S
(ν) → S(ν)

P + x �→ PT + (xT + v).

Then σ(T,v) ∈ Aut (S(ν)).

Theorem 3.3 For any two vertices F1, F2 of S(ν), let d(F1, F2) be the distance be-
tween F1 and F2. Then dim(F1 ∨ F2) = ν + r if and only if d(F1, F2) = r. In

particular, S(ν) is a vertex transitive graph of diameter ν with |S(ν)| = qν
ν∏

i=1

(qi + 1).

Proof. First, we prove that dim(F1 ∨F2) ≤ ν + d(F1, F2) by induction on d(F1, F2).
The case d(F1, F2) = 1 is trivial. Suppose d(F1, F2) = r. Then there exists some
F ∈ S(ν) such that d(F1, F ) = r − 1 and d(F, F2) = 1. By the induction hypothesis,
dim(F1 ∨ F ) ≤ ν + r − 1 and dim(F ∨ F2) = ν + 1. By Lemma 1.1 and F ⊆
(F1 ∨ F ) ∩ (F ∨ F2), we obtain that

dim(F1 ∨ F2) ≤ dim((F1 ∨ F ) ∨ (F ∨ F2))

= dim(F1 ∨ F ) + dim(F ∨ F2)− dim((F1 ∨ F ) ∩ (F ∨ F2))

≤ 2ν + r − dimF

= ν + r

= ν + d(F1, F2).

Next, we prove that dim(F1 ∨ F2) ≥ ν + d(F1, F2). If F1 ∩ F2 
= ∅, then there
exists some x ∈ F1 ∩ F2 such that F1, F2 ∈ S(ν)(x). Since S(ν)(x) is isomorphic to
Cν(q), we obtain d(F1, F2) ≤ dim(F1 ∨ F2) − ν. If F1 ∩ F2 = ∅, then we can write
F1 = V1+x, F2 = V2+y, where V1 and V2 are two maximal totally isotropic subspaces
of F2ν

q , x, y ∈ F2ν
q and y − x 
∈ V1 + V2. Pick F = V2 + x. Then d(F, F2) = 1 and

d(F1, F2) ≤ d(F1, F )+d(F, F2) = d(F1, F )+1. From F1, F ∈ S(ν)(x) we deduce that
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d(F1, F ) ≤ dim(F1 ∨ F )− ν, which implies that d(F1, F2) ≤ dim(F1 ∨ F )− ν + 1 =
dim(F1 ∨ F2)− ν.

By Corollary 3.19 in [12], the number of maximal totally isotropic subspaces of

the symplectic space F2ν
q is

ν∏
i=1

(qi + 1). So |S(ν)| = qν
ν∏

i=1

(qi + 1). �

For a given vertex F in S(ν) and a given integer r with 0 ≤ r ≤ ν, let S
(ν)
r (F )

denote the set of vertices F ′ in S(ν) satisfying d(F, F ′) = r.

Lemma 3.4 Let r be an integer with 0 ≤ r ≤ ν and F be a given vertex in S(ν).
Then

|S(ν)
r (F )| = (qν−r+1 − 1)q(r−1)(r+2)/2

[
ν

r − 1

]
q

+ qr(r+3)/2

[
ν

r

]
q

.

Proof. Since S(ν) is vertex transitive, without loss of generality assume that F =
〈e1, . . . , eν〉. By [13] there are qi(i+1)/2

[
ν
i

]
q
maximal totally isotropic subspaces P

satisfying dim(F ∩ P ) = ν − i. Let U + x be any element of S
(ν)
r (F ), where U is a

maximal totally isotropic subspace of F2ν
q and x ∈ F2ν

q . Then either dim(F ∩ U) =
ν−r+1 and x /∈ F+U , or dim(F∩U) = ν−r and x ∈ F+U . If dim(F∩U) = ν−r+1
and x 
∈ F + U , then there are q(r−1)r/2

[
ν

r−1

]
q
choices for U . For a given U , there

are qr−1 maximal totally isotropic flats U + x such that (U + x) ∩ F 
= ∅, which
implies that there are qν − qr−1 maximal totally isotropic flats U + x such that
(U + x) ∩ F = ∅. Therefore there are (qν − qr−1)q(r−1)r/2

[
ν

r−1

]
q
choices for U + x.

Similarly, if dim(F ∩U) = ν−r and x ∈ F +U , then there are qrqr(r+1)/2
[
ν
r

]
q
choices

for U + x. Therefore the desired result follows. �

Theorem 3.5 Any maximal clique in S(ν) is isomorphic to

Ω1 = {F ∈ S(ν) | F ⊆ 〈e1, e2, . . . , eν+1〉}

or
Ω2 = {〈e1, e2, . . . , eν〉+ x | x ∈ F

2ν
q }.

The size of the maximal clique in S(ν) is (q + 1)q or qν.

Proof. Let Ω be any maximal clique of S(ν). We prove that Ω is isomorphic to Ω1

or Ω2. Let V + x ∈ Ω, where V is a maximal totally isotropic subspace of F2ν
q and

x ∈ F2ν
q . Let Ω(x) = {F ′ ∈ Ω | x ∈ F ′}. Then Ω(x) is a clique of S(ν)(x) containing

V + x. There are the following two cases to be considered.

Case 1: |Ω(x)| ≥ 2. Then there exists a U + x ∈ Ω(x) such that dim(U + V ) =
ν + 1. It follows that U + V is a subspace of type (ν + 1, 1). Let

Δ1 = {S ∈ Ω | S ⊆ (U + V ) + x}.
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Since 〈e1, e2, . . . , eν+1〉 is a (ν + 1, 1)-flat in ASG(2ν,Fq), Δ1 is isomorphic to Ω1.
In order to prove Ω is isomorphic to Ω1, we only need to show that Ω ⊆ Δ1. Let
P + y be any element in Ω, where P is a maximal totally isotropic subspace of F2ν

q

and y ∈ F
2ν
q . We prove P + y ⊆ (U + V ) + x. We first prove that P ⊆ U + V .

Assume that V 
= P 
= U . By Lemma 1.1 and the definition of S(ν), we have that
U, V, P ∈ S(ν)(0) and dim(P + V ) = dim(P + U) = ν + 1. It follows that P and V
(respectively P and U) are adjacent in the graph S(ν)(0). By (2) there are

b0 − b1 − c1 = q

[
ν

1

]
q

− q2
[
ν − 1

1

]
q

− 1 = q − 1

choices for P . Since the subspace U +V is of type (ν+1, 1) in F2ν
q , by Theorem 3.27

in [12] the number of maximal totally isotropic subspaces contained in U+V is q+1.
It follows that the number of vertices of S(ν)(0) contained in U + V is q + 1 = (b0 −
b1− c1)+2, and therefore P ⊆ U +V . Next, we prove that y ∈ (U +V )+x. Assume
that y 
∈ (U +V ) + x, then y− x 
∈ U + V . If P = V or U , without loss of generality
assume that P = V , then dim((U + x) ∨ (P + y)) = dim(P + U + 〈y − x〉) = ν + 2,
a contradiction. If V 
= P 
= U , then P + V = U + V = P + U , which implies that
dim((U + x) ∨ (P + y)) = dim(P + U + 〈y− x〉) = ν + 2, a contradiction. Therefore
we have Ω ⊆ Δ1 and |Ω1| = (q + 1)q.

Case 2: |Ω(x)| = 1. Then Ω(x) = {V + x}. Let P + y be any element in
Ω \ {V + x}, where P is a maximal totally isotropic subspace of F2ν

q and y ∈ F2ν
q .

We show that P = V . Assume that P 
= V . Since Ω is a maximal clique, we have
dim((V +x)∨ (P +y)) = dim(P +V + 〈y−x〉) = dim(P +V ) = ν+1, which implies
that y − x ∈ P + V . It follows that P + y ⊆ (P + V ) + y = (P + V ) + x. Since
{S ∈ S(ν) | S ⊆ (P+V )+x} is a clique containing V +x and P+y and Ω is a maximal
clique containing V +x and P+y, one obtains that {S ∈ S(ν) | S ⊆ (P+V )+x} ⊆ Ω,
which implies that P + x ∈ Ω, a contradiction. Let Δ2 = {V + y | y ∈ F2ν

q }. Then
Ω ⊆ Δ2. Since Δ2 is a clique and Ω is a maximal clique, Ω = Δ2. Therefore Ω is
isomorphic to Ω2 and |Ω2| = qν . �

We say that a nonempty subset C of the vertex set of S(ν) is a (2ν,M, d, ν) code in
S(ν) if |C| = M and d(C) ≥ d, where d(C) = min{d(U + x,W + y) | U + x,W + y ∈
C, U + x 
= W + y}. Let A(2ν, d, ν) denote the maximum number of codewords
in a (2ν,M, d, ν) code. A (2ν,M, d, ν) code is called optimal if it has A(2ν, d, ν)
codewords.

The sphere of radius t centered at a vertex F is defined to be the set of all vertices
whose distance from F is less than or equal to t, i.e., the set

Bt(F ) = {S ∈ S(ν) | d(F, S) ≤ t}.
By Lemma 3.4 one obtains that

|Bt(F )| =
t∑

r=0

|S(ν)
r (F )| =

t∑
r=0

(
(qν−r+1 − 1)q(r−1)(r+2)/2

[
ν

r − 1

]
q

+ qr(r+3)/2

[
ν

r

]
q

)
.
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Theorem 3.6 (Sphere-packing bound) Let t = �(d− 1)/2�. Then

A(2ν, d, ν) ≤
qν

ν∏
i=1

(qi + 1)

t∑
r=0

(
(qν−r+1 − 1)q(r−1)(r+2)/2

[
ν

r−1

]
q
+ qr(r+3)/2

[
ν
r

]
q

) .

Proof. The proof is similar to that of Theorem 2.7, and is omitted. �

The following result is an analog of the Wang-Xing-Safavi-Naini bound [14] in
S(ν).

Theorem 3.7 (Wang-Xing-Safavi-Naini bound) Let d ≤ ν. Then

A(2ν, d, ν) ≤ qν
ν∏

i=d

(qi + 1).

Proof. Let C be a (2ν,M, d, ν) code in S(ν). Similar to the proof of Theorem 2.8, we
have that Mqd−1

[
ν

ν−d+1

]
q
cannot exceed the total number of (ν − d+ 1)-dimensional

totally isotropic flats. By Corollary 3.19 in [12], the number of (ν−d+1)-dimensional
totally isotropic subspaces is

[
ν

ν−d+1

]
q

∏ν
i=d(q

i+1), which implies thatMqd−1
[

ν
ν−d+1

]
q
≤

qν+d−1
[

ν
ν−d+1

]
q

∏ν
i=d(q

i + 1). Therefore the desired result follows. �

The following result is an analog of the Gilbert-Varshamov bound [4] in S(ν).

Theorem 3.8 (Gilbert-Varshamov bound) Let d ≤ ν. Then

A(2ν, d, ν) ≥
qν

ν∏
i=1

(qi + 1)

d−1∑
r=0

(
(qν−r+1 − 1)q(r−1)(r+2)/2

[
ν

r−1

]
q
+ qr(r+3)/2

[
ν
r

]
q

) .

Proof. The proof is similar to that of Theorem 2.10, and is omitted. �

Remark. Let ν = 2. The bounds listed in Theorems 3.6, 3.7 and 3.8 are given in
the following table:

Name d = 1 d = 2
Theorem 3.6 q2(q + 1)(q2 + 1) q2(q + 1)(q2 + 1)
Theorem 3.7 q2(q + 1)(q2 + 1) q2(q2 + 1)

Theorem 3.8 q2(q + 1)(q2 + 1) (q+1)(q2+1)
q+2

The above table tells us that the (4, q2(q + 1)(q2 + 1), 1, 2) code is optimal.
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