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Abstract

An ordinary voltage graph embedding in a surface encodes a certain kind
of highly symmetric covering space of that surface. Given an ordinary
voltage graph embedding of a graph G in a surface with voltage group A
and a connected subgraph H of G, we define special subgroups of A that
depend on H and show how cosets of these groups in A can be used to
find topological information concerning the derived embedding without
constructing the whole covering space. Our strongest theorems treat the
case that H is a cycle and the fiber over H is a disjoint union of cycles
with annular neighborhoods, in which case we are able to deduce specific
symmetry properties of the derived embeddings. We give infinite families
of examples that demonstrate the usefulness of our results.

1 Introduction

A cellular embedding of a graph in a surface encodes a cellular decomposition of the
surface. While a cellular graph embedding can be encoded in the form of a combina-
torial object, say a rotation scheme or a walk double cover, the combinatorial objects
themselves sometimes obscure the embeddings they encode: a rotation scheme en-
codes a graph embedding in the form of cyclic orderings of edges incident to a vertex,
and a cycle or walk double cover encodes a graph embedding in the form of boundary
walks of the faces of the embedding. If K is a connected 2-complex induced by a
cellular graph embedding, then the combinatorial structure of the embedded graph is
not necessarily clear if all one understands about K is a set of lists of edges that form
a walk double cover. Similar difficulties arise from considering graph embeddings en-
coded in the form of rotation schemes. Moreover, in the case of a walk double cover
it is not immediately clear that K is homeomorphic to a surface; there could be point
singularities in K, which would mean that K is homeomorphic to a pseudosurface
(the result of a 2-manifold after a finite number of point identifications).
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Another way to encode a cellular graph embedding is with an assignment of
algebraic data to another cellular graph embedding. This is the basic idea behind
current graphs [6, §4.4] and the various forms of voltage graph embeddings. In
each of these cases, the embedding that is encoded, called the derived embedding,
is a covering space of the surface (sometimes branched on the faces) containing
the encoding, called the base embedding. Current graphs lend themselves easily
to the encoding of triangular embeddings of complete graphs [6, Example 4.4.1].
Ordinary voltage graphs are equally as powerful a tool because they are related by
duality to current graphs. Ordinary voltage graphs and some related formulations
have been used to construct specific kinds of embeddings of graphs in surfaces and
pseudosurfaces. Archdeadon in [2] uses his medial-graph enhancement of ordinary
voltage graph embeddings to construct orientable and nonorientable embeddings of
specific complete bipartite graphs with specific bipartite topological dual graphs.
Archdeacon, Conder, and Širáň in [3] use specially constructed ordinary voltage
graphs to construct infinitely many graph embeddings featuring multiple kinds of
symmetries. Ellingham and Schroeder in [4] use ordinary voltage graph embeddings
to construct an embedding of the complete tripartite graph Kn,n,n in an orientable
surface such that the boundary of each face is a Hamilton cycle. More recently, in
[1], ordinary voltage graph embeddings were used in the cataloging of all cellular
automorphisms of all surfaces of Euler characteristic at least −1.

In these and other applications of (ordinary) voltage graph embeddings the de-
sired embeddings are not well understood at a global level; it’s difficult to conceive a
totally transparent representation of the surface containing the derived embedding.
This is in part due to the fact that the encoded embedding has to be understood
through two layers of encryption: a rotation scheme (or walk double cover) and the
voltage assignment of elements of a finite group, called the voltage group, to the
edges of the embedding. The purpose of this article is to demonstrate that given an
ordinary voltage graph embedding and a connected subgraph H of G, there is basic
topological information about the derived embedding that is contained in the cosets
of specially constructed subgroups of A that depend on H. The strongest theorems
treat the case in which H is a connected 2-regular subgraph, which is called a cycle.

In Section 2, we review all necessary graph theory and topological graph theory
including Archdeacon’s extension of a voltage assignment to the subdivided medial
graph of the base embedding. In Section 3, we develop our theory for connected sub-
graphs H of G as an outgrowth of a theorem of Gross and Alpert. Focusing specially
on cycle subgraphs C of G, we show that if each lift of C has an annular neighbor-
hood, then an understanding of the nature of the containments and intersections of
cosets of the groups constructed in Section 3 can lead to a basic understanding of
the derived surface as a union of surfaces with boundary, whose boundary compo-
nents are the lifts of C. In Section 4, we produce new examples of infinite families
of derived embeddings that have specific properties. The examples we produce are
designed to highlight the kinds of insights obtained by using the results in Section 3.
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2 Definitions and Basic Information

2.1 Graphs, graph embeddings, and 2-complexes

For our purposes, a graph G = (V,E) is a finite and connected multigraph. An edge
is a link if it is not a loop. A cycle is a connected 2-regular subgraph of G. A path
in G is a sequence of vertices and edges v1e1 . . . en−1vn such that the vertices are all
distinct and the edge ei connects vertices vi and vi+1. Given subgraphs H1, H2 of G,
an H1-H2-path is a path that has one of its end vertices in H1, the other end vertex
in H2, and no other vertices in H1∪H2; if H1 = H2, then such a path is an H1-path.
We let D(G) denote the set of all darts (directed edges) in G. Each dart d ∈ D(G)
has a head vertex h(d) and a tail vertex t(d). We say that two darts on the same
edge are opposites of each other, and we adopt the convention that one dart is called
the positive edge and the other is called the negative edge; d−1 is the opposite of d. A
walk W is a sequence of darts d1d2 . . . dm such that h(di) = t(di+1). If h(dm) = t(d1),
then we say that W is a closed walk. We define an H1-H2-walk and an H1-walk by
analogy with an H1-H2-path and an H1-path, respectively. For an edge e joining
vertices u and v, define the operation of subdividing the edge e to be the operation
of replacing the (directed) edge e with a path ue1we2v consisting of two edges. We
also define the subdivision of a graph to be the operation of subdividing each edge
of the graph. Two graphs G1 and G2 are isomorphic if there is map φ : G1 → G2

that bijectively maps vertices to vertices and edges to edges such that the incidence
of edges at vertices is preserved.

For the duration of this article, a surface is a compact 2-manifold, S shall denote
a connected surface without boundary, and Ŝ shall denote a connected surface with
boundary. A cellular embedding of G in S is an embedding that subdivides S into
2-cells. A proper embedding of G in Ŝ is an embedding that subdivides Ŝ into 2-cells;
we require that the boundary components of Ŝ are contained in the image of G. For
the duration of this article, G→ S and G→ Ŝ shall denote a cellular embedding and
a proper embedding, respectively. Two cellular or proper embeddings in the same
surface are equivalent if there is a homeomorphism from the surface to itself that
maps one embedding to the other. Given G→ S, we say that a cycle subgraph C of
G is separating if S \ C is not connected and nonseparating otherwise. We will let
{Ci(S), ∂} denote the Z2-chain complex induced by G→ S: C0(S), C1(S), and C2(S)
are the formal sums of vertices, edges, and faces of the 2-complex created by G→ S.
We let Z(G) denote the subspace of C1(G) generated by the 1-chains inducing cycles
in G, which is called the cycle space of G. We let ∂ : Ci(S) → Ci−1(S) denote
the usual boundary operator. We use similar notation for the 2-complex created
by G → Ŝ. For X ∈ C2(S), we let S[X] denote the subcomplex of {Ci(S), ∂}
consisting of the faces and all subfaces of X, and we let G[X] denote the subgraph
of G consisting of all subfaces of X. We can also treat G as a 1-complex and adopt
similar notation: for X ∈ C1(G), X ∈ C1(S) or X ⊂ E(G), let G[X] denote the
subgraph of G induced by X. For D1 ⊂ D(G), let G[D1] be the graph consisting of
the edges whose darts appear in D1.
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For a subset S1 of another set U , we let Sc1 denote the complement of S1 in
U . We will bend the notation somewhat, and let Sc1 also denote the Z2-sum of the
elements of a Z2 vector space U not appearing in S1. The proof of Lemma 2.1 is
straightforward, and therefore omitted.

Lemma 2.1. Given G→ S and X ∈ C2(S), ∂X = ∂Xc.

For a graph G and a fixed v, star(v) shall denote the set of all edges incident to
v, links and loops; for G→ S, let U∗(v) denote an open set (in the usual Euclidean
topology) in S that contains v, intersects ends of edges of star(v), and intersects no
other edges or vertices of G. We call U∗(v) a vertex-star neighborhood of v. If one
thickens G such that the vertices become discs and the edges become rectangular
strips glued to the discs, one produces what is called a band decomposition of S: the
0-bands are the discs, the 1-bands are the rectangular strips, and the 2-bands are
the discs glued to the 1-bands and the 0-bands. Let ρ : D(G) → D(G) denote the
permutation that takes d to the next dart in the cyclic order of darts with tail vertex
t(d). The order that follows this rotation is called the rotation on t(d) and is denoted
t(d) : d1d2 . . .. The permutation ρ is called a rotation scheme on G. If one of the two
possible orientations on any given 1-band joining 0-bands is consistent with both of
the orientations induced by ρ on the joined 0-bands (see [6, Figures 3.13, 3.14] for
enlightening diagrams), then we say that the edge corresponding to the 1-band is
an orientation-preserving edge and an orientation-reversing edge otherwise. We will
call an orientation-preserving edge and an orientation-reversing edge a type-0 edge
and type-1 edge, respectively. Given G→ S, an orientation-reversing walk is a walk
consisting of an odd number of darts on type-1 edges, and an orientation-preserving
walk otherwise. Similarly, a cycle is an orientation-reversing cycle if it contains
an odd number of orientation-reversing edges and an orientation-preserving cycle
otherwise. Following the discussion in [6, p.111] we may reverse the orientation on a
0-band corresponding to a vertex v without changing the embedding that corresponds
to the rotation scheme: the rotation on v is reversed (the rotation on v is then given
by ρ−1) and the orientation type of each link incident to v is switched. Archdeacon
in [2] calls this process a local sign switch. Two graph embeddings are equivalent if
their corresponding band decompositions differ by a sequence of local sign switches.

For a fixed vertex v of G, consider U∗(v), and let the corners of G → S at v
refer to the components of U∗(v) \G[star(v)]. The medial graph is the graph whose
vertices are the edges of G and has an edge joining two vertices that correspond to
edges of G bounding a corner of G→ S. The medial graph is clearly 4-regular. Each
face of the medial graph embedding falls into one of two categories: those which
correspond to the vertices of G and those which correspond to the faces of G → S.
An example of a medial graph of a cellular graph embedding appears in Figure 1.

Throughout this article, for G → S, z ∈ C1(S) shall denote a 1-chain of S
inducing a cycle in G. We let R(z) denote an open set in S that contains only
edges and vertices of G[z], and intersecting only those edge ends that are incident to
vertices of G[z]. We will call R(z) a ribbon neighborhood of z; R(z) is homeomorphic
to an annulus or Möbius band if G[z] is an orientation-preserving cycle or orientation-
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Figure 1: A cellularly embedded graph G in the sphere and the corresponding medial
graph. The medial graph has white vertices and dashed edges.

reversing cycle, respectively

We will call a set of 1-chains inducing orientation-preserving cycles that have no
vertices in common a set of 1-chains having property ∆. Let X = {z1, . . . , zm} denote
a set of 1-chains having property ∆. We will call the connected sub 2-complexes of
the 2-complex induced by G → S that are bounded by the cycles induced by the
1-chains of X the z-regions of S with respect to X. We define the z-graph of S with
respect to X, which we denote Γ(z1, . . . , zm), to be the graph whose vertices are the
z-regions of S with respect to X and whose edges are the 1-chains of X: an edge
zj is incident to a vertex vΓ if G[zj] is contained in the boundary of vΓ, and if both
components of R(zj) \G[zj] are contained in vΓ, then zj is a loop at vΓ.

Remark 2.2. The purpose of introducing the z-graph is to introduce a combinato-
rial manner of capturing the incidence of z-regions at the cycles that bound them.
Since we are considering graphs embedded in surfaces, a cycle can bound up to two
z-regions, and so it is fitting to describe the incidence of z-regions with a graph.
Given G → S and a set of 1-chains having property ∆, it is easy to see that the
corresponding z-graph is connected; for any two faces f1, f2 of G → S, there is a
sequence of faces f1fa1fa2 . . . f2 such that any two consecutive faces share at least
one boundary edge.

2.2 Ordinary voltage graphs and ordinary voltage graph embeddings

Following [6], we let e denote the positive edge on an edge e ∈ E(G) and e− denote the
negative edge on e. Let A denote a finite group and let 1A denote the identity element
of A. An ordinary voltage graph is an ordered pair 〈G,α→ A〉 such that α : D(G)→
A satisfies α(e−) = α(e)−1. The group element α(e) is called the voltage of e.
Associated to each ordinary voltage graph is a derived graph Gα = (V ×A,E×A). For
a dart e = uv ∈ D(G), the dart (e, a) has tail vertex (u, a) and head vertex (v, aα(e));
it is a consequence of this and the conditions imposed on α that the dart (e−, aα(e))
is the dart opposite (e, a). We will use the abbreviation va for (v, a) and ea for (e, a).
We let p : Gα → S denote the projection (covering) map satisfying p(ea) = e and
p(va) = v. For a walk W = d1d2 . . . dm, let ω(W ) = α(d1)α(d2) . . . α(dm) denote the
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net voltage of W . If W begins at a vertex v, we let W a
v denote the lift of W beginning

at va. For a closed walk W , W a
v ends at the vertex at which W

aω(W )
v begins, and we

say that the lifts W a
v and W b

v are consecutive if aω(W ) = b or bω(W ) = a. We call
a set of lifts of the form{

W a
v ,W

aω(W )
v , W aω(W )2 , W aω(W )3 , . . . ,W aω(W )|〈ω(W )〉|−1

}
a a set of consecutive lifts of W , and we let Ŵ a

v denote the set of consecutive lifts of
W containing W a

v .

Also described in [6], an ordinary voltage graph embedding of G in S is an ordered
pair 〈G → S, α → A〉, which is called a base embedding. Each base embedding
encodes a derived embedding, denoted Gα → Sα, in the derived surface Sα. We
advise the reader that even though S is assumed to be connected, Sα may not be
connected. Gross and Tucker in [6] describe the derived embedding according to
rotation schemes, but we use Garman’s manner of describing it; Garman points out
in [5] that since it is the lifts of facial boundaries that form facial boundaries in Sα,
Sα can be formed by “identifying each component of a lifted region with sides of a
2-cell (unique to that component) and then performing the standard identification of
edges from surface topology”. It is therefore permissible to have a base embedding
in a surface with or without boundary; for each (directed) edge e bounded on only
one side by a face of G→ Ŝ, each (directed) edge ea is bounded on only one side by
a face of Gα → Ŝα.

For 〈G→ S, α→ A〉 we let Sav denote the component of Sα containing the vertex
va, and for 〈G,α → A〉 we let Ga

v denote the component of Gα containing va. We
use similar notation for induced ordinary voltage graphs and ordinary voltage graph
embeddings, e.g., for I ∈ C2(S) such that S[I] is connected and v ∈ V (S[I]), S[I]av
is the component of S[I]α containing va. Similarly, for x ∈ C1(G) such that G[x] is
connected and contains v ∈ V (G), we will implement some shorthand, and we will
let xav be the component of G[x]α containing va.

The voltage group A acts by left multiplication on Gα. For c ∈ A, let c · va =
vca, c · ea = eca. This group action is clearly regular (free and transitive) on the
fibers over vertices and (directed) edges of Gα, and so the components of Gα are
isomorphic. This action extends to a transitive (not necessarily free) action on the
faces forming the fiber over a face of a base embedding, and so the components of
Sα are homeomorphic as topological spaces and isomorphic as cellular complexes.
Per [6, Theorem 4.3.5], the graph covering map can be extended to a (branched)
covering map of surfaces; it is not difficult to see that this covering map also extends
to surfaces with boundary after considering Garman’s construction of the derived
embedding. Moreover, for a walk W based at a vertex v, if we let ω stand in place of
ω(W ) and |ω| stand in the place of |〈ω(W )〉|, we see here that the A-action extends
to lifts of W and sets of consecutive lifts of W : c ·W a

v = W ca
v and

c · Ŵ a
v =

{
W ca
v , W

caω
v , W caω2

v , W caω3

v , . . . , W caω|ω|−1
}
.
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2.2.1 Archdeacon’s Medial Graph Enhancement

Archdeacon in [2] developed an extension of an ordinary voltage graph embedding
to its subdivided medial graph and showed that the derived embedding of the sub-
divided medial graph is the subdivided medial graph of the derived embedding. We
state only the necessary definitions and theorems here. For a vertex v of G to which
no loops are incident and c ∈ A, define a local voltage modification at v to be the
result of replacing α(d) with cα(d) for all darts d on edges in star(v) with tail vertex
v (and α(d−1) with α(d−1)c−1). For a (directed) edge e such that t(e) = u, h(e) = v,
and voltage α(e), define the operation of subdividing the voltage assignment to e to
be the operation of replacing the (directed) edge e with a path ue1we2v of length
two such that t(e1) = u, h(e1) = t(e2) = w, h(e2) = v, and assigning the voltages
α(e1) = α(e), α(e−1 ) = α(e)−1, α(e2) = α(e−2 ) = 1A; if we’d like to subdivide the
voltage assignment to e− instead, we could perform a local voltage modification at w.

Lemma 2.3. [2, Lemma 3.2] If two ordinary voltage assignments to the same graph
or the same graph embedding differ by a local voltage modification, then they encode
isomorphic derived graphs or derived embeddings, respectively.

Given 〈G,α→ A〉, the subdivided ordinary voltage graph 〈G′, α′ → A〉 is formed
by subdividing the voltage assignment to every directed edge of G.

Lemma 2.4. [2, Lemma 3.3] If 〈G′, α′ → A〉 is a subdivided ordinary voltage graph
obtained from 〈G,α→ A〉, then (G′)α

′
is a subdivision of Gα.

We now describe how to transfer an ordinary voltage graph embedding to the
(subdivided) medial graph.

Construction 2.5. [2, §4] Given 〈G → S, α → A〉, the subdivided G′, and the
corresponding subdivided voltage assignment, consider the medial graph M of G→
S. Subdivide every edge of M to obtain the subdivided medial graph M ′. We choose
a preferred direction e+ (recall that this is denoted e) on a fixed edge e of G and
let ve denote the corresponding vertex of the subdivided medial graph. There are
two corners of G → S at t(e) and containing e that correspond to two edges e1, e2

incident to ve in the subdivided medial graph. Direct these two edges e+
1 and e+

2

so that they have head vertex ve, and assign the voltage α(e+) to both e+
1 and e+

2

and α(e−1) to e−1 and e−2 . The other darts of M ′ whose head or tail vertex is ve are
assigned voltage 1A. We repeat this procedure for all other edges of G. Since there
are no loops in the subdivided G′ or the subdivided medial graph M ′, we see that
this transferred voltage assignment to M ′ is well defined, and it is consequence of
Lemma 2.3 that a choice of preferred direction can be reversed by a local voltage
modification (see Figure 2). �

Since the medial graph of an embedding combinatorially captures the incidence
of faces and edges, Theorem 2.6 is valuable for our purposes.
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Figure 2: The transferred medial voltage assignment. The vertices and edges of M ′

are white and dashed, respectively.

Theorem 2.6. [2, Theorem 4.1] Consider 〈G → S, α → A〉 and let M ′ be the
subdivided medial graph with the transferred voltage assignment. The derived graph
(M ′)α is the medial graph of the derived graph of the subdivided G′.

Given G→ S, two consecutive darts d1d2 of a facial boundary walk, and a corner
of G → S that is bounded by G[{d1, d2}], define the operation of drawing an edge
across a corner to be the result of adding an edge joining t(d1) and h(d2) that
intersects that corner. Note that if d1 and d2 are opposites of each other, the edge
drawn is a loop. Define the total graph T (G) of G → S to be the graph formed
by subdividing each edge of G and drawing in subdivided edges across each corner.
Thus, the total graph has both the medial graph and G as minors. Define an extended
voltage assignment to T (G) to be an assignment that is created by subdividing the
ordinary voltage assignment of G, adding subdivided edges across each corner, and
including the transferred voltage assignment from G′ to M ′ described in Construction
2.5. We denote the extended voltage assignment αE → A. Note the existence of a
function ψ : T (G) → T (G), which is the identity map on G′ and projects the darts
(and edges) of M ′ onto the darts of G′ bounding the corner of G→ S across which
the darts (and edges) are drawn, as in Figure 3, where the images of vertices of
M ′ are further detailed. Note that for each dart d of T (G), the extended voltage
assignment αE satisfies α(ψ(d)) = αE(d).

Figure 3: An elucidation of the definition of the map ψ : M ′ → G′ for one corner of
G→ S. The subdivided medial graph has white vertices and dashed edges.
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3 Coset lemmas and coset theorems

Given 〈G → S, α → A〉, we examine specially constructed subgroups of A cor-
responding to special induced subcomplexes of {Ci(S), ∂}, and we establish rela-
tionships between certain cosets of these subgroups and induced subcomplexes of
{Ci(Sα), ∂}.

3.1 Cosets and constructions not requiring Archdeacon’s medial-graph
enhancement

Following [6, §2.5.1], the net voltages of the closed walks in G based at a vertex v
form a group, which is denoted A(v). We begin with a result of Gross and Alpert.

Theorem 3.1. [6, Theorem 2.5.1] Given 〈G,α→ A〉 and a fixed vertex v of G, the
vertices va and vb are in the same component of Gα if and only if a−1b is an element
of A(v).

Lemma 3.2 establishes a relationship between left cosets of A(v) in A and the
connected components of Sα. Lemma 3.2 is a reformulation and strengthening of
Theorem 3.1.

Lemma 3.2. Given 〈G→ S, α→ A〉 and a fixed vertex v of G, the map

φv : {aA(v) : a ∈ A} → {Sav : a ∈ A}

defined by φv(aA(v)) = Sav is a bijection.

Proof. Since Ga
v is the 1-skeleton of Sav , it suffices to verify that φv is a bijection

between the left cosets of A(v) in A and the connected components of Gα. Since
G is connected, for any vertex u ∈ G, there is a u-v-path H that lifts to a total of
|A| distinct p−1(u)-p−1(v)-paths, each one joining a vertex in the fiber over u to a
distinct vertex in the fiber over v. Thus, it suffices to show that Ga

v = Gb
v if and only

if a−1b ∈ A(v), which follows from Theorem 3.1.

Before we proceed any further, we need two technical lemmas. The proof of
Lemma 3.3 is a straightforward application of the free and transitive action of a
group on itself by left multiplication, and therefore omitted.

Lemma 3.3. Let X, Y , and Z denote groups such that X ≤ Y ≤ Z. For each
z ∈ Z, the left coset zY can be partitioned into left cosets yX for y ∈ zY .

Lemma 3.4 establishes a relationship between the left cosets of a voltage group
of net voltages of closed walks in a connected subcomplex X and components of the
fiber over X contained in a specific component of Sα. The general formulation of
Lemma 3.4 allows for easier applications to a wide range of cases.
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Lemma 3.4. Let SB denote a surface, possibly with boundary, and let GB denote
a connected graph properly embedded in SB. Let AB denote a finite group. Fix
v ∈ V (GB), and let X denote a connected subcomplex of SB containing v. Consider
〈GB → SB, α→ AB〉. Let AB(v) denote the local voltage group of closed walks based
at v, and let AB(v,X) denote the group of net voltages of closed walks in X based at
v. For a fixed a ∈ AB, the map

φX : {bAB(v,X) : b ∈ aAB(v)} →
{
Xb
v : b ∈ aAB(v)

}
defined by

φX(bAB(v,X)) = Xb
v

is a bijection.

Proof. We consider the case for which the domain of φX is the set of left cosets
of AB(v,X) in AB(v), which is the case for which a = 1A. By Lemma 3.3 and
the transitive left action of A on the fiber over X this case will suffice. Note that
G[X]bv is the 1-skeleton of Xb

v. It suffices to show that φX is a bijection between the
bAB(v,X) and the G[X]bv. Since G[X] is connected, for any other vertex u of G(X),
there is a u-v-path in G[X] that lifts to |AB| distinct p−1(u)-p−1(v)-paths in G[X]α,
each one joining a vertex in the fiber over u to a distinct vertex in the fiber over v.
Consider Theorem 3.1, and let G[X], AB(v,X), and AB take the place of G, A(v),
and A, respectively. It follows that G[X]bv = G[X]cv if and only if b−1c is an element
of Ab(v,X). The result follows.

Let I ∈ C2(S) be such that S[I] is connected and assume that v is a vertex of
G[I]. Let A(v, S[I]) denote the subgroup of A(v) consisting of net voltages of closed
walks in G[I] based at v. Note that

A(v, S[I]) ≤ A(v) ≤ A.

By an application of Lemma 3.3 to the groups A(v, S[I]), A(v), and A, we see that
for each a ∈ A, the left coset aA(v) can be partitioned into left cosets of the form
bA(v, S[I]) for b ∈ aA(v). Lemma 3.5 establishes a relationship between left cosets
of A(v, S[I]) contained in a left coset aA(v) and components of S[I]α contained in
Sav .

Lemma 3.5. Given 〈G→ S, α→ A〉 and a fixed a ∈ A. The map

φI : {bA(v, S[I]) : b ∈ aA(v)} →
{
S[I]bv : b ∈ aA(v)

}
defined by φI(bA(v, I)) = S[I]bv is a bijection.

Proof. This follows from Lemma 3.4 after letting S take the place of SB, A take the
place of AB, A(v) take the place of AB(v), S[I] take the place of X, and A(v, S[I])
take the place of AB(v,X).
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Let y ∈ C1(G[I]) be such that G[y] is connected and assume that v is a vertex of
G[y]. Let A(v,G[y]) denote the subgroup of A(v, S[I]) consisting of net voltages of
closed walks of G[y] based at v. Observe that

A(v,G[y]) ≤ A(v, S[I]) ≤ A(v).

By an application of Lemma 3.3 to the groups A(v,G[y]), A(v, S[I]), and A(v),
we see that for a fixed a ∈ A, each of the left cosets of the form bA(v, S[I]) con-
tained in aA(v) can be partitioned into left cosets cA(v,G[y]) for c ∈ bA(v, S[I]).
Lemma 3.6 establishes a relationship between the left cosets of A(v,G[y]) contained
in bA(v, S[I]) and the components of G[y]α contained in S[I]bv. We omit the proof,
which is straightforward in light of the proof of Lemma 3.5.

Lemma 3.6. Given 〈G→ S, α→ A〉 with fixed a ∈ A, b ∈ aA(v), the map

φy : {cA(v,G[y]) : c ∈ bA(v, S[I])} → {G[y]cv : c ∈ bA(v, S[I])}

defined by φy(cA(v, y)) = G[y]cv is a bijection.

Let W denote a closed walk in G[y] based at v. Clearly

〈ω(W )〉 ≤ A(v,G[y]) ≤ A(v, S[I]) ≤ A(v) ≤ A.

By an application of Lemma 3.3 to the groups 〈ω(W )〉, A(v,G[y]), and A(v, S[I]),
we see that for a fixed a ∈ A and b ∈ aA(v), each of the left cosets cA(v,G[y])
contained in bA(v, S[I]) can be partitioned into left cosets of the form d〈ω(W )〉 for
d ∈ cA(v,G[y]). Lemma 3.7 establishes a relationship between the cosets of 〈ω(W )〉
contained in cA(v,G[y]) and sets of consecutive lifts of W in G[y]cv.

Lemma 3.7. Fix a ∈ A, b ∈ aA(v), and c ∈ baA(v, S[I]). The map

φŴ : {d〈ω(W )〉 : d ∈ cA(v,G[y])} →
{
Ŵ d
v : d ∈ cA(v,G[y])

}
defined by φŴ (〈dω(W )〉) = Ŵ d

v is a bijection whose image is the set of consecutive
lifts of W contained in G[y]cv.

Proof. We treat the case for which c = 1A. By Lemma 3.3 and the transitive action of
A on the components of G[y]α, this case will suffice. The map φŴ is well defined and

injective since Ŵ d1
v = Ŵ d2

v if and only if d1 = d2x for some x ∈ 〈ω(W )〉. Surjectivity
follows immediately from the definition of φŴ .

Note that Ŵ d1
v = Ŵ d2

v are sets of consecutive lifts of W in G[y]1Av if and only if vd1

and vd2 are contained in G[y]1Av , which by letting G[y] and A(v,G[y]) take the places
of G and A(v) in Theorem 3.1, respectively, is true if and only if d−1

1 d2 ∈ A(v,G[y]).
The result follows.

The results of Theorem 3.8 follow readily from Lagrange’s theorem for cosets and
the above lemmas, and the proofs are omitted.
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Theorem 3.8. Consider 〈G → S, α → A〉, and let I ∈ C2(S) be such that S[I]
is connected. Let y ∈ C1(S[I]) be such that G[y] is connected, and let W denote a
closed walk in G[y] based at v ∈ V (G[y]).

1. There are |A|
|A(v)| components of Sα.

2. There are |A(v)|
|A(v,S[I])| components of S[I]α contained in each component of Sα.

3. There are |A(v,S[I])|
|A(v,G[y])| components of G[y]α contained in each component of S[I]α.

4. There are |A(v,G[y])|
|〈ω(W )〉| sets of consecutive lifts of W in each component of G[y]α.

Construction 3.9 allows us to algebraically describe a decomposition of any com-
ponent Sav of Sα in terms of the z-regions associated to the cycles forming the fiber
over a separating cycleG[z]. Since separating cycles are orientation-preserving cycles,
each cycle in the fiber over G[z] is also orientation preserving, and so the 1-chains
forming the fiber over z are a set of 1-chains with property ∆.

Construction 3.9. Let z = ∂I for some I ∈ C2(S) be such that G[z] is a cycle. By
Lemma 2.1, z = ∂Ic. Let W be an Eulerian walk of G[z] based at v ∈ V (G[z]). Let

c1, . . . cj, j = |A(v)|
|〈ω(W )〉| denote representatives of the left cosets of 〈ω(W )〉 contained

in aA(v). By Lemmas 3.5 and 3.6, we may conclude that for the 1-chains zc1v , . . . , z
cj
v

contained in Sav , the vertices of the corresponding z-graph Γ(zc1v , . . . , z
cj
v ) correspond

bijectively to the left cosets contained in the union

{bA(v, S[I]) : b ∈ aA(v)} ∪ {bA(v, S[Ic]) : b ∈ aA(v)} .

Similarly, the left cosets of 〈ω(W )〉 contained in aA(v) correspond bijectively to the
1-chains zcv contained in Sav , which are the edges of Γ(zc1v , . . . , z

cj
v ). Thus, implicitly

using the aforementioned bijections, we may say that the edges of Γ(zc1v , . . . , z
cj
v ) are

incident to the vertices of Γ(zc1v , . . . , z
cj
v ) that contain them.

Remark 3.10. The graph Γ(zc1v , . . . , z
cj
v ) constructed in Construction 3.9 is bipartite.

The bipartition of the vertex set is into two sets S1 and S2, whose elements corre-
spond to the elements of {bA(v, S[I]) : b ∈ aA(v)} and {bA(v, S[Ic]) : b ∈ aA(v)},
respectively.

3.2 Cosets requiring Archdeacon’s medial-graph enhancement

Recall from Section 2.2.1 the subdivided medial graph M ′, the total graph T (G)
associated to a cellular graph embedding, and the extended voltage assignment to
T (G). Since (M ′)α captures the incidence of faces and edges of Gα → Sα, we
introduce Definition 3.11 as a bookkeeping tool for computation that will allow for
easier proofs of results and constructions of more z-graphs.
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Definition 3.11. Consider 〈G → S, α → A〉, two adjacent vertices u and v of G
that are joined by an edge e, and a choice of preferred direction of e. Let ve denote
the vertex of the subdivided medial graph corresponding to e, and consider Figure 4.
We call the subgraph T (G)[{(v, ve), (w, ve), (ve, y)}] the special claw corresponding
to e.

Figure 4: The edges of the special claw corresponding to e appear in gray on the
left hand side of both graphics, each corresponding to a choice of preferred direction
on e. The subdivided medial graph M ′ has white vertices and dashed edges.

Remark 3.12. No matter the choice of preferred direction of e, any walk joining
any two of the vertices w, v, and y in the special claw corresponding to e has net
voltage 1A. Therefore, the vertices in each component in the fiber over the special
claw corresponding to e will have vertices va, wa, ya with identical group element
superscripts.

Let A′(w′) denote the group of net voltages of closed walks in M ′ based at w′ ∈
V (M ′). Lemma 3.13 is immediate in light of the projection map φ : M ′ → G′.

Lemma 3.13. For a fixed vertex v of G, an edge e incident to v, the special claw
corresponding to e, and a vertex w′ of M ′ that takes the place of either of the vertices
w or y in Definition 3.11, A′(w′) = A(v).

Consider G → S and y ∈ C1(G) such that G[y] is connected. We introduce
Definition 3.14 for the sake of presenting it in the most general context, and alert
the reader to the fact that it will be used in distinct settings in Sections 3.2.1 and
3.2.2.

Definition 3.14. Let W ′ be a walk in M ′. We say that W ′ transversely crosses G[y]
if W ′ contains a subwalk didi+1 such that di intersects one component of U∗(h(di)) \
G[y] and di+1 intersects the other.

Fix w′ ∈ V (M ′). Let AY(w′, G[y]) denote the subgroup of A′(w′) of walks in M ′

that do not transversely cross G[y]. For a vertex w′ ∈ V (M ′) and z ∈ Z(G) inducing
a cycle such that the cycles of G[z]α are orientation-preserving cycles, we let S̄bw′(z)
denote the z-region of Sα with respect to the fiber over z that contains w

′b.
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3.2.1 Cycles over orientation-reversing cycles

Consider 〈G → S, α → A〉 for a nonorientable S and z ∈ Z(G) such that G[z] is
an orientation-reversing cycle. Let W = d1d2 . . . dk denote an Eulerian walk of G[z]
based at v ∈ V (G[z]). For the remainder of Section 3.2.1, we let ω denote ω(W ) and
|ω| denote |〈ω(W )〉|. We also assume that |ω| is even so that the cycles forming the
fiber over G[z] are orientation preserving, per Lemma 3.15.

Lemma 3.15. Each cycle of G[z]α is orientation preserving if and only if |ω| is
even.

Proof. A cycle is orientation reversing if and only if it has an odd number of orienta-
tion-reversing edges. Following Part 4 of Theorem 3.8, there are |ω| consecutive lifts
of W that single cover the edges of each component of G[z]α. The result follows.

Consider a vertex-star neighborhood U∗(v) of v, and consider an orientation
of U∗(v) induced by the rotation ρ on v. Consider also the two components of
U∗(v) \ G[z]. It is thus reasonable to denote one component of U∗(v) \ G[z] the
clockwise side of v and the other open set the counterclockwise side of v according
to the orientation on U∗(v) induced by ρ and the direction of the darts d1 and dk, as
in Figure 5.

Figure 5: The clockwise and counterclockwise sides of v.

Recall the covering map p : Sα → S and let Ua(v) denote the component of
p−1(U∗(v)) containing va. We lift the distinction of clockwise and counterclockwise
sets to the elements of {Ua : a ∈ A}; let the clockwise side of va refer to the compo-
nent of Ua(v) \G[z]av that p maps to the clockwise side of v and the counterclockwise
side of va refer to the other component.

We now consider an extended voltage assignment to the total graph T (G) as-
sociated to G → S. For clarity’s sake we require that U∗(v) contains the vertices
v, x, w, and y of the special claw corresponding to E(d1). Assume without loss of
generality that the clockwise side of v contains w and the counterclockwise side of v
contains y.
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Consider a ribbon neighborhood R(z1A
v ) of G[z]1Av containing U1A(v). Let the

east side of z1A
v refer to the component of R(z1A

v ) \ G[z]1Av containing the clockwise
side of v1A , and the west side of z1A

v refer to the other component; the east side of
z1A
v contains w1A and the west side contains y1A . Since each lift of W single covers

an odd number of orientation-reversing edges of Gα, we see that the east side of z1A
v

contains the counterclockwise side of vω. Continuing in this way, we see that for
l odd, the east side of z1A

v contains the counterclockwise side of vω
l
, and the west

side of z1A
v contains the clockwise side of vω

l
. Moreover, for l even, we see that the

east side of z1A
v contains the clockwise side of vω

l
and the counterclockwise side of

vω
l
. Figure 6 illuminates this discussion. Observe the alternation of the rotations

of the vertices in the fiber over v following each lift of W . For the sake of a more
intelligible picture, we show neither the total graph embedding nor the derived total
graph embedding.

Figure 6: A nonorientable ordinary voltage graph embedding in the projective plane
P 2 and its derived embedding. Local sign switches have been applied to the vertices
v1 and v3.

Theorem 3.16. Consider 〈G→ S, α→ A〉 for a nonorientable S and let z ∈ Z(G)
induce an orientation-reversing cycle such that the Eulerian walk W of G[z] has the
property that |ω| is an even integer.

1. Each z-region of Sα with respect to {zav : a ∈ A} contains the same nonzero
number of vertices in the fiber over w.
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2. For each a ∈ A, the component Sav of Sα contains either one or two z-regions
with respect to the fiber over z.

3. If 〈ω〉 6= A(v), then each component of G[z]α is nonseparating.

Proof. By the discussion preceding the statement of Theorem 3.16, we may conclude
that both the east and west sides of z1a

v contain the same nonzero number of lifts
of the clockwise and counterclockwise sides of v. Since A is transitive on the fiber
over G[z], it follows that each of the components of R(zav ) \G[z]av intersects the same
number of components of the lifts the clockwise and counterclockwise sides of v.
Part 1 follows.

To prove Part 2, first note that the action of ω on Sav can be seen to be a glide
reflection on the components of G[z]α. If there exist two z-regions of Sα with respect
to the 1-chains in the fiber over z that share a common boundary component, then
the action of ω on Sα switches those z-regions, and so we see that any two of these
z-regions are homeomorphic. If there are two or more components of G[z]α bounding
a z-region F , then F cannot be bounded by two or more distinct z-regions since
F cannot be switched with two or more distinct z-regions simultaneously. Part 2
follows.

We now move to proving Part 3. Let I =
∑

f∈C2(S) f . Since G[z] is a cycle, it

follows that 〈ω〉 = A(v,G[z]), and so, by Lemma 3.6, we have that {zav : a ∈ A(v)}
is the set of 1-chains inducing the cycles in G[z]α that are contained in S1A

v . If there
is only one z-region of S1A

v with respect to {zav : a ∈ A(v)}, then it is apparent that
no single G[z]av is separating. Now, assume that there are two z-regions of S1A

v with

respect to {zav : a ∈ A(v)}. If A(v) 6= 〈ω〉, then |A(v,S[I])|
|ω| > 1 and so, by Part 3 of

Theorem 3.8, there is more than one component of G[z]α bounding both z-regions of
S1A
v with respect to {zav : a ∈ A(v)}. Part 3 follows by transitivity of the action of
A on the components of Sα.

3.2.2 Cycles over nonseparating orientation-preserving cycles

Here S can be an orientable or nonorientable surface. Consider 〈G → S, α → A〉,
and let z ∈ Z(G) induce a nonseparating orientation-preserving cycle. Let W , ω, |ω|
and v denote the same things they did in Section 3.2.1, but here, |ω| is allowed to be
any positive integer. Consider the extended voltage assignment to the total graph
T (G), the special claw corresponding to E(d1), and let w′ and y′ take the place of
the vertices w and y appearing in Definition 3.11.

Theorem 3.17. Fix a ∈ A and consider Sav .

1. Each of the z-regions of Sav with respect to
{
zbv : b ∈ aA(v)

}
contains a vertex

in the fiber over w′ and a vertex in the fiber over y′.

2. If there is more than one z-region of Sav with respect to
{
zbv : b ∈ aA(v)

}
, then

each z-region is bounded by an even number of cycles of G[z]α.
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Proof. By the action of A on itself by left multiplication and Lemma 3.3, it suffices
to consider the case in which a = 1A. By Lemma 3.6, the 1-chains contained in{
zbv : b ∈ A(v)

}
are the 1-chains over z that are contained in S1A

v . If there is only
one z-region of S1A

v with respect to the zbv, then Part 1 follows.

We now treat the case in which there are multiple z-regions of S1A
v with respect

to the zbv. Since G[z] is nonseparating, there is a w′-y′-walk W ′ in M ′ that does
not transversely cross G[z]. Let ω′ denote ω(W ′). Therefore, for each w

′c, there
is a unique W

′c that begins at w
′c, ends at y

′cω′ , and does not transversely cross
any cycle in

{
G[z]bv : b ∈ A(v)

}
. Fix b ∈ A(v). By Remark 3.12, one component

of R(zbv) \ G[z]bv contains w
′b and the other contains y

′b. Following a lift of W ′, we
see that the z-region that contains w

′b also contains y
′bω′ . Following a lift of W ′

backwards, we see that the z-region that contains y
′b also contains w

′bω−1
. Part 1

follows.

We now move to proving Part 2. For b ∈ aA(v), let the east side of zbv denote
the component of p−1(R(z) \G[z]) containing w

′b and let the west side of zbv denote
the component of p−1(R(z) \G[z]) containing y

′b. Since each lift of W is orientation
preserving, we see that the east side of zbv contains each of the vertices

w
′b, w

′bω, . . . , w
′bω|ω|−1

,

and the west side contains each of the vertices

y
′b, y

′bω, . . . , y
′bω|ω|−1

.

For a fixed b, consider a z-region F with respect to
{
zbv : b ∈ aA(v)

}
, and assume

for the sake of contradiction that F is bounded by an odd number of cycles of G[z]α.
Since F is bounded by an odd number of cycles of G[z]α, F must contain a number
of east sides of and west sides of the zbv of different parity. Since F contains at least
one vertex in each the fibers over w′ and y′, F contains at least one east side and
one west side of the zbv in its boundary. Without loss of generality, assume that F
contains a nonzero odd number q of east sides and an nonzero even number r of
west sizes of the zbv. Using the action of A on S1A

v and the associated symmetry,
each z-region S̄dw′ with respect to the zbv can be expressed as c · F for some c ∈ A(v).
Assuming that there are a total of n z-regions we see that S1A

v contains qn east sides
and rn west sides, which contradicts that there must be the same number of east
and west sides in S1A

v bounded by the G[z]bv. This completes Part 2.

Corollary 3.18. Each of the cycles in
{
G[z]bv : b ∈ aA(v)

}
is nonseparating.

Proof. This is immediate if there is only one z-region of Sav with respect to
{
zbv :

b ∈ aA(v)}. If there is more than one such z-region, then Part 2 of Theorem 3.17
implies the conclusion since the corresponding z-graph is a regular graph with each
vertex of nonzero even degree.
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3.2.3 Cosets and z-graphs from Archdeacon’s enhancements

Constructions 3.21 and 3.22 allow us to algebraically describe a decomposition of any
component Sav of Sα in terms of the z-regions associated to the cycles forming the
fiber over an orientation-reversing cycle that lifts to orientation-preserving cycles, or
to the cycles forming the fiber over orientation-preserving cycles, respectively.

Consider 〈G→ S, α→ A〉 and z ∈ Z(G) such that G[z] induces a nonseparating
cycle. Fix v ∈ V (G) and let W = d1d2 . . . dk be an Eulerian walk of G[z] based at
v ∈ V (G[z]). Consider the extended voltage assignment to the total graph T (G), the
special claw corresponding to E(d1) and let w′ and y′ take the place of w and y in
Definition 3.11, respectively. Recall Definition 3.14, and the definition of AY(w′, G[y])
appearing just below it. Implicitly using the equality A′(w′) = A(v) occurring in
Lemma 3.13 we are able to establish a bijection between left cosets of AY(w′, G[z])
contained in aA(v) and the z-regions of Sav with respect to {zcv : c ∈ aA(v)}, which,
by Lemma 3.6, is the set of 1-chains in the fiber over z that is contained in Sav .

Lemma 3.19. For a fixed a ∈ A(v), the map φY :
{
bAY(w′, G[z]) : b ∈ aA′(w′)

}
→{

S̄bw′(z) : b ∈ aA′(w′)
}

defined by

φY(bA
Y(w′, G[z])) = S̄bw′(z)

is a bijection.

Proof. By Part 1 of Theorem 3.16 and Part 1 of Theorem 3.17, each S̄bw′ b ∈ A′(w′)
contains at least one vertex in the fiber over w′. By Lemma 3.4 and the A-action on
Sα, it suffices to consider the case a = 1A. It is apparent that S̄d1w′ = S̄d2w′ if and only if
there is a w

′d1-w
′d2-walk W ′ in M ′α that does not transversely cross any component

of G[z]α. Given such a w
′d1-w

′d2-walk W ′, it follows that p(W
′
) is a w′-walk in M ′

of net voltage d−1
1 d2 that does not transversely cross G[z]. The result follows.

After using the equality A′(w′) = A(v) of Lemma 3.13, Theorem 3.20 follows
from Lemma 3.19 just as Theorem 3.8 followed from Lemmas 3.2, 3.5, 3.6, 3.7, and
Lagrange’s theorem for cosets. The proof is omitted.

Theorem 3.20. Let z ∈ Z(G) induce a nonseparating cycle such that G[z]α is a
disjoint union of orientation-preserving cycles. There are

|A(v)|
|AY(w′, G[z])|

z-regions of Sav with respect to
{
zbv : b ∈ aA(v)

}
.

For a ∈ A, let b1, b2, . . . , bj denote representatives of the left cosets of 〈ω(W )〉 in
aA(v). Also, for the purposes of Constructions 3.21 and 3.22, we let ω denote ω(W )
and |ω| denote |〈ω〉|.
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Construction 3.21. Let z induce an orientation-reversing cycle. Let |ω| be even
so that, per Lemma 3.15, the cycles forming the fiber over G[z] are orientation-
preserving. Since the east and west sides of z1A

v contain alternating vertices in the
list

w′1A , w
′ω, w

′ω2

, w
′ω3

, . . . , w
′ω|ω|−1

,

we see that the z-regions containing G[z]1Av in their boundaries contain all of the
vertices in one (or both) of the lists

w
′1A , w

′ω2

, . . . , w
′ω|ω|−2

,

w
′ω, w

′ω3

, . . . , w
′ω|ω|−1

.

In the case of there being only one z-region of S1A
v with respect to {zav : a ∈ A(v)},

then that z-region will contain all of the vertices of

w
′1A , w

′ω, w
′ω2

, w
′ω3

, . . . , w
′|ω|−1.

Since the A-action on Sα is free on the vertices in the fiber over w′, we see that, for
each c ∈ A, each component of R(zcv) \ G[z]cv contains the vertices in the fiber over
w′ whose superscripts are those found in one of the left cosets{

c, cω2, cω4 . . . , cω|ω|−2
}
,{

cω, cω3, cω5, . . . , cω|ω|−1
}
.

Using the equality of Lemma 3.13 implicitly, we see that per Lemma 3.19, the
z-regions of Sav with respect to {

zb1v , . . . , z
bj
v

}
correspond bijectively to the left cosets of AY(w′, G[z]) contained in aA(v). Recall
that in the derived embedding of the total graph, the vertices w

′x and y
′x are in the

same component of the special claw corresponding to E(d1) as vx. Implicitly using
the bijection of Lemma 3.6 (since A(v,G[z]) = 〈ω〉), we see that the left cosets of 〈ω〉
contained in aA′(w′) correspond bijectively with the 1-chains in the fiber over z in
Sav , and that the left cosets of 〈ω2〉 contained in the left coset

{
c, cω, cω2, . . . , cω|ω|−1

}
correspond bijectively to the two components of R(zcv) \G[z]cv.

Thus, using the aforementioned bijections implicitly, we may use the containment
of the aforementioned left cosets to construct Γ(zb1v , . . . , z

bj
v ): the left cosets of A′(w′)

contained in aA(v) are the vertices, the left cosets of 〈ω〉 are the edges, and the two
left cosets of 〈ω2〉 contained in the same left coset of 〈ω〉 are the two ends of the
same edge; an edge end is incident to the vertex that contains it. �

Construction 3.22. Let z induce an orientation-preserving nonseparating cycle; we
make no additional assumptions about |ω|. We define the set AY(w′, y′, G[z]) to be
the set (not necessarily a group) of net voltages of walks in M ′ beginning at w′,
ending at w′ or y′, and not transversely crossing G[z]. The two vertices w

′a and y
′b
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are in the same z-region, S̄av , with respect to
{
zbv : b ∈ aA(v)

}
if and only if there is

a walk W̃ in the embedded M
′α

beginning at w
′a, ending at y

′b, and not transversely
crossing any element of

{
G[z]bv : b ∈ aA(v)

}
. The last statement is true if and only if

ω(p(W̃ )) = a−1b is an element of AY(w′, y′, G[z]). For similar reasons, w
′a and w

′b are
contained in the same z-region if and only if a−1b is an element of AY(w′, y′, G[z]). For
a1 ∈ A, let a1 ·AY(w′, y′, G[z]) =

{
a1r : r ∈ AY(w′, y′, G[z])

}
. Recall that the vertices

w
′c, y

′c, and vc are contained in the same lift of the special claw corresponding to
E(d1), and each lift of W is an orientation-preserving walk. Thus, if S̄dw′ contains

w
′c, then it contains w

′cω2
, w

′cω3
, . . . , w

′cω|ω|−1
. Similarly, if S̄dw′ contains a vertex

y
′c, then it contains y

′cω2
, ycω

3
, . . . , y

′cω|ω|−1
. It follows that each left coset of 〈ω〉 is

contained in one or two left cosets of the form a1 · AY(w′, y′, G[z]).

To any left coset bAY(w′, G[z]) contained in aA′(w′), we may associate a unique set
b ·AY(w′, y′, G[z]) that contains the group-element superscripts of the vertices in the
fibers over w′ and y′ contained in S̄bw′ . Implicitly using this bijection, the equality of
Lemma 3.13, and the bijections of Lemmas 3.6 and 3.19, we may say that the vertices
and the edges of Γ(zb1v , . . . , z

bj
v ) are the sets of the form a1 · AY(w′, y′, G[z]) and the

left cosets of the form b〈ω〉 contained in aA(v), respectively; an edge is incident to
the one or two vertices that contain it. �

4 Examples

Here we give some infinite families of ordinary voltage graph embeddings whose
derived embeddings have specific properties that are guaranteed by the results of the
previous sections. We show how one may use the subgroups of a voltage group A
developed in Section 3, and their cosets, to decompose a derived surface as a union
of surfaces with boundary, whose boundary components are the fiber over a cycle in
the base embedding. Therefore, we may derive topological insight into the derived
surface without constructing the entire derived embedding. Given a ∈ A, we let |a|
denote |〈a〉| for the remainder of this section.

Example 4.1 shows that for any positive integers a and b, we can construct an
ordinary voltage graph embedding containing a separating cycle G[z] bounding two
induced regions S[I], S[Ic] such that:

• there is only one component of the derived surface, and

• the number of components of S[I]α and S[Ic]α are determined by the greatest
common divisor of a and b, and

• the number of cycles of G[z]α bounding the components of S[I]α and S[Ic]α are
determined by the greatest common divisor of a and b.

Example 4.1. Let a and b be positive integers, and let n = ab. Let lcm(a,b) denote
the least common multiple of a and b, and let gcd(a,b) denote the greatest common

divisor of a and b. Let c = lcm(a,b)
a

, d = lcm(a,b)
b

, and consider Figure 7. Let S
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stand in the place of the sphere S2. Since lcm(a,b) = ab

gcd(a,b)
, c and d are relatively

prime, and thus 〈c, d〉 = Zn. Let z = e2, and note that z = ∂(f1 + f2) = ∂(f3 + f4).
Let I = f1 + f2 and Ic = f3 + f4. Note that A(v, S[I]) = 〈d〉, A(v, S[Ic]) = 〈c〉,
and A(v,G[z]) = {0}. By Part 1 of Theorem 3.8, there is only one component of
Sα. By Part 2 of Theorem 3.8, there are n

|d| components of S[I]α contained in Sα,

and there are n
|c| components of S[Ic]α contained in Sα. By Part 3 of Theorem 3.8,

there are |d| components of G[z]α contained in each component of S[I]α, and there
are |c| components of G[z]α contained in each component of S[Ic]α. By Construction
3.9, we can construct Γ(z0

v , . . . , z
n−1
v ) by understanding the containments of the left

cosets of A(v,G[z]) in the left cosets of A(v, S[I]) and the left cosets of A(v, S[Ic]):
the edge zrv is incident to the vertices S[I]av and S[Ic]av if and only if r ∈ 〈c〉 ∩ 〈d〉.

Figure 7: An ordinary voltage graph embedding in the sphere S2. Only the noniden-
tity voltages are indicated.

Example 4.2 shows that for any positive integer n, there exists an ordinary voltage
graph embedding such that:

• there is only one component of the derived surface, and

• an orientation-reversing cycle G[z] lifts to n orientation-preserving cycles, and

• there are exactly two z-regions with respect to the fiber over z.

Example 4.2. Let n denote any positive integer, and let and ab stand for (a, b) ∈
Z2 × Zn. Consider Figure 8. Let S stand in the place of the projective plane P 2.
Since there are loops in G whose voltages generate Z2 × Zn, Part 1 of Theorem 3.8
implies that there is only one component of Sα. Let z ∈ Z(G) be the loop e, and
note that A(v,G[z]) = 〈10〉. By Part 3 of Theorem 3.8, there are n cycles forming
G[z]α. In this case AY(w,G[z]) ∼= 〈01〉. Thus, by Theorem 3.20, there are two
homeomorphic z-regions of Sα with respect to {zav : a ∈ Z2 × Zn}, each bounded by
the n cycles forming G[z]α. Per Construction 3.21, we conclude that the z-graph

Γ(z00
v , z

01
v , . . . , z

0(n−1)
v ) consists of n parallel edges joining two vertices.
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Figure 8: An ordinary voltage graph embedding in the projective plane P 2 with
the extended voltage assignment to the total graph. We let ab stand in the place
of (a, b) ∈ Z2 × Zn. Only the nonidentity voltages are indicated. The vertices and
edges of M ′ are white and dashed, respectively. The edge e of G is colored grey.

Example 4.3 shows that for any positive integer n, we can construct an ordinary
voltage graph embedding such that:

• there is only one component of the derived surface, and

• an orientation-reversing cycle G[z] lifts to n orientation-preserving cycles, and

• there is only one z-region with respect to the fiber over z.

Example 4.3. Let n denote any positive integer, and let ab stand for (a, b) ∈ Z2 ×
Zn. Consider Figure 9, and let z ∈ Z(G) be the loop e in Figure 9. Let S stand
in the place of P 2. Since there are loops in G whose voltages generate Z2 × Zn,
Part 1 of Theorem 3.8 implies that there is only one component of Sα. Note that
A(v,G[z]) = 〈10〉. By Part 3 of Theorem 3.8, there are n cycles forming G[z]α. In
this case AY(w,G[z]) = A(v). Thus, by Theorem 3.20, there is only one z-region of
Sα with respect to {zav : a ∈ Z2 × Zn}. Per Construction 3.21, we conclude that the

Γ(z00
v , z

01
v , . . . , z

0(n−1)
v ) is a bouquet of n loops.

Example 4.4 shows that for any positive integer k, there exists an ordinary voltage
graph embedding such that the fiber over an orientation-preserving nonseparating
cycle G[z] bounds multiple z-regions with respect to the fiber over z, and that each
of these z-regions is bounded by exactly 2k cycles of G[z]α. For the remainder of
this article, we let T denote the torus.

Example 4.4. Let integers n, k, and d satisfy n = kd and n > d > 1. Consider
Figure 10, and let z ∈ Z(G) be the loop e. Let S stand in the place of T . Since there
is a loop in G with voltage 1, we see that A(v) = Zn. By Part 1 of Theorem 3.8,
there is only one component of Sα. Since A(v,G[z]) = {0}, Part 3 of Theorem 3.8
implies that there are n cycles forming G[z]α. Note that AY(w,G[z]) ∼= Zk, and so,
by Theorem 3.20, there are exactly d z-regions of Sα with respect to {zcv : c ∈ Zn}.
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Figure 9: An ordinary voltage graph embedding in the projective plane with the
extended voltage assignment to the total graph. We let ab stand in the place of
(a, b) ∈ Z2 × Zn. Only the nonidentity voltages are indicated. The vertices and
edges of M ′ are white and dashed, respectively. The edge e of G is colored grey.

We conclude that each z-region is bounded by 2k cycles in the fiber over G[z]. Per
Construction 3.22, we conclude that Γ(z0

v , . . . , z
n−1
v ) is a connected 2k-regular graph

consisting of d vertices, and the edge zcv is incident to the vertex bAY(w,G[z]) if and
only if the left coset

{
c, cω, cω2, . . . , cω|ω|−1

}
of 〈ω〉 in A(v) is contained in the set

c · AY(w, y,G[z]).

Figure 10: An ordinary voltage graph embedding in the torus with the extended
voltage assignment to the total graph. Only the nonidentity voltages are indicated.
The vertices and edges of M ′ are white and dashed, respectively. The edge e of G is
colored grey.

Example 4.5 shows that for any positive integer n, we can construct an ordinary
voltage graph embedding such that:

• there is only one component of the derived surface, and
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• an orientation-preserving nonseparating cycle G[z] lifts to n orientation-pres-
erving nonseparating cycles, and

• there is only one z-region with respect to the fiber over z.

Example 4.5. Let n denote any positive integer. Consider Figure 11, and let z ∈
Z(G) be the loop e. Let T denote the torus, and let S stand in the place of T . Since
there is a loop in G with voltage 1, we see that A(v) = Zn, and so by Part 1 of
Theorem 3.8, there is only one component of Sα. Since A(v,G[z]) = {0}, Part 3
implies that there are n cycles forming G[z]α. Note that AY(w,G[z]) ∼= Zn, and so,
by Theorem 3.20, there is only one z-region of Sα with respect to {zav : a ∈ Zn}. Per
Construction 3.22, we conclude that Γ(z0

v , . . . , z
n−1
v ) is a bouquet of n loops.

Figure 11: An ordinary voltage graph embedding in the torus T with the extended
voltage assignment to the total graph added. Only the nonidentity voltages are
indicated. The vertices and edges of M ′ are white and dashed, respectively. The
edge e of G is colored grey.

Remark 4.6. Given 〈G → S, α → A〉 and a vertex v of G, it is possible to modify
the voltage group A in such a way that the derived surface has more components.
Consider the group A × Zn and the voltage assignment α2 → A × Zn satisfying
α2(e) = (α(e), 0). If α satisfies A(v) = A, then Part 1 of Theorem 3.8 implies that
there is only one component of Sα and that there are n components of Sα2 .
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