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Abstract

Let p be an odd prime. We provide a construction of four non-Schurian
association schemes for every prime p ≥ 5 and two for p = 3. For
p > 3 the construction is new, while for p = 3 it coincides with the non-
Schurian schemes, obtained with the aid of a computer by A. Hanaki and
I. Miyamoto. The discovered non-Schurian objects appear as algebraic
mergings of the Schurian coherent configuration on 2p2 points and rank
6p− 2, which corresponds to the action of the Heisenberg group of order
p3 on the set of points and lines of the classical biaffine plane. The results
obtained are considered in a wider framework.

1 Introduction

This paper belongs to the area of Algebraic Graph Theory (briefly AGT). Symmetry
of graphs is one of the central points of interests in AGT. A natural way to treat
symmetry of a given graph Γ is to consider action of the automorphism group Aut(Γ)
on diverse ingredients of Γ. Transitivity of the action of Aut(Γ) on the arc set
of Γ may be approximated by combinatorial regularity: it is required that all arcs
have the same value of certain local invariants. In this way concepts of a coherent
configuration and its particular case of an association scheme are formulated in an
axiomatic manner. Schurian association schemes naturally correspond to transitive
permutation groups. Non-Schurian association schemes are, in a sense, more keen:
they reflect combinatorial symmetry, which is not fully explained in group-theoretical
terms.

1 Also at Math. Institute, Slovak Academy of Sciences, 974 01 Banská Bystrica, Slovak Republic.
2 Also at Dept. Mathematics, Ben-Gurion University of the Negev, 84105 Beer Sheva, Israel.
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In this paper we describe four new infinite families of non-Schurian association
schemes on 2p2 points, where p > 3 is a prime. These schemes are mergings of our
starting geometrical object: a biaffine coherent configuration M, which appears via
the intransitive action of the Heisenberg group of order p3 on two orbits of length p2.

The main part of the current text deals with the description and justification of
the existence of these non-Schurian schemes. Section 2 contains the most significant
preliminaries. Section 3 introduces the classical biaffine plane with p2 points and p2

lines, p an odd prime, as well as the action of the Heisenberg group on the set Ω of
points and lines. This action naturally implies the master coherent configuration M
on the set Ω, having rank 6p − 2; see Section 4. The three kinds of automorphism
groups of M are considered in Section 6. Finally, four new infinite families of non-
Schurian association schemes are defined and investigated in Section 7.

Section 5 is a stand-alone text. Here the configuration M is considered from
scratch for p = 3. The presentation is accompanied by data obtained with the aid
of computer packages. A number of diagrams aim to help the reader to comprehend
material visually.

The last part of the paper reflects its additional expository and survey features.
In Section 8 the above-mentioned distinction between combinatorial and group-
theoretical regularity is discussed in a more precise context. It motivates origin
of a long-standing interest to non-Schurian association schemes. In fact, with in-
creasing value of p, the number of non-Schurian mergings of M also increases; in
particular, part of such mergings have a relatively small constant rank—see Section 9.
Section 10 has definite interdisciplinary features: here some discovered non-Schurian
objects are naturally linked with a number of classical problems and objects in ex-
tremal and topological graph theory and other parts of AGT. In Section 11 we pay
special tribute to the memory of Dan Archdeacon. Section 12 presents a mosaic of
diverse topics related to the content of the paper, which had not been touched before
in evident form.

This paper is a follower of its previous version [24] available at the arXiv. The
reader will be referred to [24] several times for some concrete numerical data, extra
details of presentation and even psychology of communication between the authors
on the way from computer-aided experiments towards rigorous understanding and
justification of the objects discovered.

There also exists a full version of the current text, containing more information
regarding diverse issues, touched by us. It is available from the authors upon request.

2 Preliminaries

Below we provide a brief outline of the most significant concepts that will be used
throughout the text. We refer to [20] and [36] for more detailed background.

By a color graph Γ we mean an ordered pair (V,R), where V is a set of vertices
and R a partition of V × V into binary relations. The elements of R are colors,
and the number of colors is the rank of Γ. A coherent configuration is a color graph
W = (Ω,R), R = {Ri | i ∈ I}, such that the following axioms are satisfied:
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(i) The diagonal relation ΔΩ = {(x, x) | x ∈ Ω} is a union of relations ∪i∈I′Ri, for
a suitable subset I ′ ⊆ I.

(ii) For each i ∈ I there exists i′ ∈ I such that RT
i = Ri′ , where R

T
i = {(y, x) |

(x, y) ∈ Ri} is the relation transposed to Ri.
(iii) For any i, j, k ∈ I, the number cki,j of elements z ∈ Ω such that (x, z) ∈ Ri

and (z, y) ∈ Rj is a constant depending only on i, j, k, and independent on the
choice of (x, y) ∈ Rk.

The numbers cki,j are called intersection numbers, or sometimes structure constants
of W.

Assume that |Ω| = n, and let us put Ω = {1, . . . , n}. To each basic graph
Γi = (Ω, Ri) we associate its adjacency matrix Ai = A(Γi). Then the set of basic
matrices {Ai | i ∈ I}may be regarded as a basis of a matrix algebra H which contains
the identity matrix, the all-ones matrix J , and is closed under transposition and
Schur-Hadamard multiplication of matrices. Such an algebra is called coherent, and
the set {Ai | i ∈ I} is its standard basis. Usually, coherent configurations and coherent
algebras are considered as equivalent objects.

The concepts of coherent configurations and coherent algebras were introduced
by D. Higman (see e.g. [28]). Similar concepts were introduced independently by
B.Ju. Weisfeiler and A.A. Leman, see [52] and also [38] for a historical discussion.

A significant source of coherent configurations appears as follows. Assume that
(G,Ω) is a permutation group acting on Ω. For (α, β) ∈ Ω2 the set {(α, β)g | g ∈ G}
is a 2-orbit of G, where (α, β)g = (αg, βg). More precisely, it is the 2-orbit of G
corresponding to (α, β). (For a transitive permutation group (G,Ω), many authors
prefer the term orbital for this set.)

Denoting by 2-Orb(G,Ω) the set of 2-orbits of a permutation group (G,Ω), it is
easy to check that (Ω, 2-Orb(Ω)) is a coherent configuration. Coherent configurations
that arise in this manner are called Schurian, otherwise we call them non-Schurian.

An association scheme W = (Ω,R) (also called a homogeneous coherent config-
uration) is such a coherent configuration in which the diagonal relation ΔΩ belongs
to R. Thus, Schurian association schemes are coming from transitive permutation
groups.

A coherent configuration W is commutative if for all i, j, k ∈ I we have ckij = ckji.
It is symmetric if Ri = RT

i for all i ∈ I. It is a well known fact that a symmetric
coherent configuration is also commutative, but the converse is not true in general.

To each coherent configurationW we may assign three groups:Aut(W),CAut(W)
and AAut(W). The (combinatorial) group of automorphisms Aut(W) consists of
the permutations φ : Ω → Ω which preserve the relations, i.e. Rφ

i = Ri for all
Ri ∈ R. The color automorphisms are permitted to permute the relations from R
and they constitute the group CAut(W). An algebraic automorphism is a bijection
ψ : R → R that satisfies ckij = ck

ψ

iψjψ
and these form the group AAut(W). It is easy to

verify that Aut(W) is a normal subgroup of CAut(W), and that the quotient group
CAut(W)/Aut(W) embeds naturally into AAut(W).

LetW be a coherent configuration (briefly CC) andH the corresponding coherent
algebra. If H′ is a coherent subalgebra of H, then the CC W ′ corresponding to H′ is
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called merging (or fusion) of CC W. There exists a natural Galois correspondence
between mergings of W and their automorphism groups, see [20].

For each group K of algebraic automorphisms of W = (Ω,R) one can define an
algebraic merging of R in the following way. Denote by R/K the set of orbits of K
on R. To each O ∈ R/K define O+ as the union of all relations from O. Then
the set of relations {O+ |O ∈ R/K} forms a CC on Ω. We will call it an algebraic
merging of R with respect to K. Note that if K ≤ CAut(W)/Aut(W) and W is
Schurian, then the resulting merging is Schurian as well.

It is clear from the definitions that an association scheme (briefly AS) W is
Schurian if and only if its rank coincides with the rank of its group of automorphisms
Aut(W).

A few graph-theoretical symbols: Kn, En, and Cn denote the complete graph,
empty graph and directed cycle, respectively, all having n vertices. Clearly, Cn is
unique (up to isomorphism). The symbol m ◦ Γ denotes the disjoint union of m
copies of the graph Γ. For many concepts, exploited below, we refer the reader to
book [14]. A classical operation of composition of graphs Γ1 and Γ2 is also called
wreath product, denoted by Γ1wrΓ2. We are also using the term wreath product for
permutation groups. Note that here the so-called orthodox notation G1 	G2 is used
for the wreath product of permutation groups (G1,Ω1) and (G2,Ω2), see again [20].

A number of other used concepts, such as 2-closure of a permutation group,
Weisfeiler-Leman stabilization of a color graph, etc., will be discussed in the text in
an ad hoc manner later on.

We refer to Section 12.6 for information regarding the used computer packages.

3 Heisenberg group and biaffine plane

Our starting geometric concept is a biaffine plane of order n. It is obtained from
an affine plane of order n by removal of one class of parallel lines (let us call this
removed class vertical lines).

Let p be an odd prime, and let Zp be the cyclic group of order p. Throughout
this text, the set of nonzero elements in Zp will be denoted by Z

∗
p. Take two copies

P and L of Zp×Zp. The first copy P is none other than the point set of the classical
(Desarguesian) affine plane of order p. Each element P ∈ P may be identified
uniquely with a pair of coordinates of the form P = [x, y]. Thus, we refer to the
elements of P as points. Let L be the set of “non-vertical” lines in the affine plane,
i.e. � ∈ L if and only if the equation for � may be expressed as y = k · x + q for
some k, q ∈ Zp. Each line � is determined uniquely by a pair � = (k, q). In order to
distinguish points and lines we will use square brackets for points and parentheses
for lines. We denote the resulting geometry by Bp (see Figure 1 depicting B3).

Given a point P = [x, y] and a line � = (k, q) of the biaffine plane, we define a
quasidistance d : (P × L) ∪ (L × P) → Zp by the formulas: d(P, �) = k · x + q − y
and d(�, P ) = y − q − k · x. Note that d does not define a metric. It is just a vague
analogue.

The automorphism group of the classical Desarguesian projective plane of order
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Figure 1: The objects of the biaffine plane B3.

p acts transitively on the set of projective points. The structure of this group is
well-known, see e.g. [33]. Taking this into account, we obtain that the order of the
automorphism group AGL(2, p) ∼= Z

2
p �GL2(p) of the classical affine plane of order

p is p2(p2 − 1)(p2 − p). Now, in turn, the group AGL(2, p) acts transitively on the
set of parallel classes, which has cardinality p+1. Finally, we obtain that the group
Aut(Bp) is of order p

2(p− 1)(p2 − p) = p3(p− 1)2.
In what follows, we will be interested in the Sylow p-subgroup of Aut(Bp), which

clearly has order p3 and acts transitively on the point set P of Bp. It turns out that
this group may be introduced from two relatively independent points of view.

Let us now consider an action of the group H = (Zp)
2
� Zp on the set Ω =

P ∪ L, most conveniently described in terms of generators. To each pair (a, b) ∈
Z
2
p we associate a translation tab acting naturally on P as [x, y] �→ [x + a, y + b],

while the induced action on L is (k, q) �→ (k, b + q − ak). Of course, the set of all
translations forms an Abelian group of order p2 under composition of permutations
and is isomorphic to Z

2
p. Further, let ϕ : P → P be defined by ϕ : [x, y] �→

[x, y − x]. The corresponding permutation on lines is (k, q) �→ (k − 1, q). Clearly, ϕ
is a permutation of order p and it is immediate that ϕ · ta,b−a = ta,b ·ϕ. Our group H
above is generated by all translations together with the permutation ϕ. Note that
all elements of H may be expressed in the form ϕu · ta,b, where a, b, u are suitable
elements of Zp. Moreover, to distinct triples of a, b, u there correspond distinct
elements of H . In other words, H = 〈ta,b, ϕ〉 and |H| = p3. Now set ha,b,u := ϕu · ta,b.
Then multiplication in H is given by ha,b,u · hc,d,v = ha+c,b+d−av,u+v.

Observe that the action of H is intransitive on Ω with two orbits P and L.

Proposition 3.1. Let p be an odd prime. Then

(1) the rank of (H,Ω) is 6p− 2;
(2) the 2-orbits of (H,Ω) may be divided into six different types of classes Ai, Bi, Ci,

Di, Ei and Fi, which are characterized by suitable relations between coordinates
of objects in Ω.

Proof. Let P1 = [x1, y1], P2 = [x2, y2] ∈ P and �1 = (k1, q1), �2 = (k2, q2) ∈ L. Then
the types of classes are the following:
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• (P1, P2) ∈ Ai ⇐⇒ x1 = x2 and y2 − y1 = i, where i ∈ Zp (note that A0 is the
diagonal relation on P);

• (P1, P2) ∈ Bi ⇐⇒ x2 − x1 = i, where i ∈ Z
∗
p;

• (�1, �2) ∈ Ci ⇐⇒ k1 = k2 and q2 − q1 = i, where i ∈ Zp (note that C0 is the
diagonal relation on L);

• (�1, �2) ∈ Di ⇐⇒ k2 − k1 = i, where i ∈ Z
∗
p;

• (P1, �1) ∈ Ei ⇐⇒ k1 · x1 + q1 − y1 = i, where i ∈ Zp (i.e., those point-line
pairs whose quasidistance d(P1, �1) is i);

• (�1, P1) ∈ Fi ⇐⇒ y1 − k1x1 − q1 = i, where i ∈ Zp (i.e., those line-point pairs
whose quasidistance d(�1, P1) is i).

To complete the proof, one must verify two things: that the 6p − 2 relations
introduced above indeed form a partition of the set Ω2, and that each such relation
is a 2-orbit of (H,Ω).

Remark 3.1. One can easily check from its definition that the permutation ϕ has
exactly p fixed points in its action on P, as well as p fixed points in its action on
L. Relying on the bijection between 2-orbits of a transitive permutation group and
orbits (1-orbits) of the stabilizer of an arbitrary point (see e.g. [20]), the reader can
easily deduce that there exists exactly p + (p − 1) 2-orbits of the transitive action
(H,P), and similarly for the action (H,L). Observing that there are p 2-orbits of
type Ei and p of type Fi, we arrive at the desired amount of 6p− 2.

Remark 3.2. Reflexive 2-orbits A0 and C0 are obviously symmetric, however, all
the remaining 2-orbits are antisymmetric. Namely, we obtain that AT

i = Ap−i,
BT

i = Bp−i, C
T
i = Cp−i, D

T
i = Dp−i, E

T
i = Fp−i and F

T
i = Ep−i. Here and below,

operations on subscripts are considered in Zp.

We now introduce a group H ′ from scratch and compare it later with H .
Let

V1 = Z
2
p = {(1, x1, x2) | x1, x2 ∈ Zp},

V2 = (Z2
p)

dual =

⎧⎨
⎩
⎛
⎝ x1

x2
−1

⎞
⎠ | x1, x2 ∈ Zp

⎫⎬
⎭ .

Define a natural scalar (dot) product of vectors in V1 and V2 by:⎛
⎝(1, x1, x2),

⎛
⎝ y1

y2
−1

⎞
⎠
⎞
⎠ = y1 + x1y2 − x2.

Let

H ′ =

⎧⎨
⎩gabc =

⎛
⎝ 1 a b+ ac

0 1 c
0 0 1

⎞
⎠ | a, b, c ∈ Zp

⎫⎬
⎭ .

The matrix gabc is invertible, and

g−1
abc =

⎛
⎝ 1 −a −b

0 1 −c
0 0 1

⎞
⎠ .



S. GYÜRKI ET AL. /AUSTRALAS. J. COMBIN. 67 (2) (2017), 394–437 400

Clearly, the set H ′ together with the operation of matrix multiplication forms a
group. The multiplication in H ′ is given by gabu · gcdv = ga+c,b+d−uc,u+v, and exactly
this group is well known under the name Heisenberg group modulo p, see e.g. [11].

Define an action ofH ′ on Ω = V1∪V2 by: xg =
{
x · g if x ∈ V1

g−1 · x if x ∈ V2,
for all g ∈ H ′.

Let us take arbitrary x1, x2, y1, y2 ∈ Zp. The matrix gabc, where a = y1 − x1, b =
y2−x2, c = 0, sends (1, x1, x2) ∈ V1 to (1, y1, y2) ∈ V1, while gcab sends (x1, x2,−1)T ∈
V2 to (y1, y2,−1)T ∈ V2. Thus, H

′ acts transitively on V1 and also on V2.
This action of H ′ preserves the scalar product: (xg, yg) = (xg, g−1y) = (xgg−1, y)

= (x, y).

Proposition 3.2. The groups H and H ′ are isomorphic.

Proof. We claim that Φ : H → H ′, ha,b,u �→ ga,b+au,−u is a group isomorphism. First,
we have

Φ(ha,b,u · hc,d,v) = Φ(ha+c,b+d−av,u+v) = ga+c,b+d−av+(a+c)(u+v),−(u+v) =

= ga,b+au,−u · gc,d+cv,−v = Φ(ha,b,u) · Φ(hc,d,v).

Moreover, Φ is invertible: Φ−1(gα,β,γ) = hα,β+αγ,−γ . Thus, Φ is a group isomorphism
from H to H ′ as claimed.

Proposition 3.2 allows us to identify the groups H and H ′. This is why we will
henceforth assign the notation H to both groups. However, the reader is advised to
keep in mind the group H ′ as it appears in this section. In this fashion we identify
elements from V1 with the point set P and elements from the set V2 with the line set
L of the biaffine plane Bp.

4 Schurian master coherent configuration M

Let us consider again the intransitive action (H,Ω) of the Heisenberg group H of
order p3 with two orbits of length p2. The isomorphism between groups H and H ′

established in Proposition 3.2 allows to reconsider description of 2-orbits and proof
of Proposition 3.1. We briefly outline the necessary arguments and final formulations
for the reader’s benefit.

Orbits on V1 × V1:

Let g = gabc ∈ H and P1 = (1, x1, x2), P2 = (1, y1, y2), P3 = (1, u1, u2), P4 =
(1, v1, v2) ∈ V1. Then (P1, P2)

g = (P3, P4) if and only if

u1 = x1 + a,

v1 = y1 + a,

u2 = c · x1 + x2 + b+ a · c,
v2 = c · y1 + y2 + b+ a · c.
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We can see that if (P1, P2) and (P3, P4) belong to the same orbit, then necessarily
y1 − x1 = v1 − u1, a = u1 − x1 = v1 − y1, and v2 − u2 = c(y1 − x1) + (y2 − x2).

(i) If y1 − x1 = 0, then it is necessary to have v2 − u2 = y2 − x2, and by choosing
c = 0 and b = u2 − x2 we are getting a suitable g sending (P1, P2) to (P3, P4).

(ii) If y1 − x1 = k ∈ Z
∗
p, then we can choose c = k−1(v2 − u2 + x2 − y2), b =

u2 − cx1 − x2 − ac and we get (P1, P2)
g = (P3, P4).

Hence we obtained two types of orbits, say Ak and Bk on V1 × V1:

• (P1, P2) ∈ Ak if and only if y1 = x1 and y2 − x2 = k, where k ∈ Zp.
• (P1, P2) ∈ Bk if and only if y1 − x1 = k, where k ∈ Z

∗
p.

Three other cases are handled similarly; for details see [24].

Altogether, we get the same six types of orbits of H on Ω × Ω up to the used
notation of elements from Ω with 2 and 3 coordinates.

Let us denote by M = Mp = (Ω, 2−Orb(H,Ω)) the Schurian CC on 2p2 vertices
with two fibers of size p2. According to Section 3, it has rank 6p−2. In what follows,
we will call M the classical biaffine CC. In the context of this paper it plays the role
of the master CC.

We are interested in the intersection numbers of M. In this section we display
these numbers with the aid of tables. In each table the superscript is fixed, the
symbol in the row indicates the first subscript, and the symbol in the column indicates
the second subscript. We are using the Kronecker’s symbol δi,j in order to shorten
computations and formulas.

Proposition 4.1. The tensor of structure constants of the biaffine CC M is given
as follows:

cAkri,cj
Aj Bj Fj

Ai δi+j,k 0 0
Bi 0 p · δi+j,0 0
Ei 0 0 p · δi+j,k

cCkri,cj Cj Dj Ej

Ci δi+j,k 0 0
Di 0 p · δi+j,0 0
Fi 0 0 p · δi+j,k

cBkri,cj
Aj Bj Fj

Ai 0 δj,k 0
Bi δi,k p · δi+j,k 0
Ei 0 0 1

cDkri,cj
Cj Dj Ej

Ci 0 δj,k 0
Di δi,k p · δi+j,k 0
Fi 0 0 1

cEkri,cj
Cj Dj Ej

Ai 0 0 δi+j,k

Bi 0 0 1
Ei p · δi+j,k 1 0

cFkri,cj Aj Bj Fj

Ci 0 0 δi+j,k

Di 0 0 1
Fi p · δi+j,k 1 0

where i, j, k go through all feasible values. All structure constants not displayed here
are zero.

Proof (Outline). First observe that for all i ∈ Zp and j ∈ Z
∗
p, we have Ai, Bj ⊆ P×P,

Ci, Dj ⊆ L × L, Ei ⊆ P × L and Fi ⊆ L × P. Thus all structure constants of the
form cXkYi,Zj

are zero provided X, Y, Z satisfy any of the following:
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• X ∈ {A,B,E} and Y ∈ {C,D, F}, or Y ∈ {A,B,E} and X ∈ {C,D, F},
• X ∈ {A,B, F} and Z ∈ {C,D,E}, or Z ∈ {A,B, F} and X ∈ {C,D,E},
• Y ∈ {A,B, F} and Z ∈ {C,D, F}, or Y ∈ {C,D,E} and Z ∈ {A,B,E}.

The reason is simple: in these cases the composition of relations Yi and Zj is either
impossible, or giving a relation disjoint to Xk. This observation is crucial in order to
understand that those structure constants, which in principle may be nonzero, are
covered just by the six kinds of tables presented above. Simple algebraic manipula-
tions with coordinates lead us to the following:

cAkAi,Aj
= cCkCi,Cj = δi+j,k, cAkBi,Bj

= cCkDi,Dj = p · δi+j,0, cBkAi,Bj
= cDkCi,Dj

= δj,k,

cBkBi,Aj
= cDkDi,Cj

= δi,k, and c
Bk
Bi,Bj

= cDkDi,Dj
= p · δi+j,k.

Computation of the remaining structure constants requires a bit more sophisti-
cation. These may be determined by counting with introduced coordinates; see [24]
for more details.

5 Case p = 3 on 18 points from scratch

In this section we are trying to arrange a self-contained consideration restricted to the
smallest case p = 3. This will make it possible to consider with enough details results
of some computer aided computations. Also we will involve the reader with a few
nice small structures. We are using the concept of WL-closure without explanation;
for details see Section 8.

5.1 Computations with COCO

One of the advantages of the case p = 3 is that here all necessary computations can
be done, using the initial version of COCO, as it was developed and presented in [19].

Let us label all elements of the set P lexicographically by numbers from {0, 1, . . . ,
8}, while elements of L by numbers {9, . . . , 17} (cf. Figure 1). In this notation for
the Heisenberg group H = H(3) we obtain three natural generators, thus H =
〈h1, h2, h3〉. Here

h1 = (0, 3, 6)(1, 4, 7)(2, 5, 8)(12, 14, 13)(15, 16, 17),
h2 = (0, 1, 2)(3, 4, 5)(6, 7, 8)(9, 10, 11)(12, 13, 14)(15, 16, 17),
h3 = (3, 4, 5)(6, 8, 7)(9, 12, 15)(10, 13, 16)(11, 14, 17).

We construct a color graph with two orbits of length 9 and of rank 16. The
representatives of 2-orbits R0, R1, R2, R11, R12, R13 of valency 1 are (0, 0), (0, 1), (0, 2),
(9, 9), (9, 10), (9, 11), respectively. The remaining ten 2-orbits all have valency 3 with
representatives (0, 3), (0, 6), (0, 9), (0, 10), (0, 11), (9, 0), (9, 1), (9, 2), (9, 12), (9, 15).
The latter ten 2-orbits are Ri for i = 3, 4, 5, 6, 7, 8, 9, 10, 14, 15, respectively. Orbits
R0 and R11 are reflexive, while all other 2-orbits are anti-symmetric with pairing
{R1, R2}, {R3, R4}, {R5, R8}, {R6, R10}, {R7, R9}, {R12, R13}, {R14, R15}.
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COCO returns a list of 34 proper mergings, which are ASs. For each merging we
obtain its rank and basic relations. Finally, COCO returns for each merging X the
order of its group of automorphisms Aut(X ); rank of this group; whether Aut(X ) is
transitive or not; subdegrees in transitive case.

Traditional COCO does not distinguish isomorphic ASs. Thus, for this job we
were using COCO II, though in this case the result could be obtained by hand.

# Merging rank group order gr.rank valencies Schurian size

0 starting 16 27 16 Yes 1

1
(0,11)(1,13)(2,12)(3,14)

8 54 8 13, 35 Yes 2
(4,15)(5,8)(6,10)(7,9)

2
(0,11)(1,12)(2,13)(3,14)

8 27 16 13, 35 No 6
(4,15)(5,8)(6,9)(7,10)

3
(0,11)(1,12)(2,13)(5,8)

7 108 7 13, 33, 6 Yes 3
(3,4,14,15)(6,9)(7,10)

4
(0,11)(1,13)(2,12)(5,8)

7 108 7 13, 33, 6 Yes 1
(3,4,14,15)(6,10)(7,9)

5
(0,11)(1,12)(2,13)(3,14)

6 13122 6 13, 32, 9 Yes 4
(4,15)(5,6,7,8,9,10)

6
(0,11)(1,2,12,13)(3,14)

6 54 8 1, 2, 33, 6 No 6
(4,15)(5,8)(6,7,9,10)

7
(0,11)(1,2,12,13)(7,9)

5 216 5 1, 2, 3, 62 Yes 3
(3,4,14,15)(5,6,8,10)

8
(0,11)(1,2,12,13)(3,14)

5 839808 5 1, 2, 32, 9 Yes 2
(4,15)(5,6,7,8,9,10)

9
(0,11)(1,12)(3,4,14,15)

5 52488 5 13, 6, 9 Yes 2
(2,13)(5,6,7,8,9,10)

10
(1,2,12,13)(3,4,14,15)

4 3359232 4 1, 2, 6, 9 Yes 1
(0,11)(5,6,7,8,9,10)

11
(0,11)(1,12)(2,13)

4 524880 4 13, 15 Yes 2
(3,4,5,6,7,8,9,10,14,15)

12
(0,11)(1,2,12,13)

3 33592320 3 1, 2, 15 Yes 1
(3,4,5,6,7,8,9,10,14,15)

13
(0,11)(5,6,7,8,9,10)

3 263363788800 3 1, 8, 9 Yes 1
(1,2,3,4,12,13,14,15)

Table 1: AS mergings for p = 3.

Table 1 shows 13 isomorphism classes of ASs mergings; their rank; order of auto-
morphism group; rank of the group; valencies; size of the isomorphism class. Two of
the classes present non-Schurian ASs (in this case the rank of group is larger than the
rank of AS). Note that the starting CC M, which is counted in Table 1 as class #0,
as well as the trivial AS of rank 2 are not included in the list of mergings obtained
with the aid of COCO. We denote the mergings as they appear in the output from
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COCO. For example (1, 2) displays merging of relations R1 and R2.
Below we will explain (interpret) the significant part of data obtained by COCO.

5.2 Basic graphs of M
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Figure 2: The digraphs (R1,P) and (R12,L).

There are two isomorphic graphs of valency 1: (R1,P) and (R12,L), depicted on
Figure 2. Another two isomorphic basic graphs are transposed to them: R2 = RT

1

and R13 = RT
12. There are two isomorphic graphs of valency 3: (R3,P) and (R14,L),

depicted below. Here the triple arrow in Figure 3 substitutes 9 directed arcs from
one 3-element subset of vertices to another such subset. Similarly, here R4 = RT

3 and
R15 = RT

14.
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R3 R14

Figure 3: The digraphs (R3,P) and (R14,L).

All six bipartite graphs between sets P and L graphs are isomorphic. In each
graph vertices from one part have the common out-valency equal to 3, while vertices
in the other part have common in-valency, also equal to 3. First, we start from the
diagram of graph (R5,Ω), where directed Hamiltonian cycle (for weakly connected
digraph) is visible, see Figure 4. The opposite graph R8 = RT

5 is also clear from this
diagram. We depict one more diagram of (R5,Ω) simultaneously, see Figure 5. In
the same style as Figure 5 we depict diagram of (R6,Ω) on Figure 6. We are not
presenting the remaining diagram of R7, because R7 = (P × L) \ (R5 ∪ R6).

Clearly, Aut(R1,P) ∼= S3 	Z3 is a group of order 6 ·33 = 162. Aut(R3,P) ∼= Z3 	S3

is a group of order 3 · 63 = 648. The group Y = Aut(R5,Ω) contains the subgroup
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Figure 4: Digraph (R5,Ω).

H and is transitive on P. Due to the permutation h3 we claim that the point-wise
stabiliser Y0,1,2 has order at least 3. Let us find involutions in Y0. Claiming that all
the neighbours of 0 remain on the place, we obtain

t1 = (1, 2)(3, 6)(4, 8)(5, 7)(10, 11)(13, 14)(16, 17).

By allowing transposition of 9 and 15 we obtain

t2 = (1, 2)(3, 5)(6, 7)(9, 15)(10, 17)(11, 16)(13, 14).

The permutation t3 = t1t2 = t2t1 is also an involution, thus the index of Y0,1,2 is at
least 4 as a subgroup of Y0, and therefore the order of Y is at least 27 · 4 = 108. In
fact, |Y | = 108.

5.3 Discussion of the list of mergings: eight evident cases

We start from eight more or less evident Schurian cases with rank in range between
3 to 6 and relatively large automorphism group. The main information is organized
in Table 2. For each AS we consider, we provide its number according to Table 1.
We extract one concrete representative of ASs from the corresponding isomorphism
class of ASs. In case #9 we obtain classical rank 5 DRG, generated by the incidence
graph of B3. In the other 7 cases, the group appearing is explained in terms of wreath
products of suitable cyclic and symmetric groups.

5.4 Three more Schurian ASs of ranks 7 and 8 through the scope of
Pappus graph

Our starting object now is the incidence graph of B3, which is well-known under
the name Pappus graph P . The pictorial presentation of P is still very helpful. We
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Figure 5: Digraph (R5,Ω).

suggest the reader looks at the diagram of P as it is depicted in Figures 4 and 5,
where arrows on edges are omitted.

The following significant features of P are visible: this is a connected, bipartite
cubic graph of girth 6 and diameter 4. We are also aware that P is vertex- and
arc-transitive. Moreover, it is antipodal with 6 blocks of size 3. A naive way to
express this is to consider the cyclic group 〈h2〉 of order 3, which preserves each
of the antipodal blocks. Considering these blocks as metavertices, we observe a
quotient graph P/E3, which is isomorphic to K3,3. This visual observation can be
translated into algebraic language. Namely, it turns out that 〈h2〉 ∼= Z3 is a normal
subgroup of Aut(P ). Thus, we get that Aut(P ) ∼= Z3.Aut(K3,3) = Z3.(S2 	 S3). The
presentation so obtained is a non-split extension. The group Aut(K3,3) of order 72
has three subgroups of index 2. They are in bijective correspondence with subgroups
of index 2 in Aut(P ), also presented in the form Z3.K, where K is a suitable group of
order 36. Two of these normal subgroups of order 108 are now of special interest to
us. In principle, they can be constructed by hand, giving the groups 〈h1, h2, h3, t4, t5〉
and 〈h1, h2, h3, t5, t6〉, where

t4 = (0, 9)(1, 11)(2, 10)(3, 15)(4, 17)(5, 16)(6, 12)(7, 14)(8, 13),
t5 = (3, 6)(4, 7)(5, 8)(12, 15)(13, 16)(14, 17),
t6 = (0, 9)(1, 10)(2, 11)(3, 5, 6, 12)(4, 16, 7, 13)(5, 17, 8, 14).

Both presented groups are transitive of rank 7 with subdegrees 13, 33, 6. Their
centralizer algebras provide two Schurian ASs (#4 and #5).

Note the essential difference in combinatorial properties of the detected schemes.
In one case we are getting three symmetric bipartite graphs between P and L. In
another case one of the graphs (the copy of P , considered here) is symmetric, while
two other pairs are antisymmetric. Finally, we consider the (second) group of order
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Figure 6: Digraph (R6,Ω).

108, which has three symmetric 2-orbits between P and L. It turns out that it has
two subgroups of order 54. Each of these subgroups has centralizer algebra of rank 8
with subdegrees 13, 35. These two centralizer algebras form one isomorphism class of
Schurian ASs, which we denote by #1. The only symmetric non-reflexive relations
in it are the 2-orbits between P and L.

This rank 8 group of order 54 appears as 〈h1, h2, h3, t7〉, where

t7 = (0, 9)(1, 11)(2, 10)(3, 12)(4, 14)(5, 13)(6, 15)(7, 17)(8, 16).

Remark 5.1. The fact that the group 〈h2〉 appears to be the (unique) normal subgroup
of order 3 in Aut(P ) is quite crucial in our consideration. The reason is that the
antipodal system of blocks corresponds to the vertical lines removed from AG(2, 3),
while 〈h2〉 stabilizes this system.

5.5 Heisenberg graph on 18 vertices

Let us consider a representative X2 of the class of non-Schurian ASs, numbered above
by #2. (Note that the labeling corresponds to the order, in which mergings are listed
by COCO.)

Here the union of relations R5 ∪ R8 provides the edge set of our copy of the
Pappus graph, and all other relations are antisymmetric. There are six ASs in
this isomorphism class. Analysis of the lattice of the mergings shows that X2 =
W(R3 ∪R14, R6 ∪R9). In fact, it is easy to check that the union R3 ∪R14 ∪R6 ∪R9

still generates X2. (We use the WL-closure, see Section 8.)
Let us now describe the group G = Aut(X2) = Aut(R3 ∪ R14) ∩ Aut(R6 ∪ R9).

Also G ≤ Aut(P ). Thus Z3 = 〈h2〉 is a normal subgroup of G. Recall that H ≤ G.
Because G is also a subgroup of Aut(R1 ∪ R12), the orbits of Z3 form a partition of
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# Generators Formula Group Order of group

5
(1,12) 6 ◦ C3 S2 	 (Z3 	 Z3) 2 · (34)2
(3,14) 2 ◦ (C3wr E3)

7 (7,9) Inc(B3) ((E9.Z2).S3).Z2 216

8
(1,2,12,13) 6 ◦K3 S2 	 (Z3 	 S3) 2 · (3 · 63)2

(3,14) 2 ◦ (C3wr E3)

9
(3,4,14,15) 2 ◦ (K3wr E3) S2 	 (S3 	 Z3) 2 · (6 · 33)2

(1,12) 6 ◦ C3
10

(1,2,12,13) 6 ◦K3 S2 	 (S3 	 S3) 2 · (6 · 63)2
(3,4,14,15) 2 ◦ (K3wr E3)

11 (1,12) 6 ◦ C3 S6 	 Z3 6! · 36
12 (1,2,12,13) 6 ◦K3 S6 	 S3 6! · 66
13 (5,6,7,8,9,10) 2 ◦K9 S2 	 S9 2 · (9!)2

Table 2: Explanations of some AS mergings for p = 3.

Ω, which is preserved by G. Therefore G = K · Q, where K is the stabilizer of the
latter partition, Q a suitable subgroup of G. Taking into account the above analysis
of Aut(P ), we obtain that K = Z3 = 〈h2〉. Looking at the diagram of R3 ∪ R14, we
conclude that Q ≤ Aut(2 ◦ C3) = S2 	 Z3, that is Q has order at most 18. On the
other hand, G ≥ H , thus Q has order at least 9. It remains to figure out whether G
contains an involution, or not.

We need to depict the directed regular graph (R6 ∪ R9,Ω) of valency 3. In
principle, it can be considered as gluing two graphs, one of which visible in Figure 6.
Instead of such a presentation we prefer to depict a special decomposition of this
graph, which is given in Figure 7. Its quotient with respect to the partition 6 ◦ E3,
consisting of 6 cocliques of order 3, is K3,3, (cf. Remark 5.1). Moreover, to each of
the nine undirected edges of K3,3 a corresponding (induced) subgraph of (R6∪R9,Ω)
is a directed cycle C6. A system of such 9 directed cycles is presented in Figure 7 and
it is identified with the graph itself. The hexagons are labeled by letters from a to i.

Proposition 5.1. The group G = Aut(X2) does not contain any involutions.

Proof. Suppose that |G| = 54 and y ∈ G is an involution. If G is intransitive, then y
has a fixed point, say, 0. This implies that one of the hexagons a, b, c remains in place.
Any involution preserving a directed hexagon acts semi-regularly on its vertices, a
contradiction. Thus, the group G acts transitively on Ω. Again, we conclude that
y preserves one of the hexagons, say a. Thus, the action of y on the vertex set of a
is (0, 9)(1, 10)(2, 11). Considering this action on the remaining elements of Ω and
on hexagons, we obtain y = (0, 9)(1, 10)(2, 11)(3, 12)(4, 13)(5, 14)(6, 15)(7, 16)(8, 17),
while ỹ = (a)(b, d)(c, g)(e)(f, h)(i). Here ỹ is the induced action of y on the hexagons.
Trying to get the induced action of ỹ on hexagon e, we have to claim that it reverses
arc (3, 12) in e. Again a contradiction.

Corollary 5.2. The following hold:
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Figure 7: Nine directed hexagons, partitioning the arcs of (R6 ∪ R9,Ω).

(a) G = Aut(X2) = H is a group of order 27.
(b) G acts intransitively on Ω.
(c) X2 is a non-Schurian AS.

Proof. Parts (a) and (b) follow immediately. To prove (c) without the use of a
computer, the reader has to conclude that X2 = W(R3 ∪ R14, R6 ∪R9).

Remark 5.2. We will call the directed color graph H = ((R3 ∪ R14, R6 ∪ R9),Ω) the
Heisenberg graph on 18 points. As was explained, it can be also regarded as a usual
directed graph. Its advantage is that it generates a non-Schurian AS#2, serving as
a combinatorial object, whose full symmetry is described by the Heisenberg group
of order 27.

5.6 Non-Schurian AS#6

To consider the remaining case of non-Schurian AS#6, we first take another glance
at the Schurian AS#1. Looking at the lattice of mergings of M we conclude that

AS#1 = W(R1 ∪ R13, R3 ∪ R14, R6 ∪ R10).

Now we present a merging scheme X6, a representative of class #6, as

{{R0, R11}, {R1, R2, R12, R13}, {R3, R14}, {R4, R15}, {R5, R8}, {R6, R7, R9, R10}}.
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Clearly, X6 is also a merging of the above copy of AS#1. Therefore Aut(X6) contains
a group of order 54. Once more, we consider WL-stabilisation and obtain that

X6 = W(R3 ∪ R14, R6 ∪ R7 ∪R9 ∪R10).

Figures 3 and 7 provide visualization of both the necessary graphs. Indeed, the
relation ψ = R6 ∪ R7 ∪ R9 ∪ R10 is decomposed into 9 undirected hexagons on
Figure 7 (just disregard the direction of arcs on the hexagons). This allows us to
check once more that Aut(X6) ≥ 〈H, t7〉. Indeed, t7 preserves relation R3 ∪ R14.
On the other hand, t̄7 = (ā)(b̄, d̄)(c̄, ḡ)(ē)(f̄ , h̄)(̄i). Here x̄ is the symmetrization of
hexagon x, and t̄7 is the induced action of t7 on such hexagons.

Proposition 5.3. Let X6 = W(R3 ∪R14, R6 ∪R7 ∪ R9 ∪R10). Then

(a) the group G = Aut(X6) has order 54;
(b) the WL-closure X6 is an AS of rank 6, which is obtained via merging of M:

{{R0, R11}, {R1, R2, R12, R13}, {R3, R14}, {R4, R15}, {R5, R8}, {R6, R7, R9, R10}};

(c) X6 is a non-Schurian AS.

Proof. We already know that G acts transitively on Ω. Let us consider stabilizer G0

of element 0 ∈ Ω in G. Assume that R6∪R7∪R9∪R10 is a 2-orbit of (G,Ω). We take
(0, 10) ∈ R6 and (0, 11) ∈ R7. Then there exists a permutation ϕ ∈ G0 such that
10ϕ = 11. Because 0ϕ = 0 and ϕ preserves R3∪R14, we obtain that ϕ preserves Ω1 =
{3, 4, 5}, Ω2 = {6, 7, 8} and Ω3 = {1, 2}. Because G is a subgroup of Aut(R5 ∪ R8),
we obtain that ϕ also preserves Ω5 = {9, 12, 15} and Ω6 = {10, 11, 16, 17, 14, 13}.
Looking at the symmetrization of diagram on Figure 7, we step by step finish the
construction of ϕ,

ϕ = (0)(1, 2)(3)(4, 5)(6)(7, 8)(9)(10, 11)(12)(13, 14)(15)(16, 17).

However, the resulting permutation does not preserve ē, nor any of f̄ , h̄ or ī. This
contradiction proves (c).

To prove (a) we have to check that the first group of order 54 coincides with
Aut(X6). Note that now, in addition, Aut(X6) also preserves the relation R6 ∪ R10.

The proof of (b) (as was mentioned above) is again a trivial exercise in the use
of WL-stabilization.

6 Automorphism groups related to M

In this section we describe three main groups attributed to the master CC M.

Lemma 6.1. For the graphs (on vertex set P) defined by relations Ai (for each
i ∈ {1, . . . , p− 1}) the following hold:

(a) They are isomorphic to p ◦ Cp, that is to disjoint union of p copies of Cp.
(b) Their automorphism group is of order p! · pp and isomorphic to Sp 	 Zp.
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Similar results hold for the graphs defined by relations Ci on the vertex set L.
Lemma 6.2. For the graphs (on vertex set P) defined by relations Bi the following
hold:

(a) They are isomorphic to Cp wr Ep.
(b) Their group of automorphisms is of order p · (p!)p and isomorphic to Zp 	 Sp.

Similar results hold for graphs Di with vertex set L.
Lemma 6.3. The automorphism group of the CC M restricted to the vertex set P is
isomorphic to the group Zp 	Zp of order p

p+1. Similar result holds after the restriction
onto the vertex set L.
Proof. It is convenient to regard elements from P as points of a grid with p horizontal
lines and p vertical lines. Restriction of M to each line coincides with (thin) AS
2 − Orb(Zp,Zp). Clearly, its automorphism group is Zp. Restriction to the vertical
lines has similar properties. It is easy to check that the wreath product Zp 	 Zp

preserves all basic elements of M on P. This group is a Sylow p-subgroup of the
intersection of Sp 	 Zp with Zp 	 Sp. The 2-orbits of Zp 	 Zp have valencies 1 and p
and coincide with the graphs defined by Ai and Bi. Thus, the resulting group is
nothing else but the 2-closure (Zp 	Zp)

(2). According to [55], the latter group is again
a p-group, which has order pp+1 due to the above-mentioned arguments.

The proof works similarly for the restriction on L.
Theorem 6.4. The combinatorial automorphism group Aut(M) coincides with H.

Proof. The Schurian CCM is formed by the 2-orbits of (H,Ω). Therefore Aut(M) ≥
H . The group Aut(M) is an intransitive group of degree 2p2 with two orbits of length
p2. Therefore it is a subgroup of the direct product of two groups of degree p2, namely,
of the automorphism groups of the restriction of M on the sets P and L. According
to Lemma 6.3, we obtain that |Aut(M)| ≤ p2(p+1).

On the other hand, the group Aut(M) preserves each of the basic graphs cor-
responding to relations Ei and Fi. Any such graph is a (directed) incidence graph
of the classical biaffine plane Bp. As it was demonstrated in Section 3, |Aut(Bp)| =
p3(p − 1)2. This, together with the above inequality for |Aut(M)|, implies that
|Aut(M)| ≤ p3. Since |H| = p3, we are done.

Remark 6.1. A more straightforward proof will be presented in the next section.

Now, we will describe the group AAut(M). Let us start with the following
permutations on the set of relations of the CC M. (We assume that ω is a primitive
element of Z∗

p.)

g1 = (A0, C0)(E0, F0)

p−1∏
i=1

(Ai, Ci)(Bi,Di)(Ei, Fi),

g2 = (E0, Ep−1, Ep−2, . . . , E2, E1)(F0, F1, F2, . . . , Fp−1),

g3 = (A1,Aω, Aω2 , . . . , Aωp−2)(C1,Cω, . . . , Cωp−2)(E1,Eω, . . . , Eωp−2)(F1, Fω, . . . , Fωp−2),

g4 = (B1, Bω, Bω2 , . . . , Bωp−2),

g5 = (D1,Dω,Dω2 , . . . ,Dωp−2).
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The permutation g1 is an involution corresponding to the duality between points
and lines in Bp (it interchanges their roles); g2 is of order p, while the remaining
permutations are of order p− 1.

Theorem 6.5. The group AAut(M) is of order 2p(p− 1)3 and

AAut(M) ∼= 〈g1, g2, g3, g4, g5〉 ∼= (Z2 	 Zp−1)×AGL(1, p).

Proof. First, we have to check that each of the permutations g1, . . . , g5 preserves the
tensor of structure constants. Thus, we have that 〈g1, g2, g3, g4, g5〉 ≤ AAut(M).
In order to see that AAut(M) ∼= 〈g1, g2, g3, g4, g5〉 it is sufficient to compute and
compare the orders of 〈g1, g2, g3, g4, g5〉 and AAut(M). The order of AAut(M) may
be determined by repeated application of the orbit-stabilizer lemma. A crucial issue
on this way is to check that if the basic relations E0, B1, D1 and A1 are fixed under
the action of an algebraic automorphism ψ, then all other basic graphs are preserved,
as well. In other words, ψ is the identity element of AAut(M).

Clearly, {g2, g3} is a standard set of generators for the affine linear group over
the finite field Fp of order p, that is, 〈g2, g3〉 ∼= AGL(1, p). Also it is easy to see that
〈g4, g5〉 ∼= Z

2
p−1 and 〈g1, g4, g5〉 ∼= Z

2
p−1�φZ2, where φ interchanges g4 with g5. A more

careful inspection of the semidirect product Z2
p−1 �φ Z2 shows that it is the wreath

product Z2 	 Zp−1. By routine computation one can further show that 〈g1, g4, g5〉 �
〈g1, g2, g3, g4, g5〉, 〈g2, g3〉 � 〈g1, g2, g3, g4, g5〉, and 〈g1, g4, g5〉 ∩ 〈g2, g3〉 = {e}. Thus
〈g1, g4, g5〉× 〈g2, g3〉 ∼= 〈g1, g2, g3, g4, g5〉, which confirms that 〈g1, g2, g3, g4, g5〉 ∼= (Z2 	
Zp−1)×AGL(1, p). Finally, |〈g1, g2, g3, g4, g5〉| = 2p(p− 1)3.

At this stage we are in position to describe the group CAut(M).

Proposition 6.6. Consider the following permutations h1, h2, h3, h4 acting on the
set of basic relations of M, where

h1 =

(p−1)/2∏
i=1

(Bi, Di, Bp−i, Dp−i) ·
p−1∏
i=0

(Ai, Ci)(Ei, Fi),

h2 = (A1, Aω, Aω2 , . . . , Aωp−2)(C1, Cω, . . . , Cωp−2)(D1, Dω, Dω2 , . . . , Dωp−2) ·
· (E1, Eω, . . . , Eωp−2)(F1, Fω, . . . , Fωp−2),

h3 = (B1, Bω, Bω2 , . . . , Bωp−2)(D1, Dωp−2, Dωp−3 , . . . , Dω2, Dω),

h4 = (E0, Ep−1, Ep−2, . . . , E2, E1)(F0, F1, F2, . . . , Fp−1).

The following hold:

(a) L = 〈h1, h2, h3, h4〉 ∼= Di(p−1)/2 · AGL(1, p);
(b) |L| = 2p(p− 1)2;
(c) 〈h2, h4〉 ∼= AGL(1, p);
(d) 〈h1, h3〉 ∼= Di(p−1)/2;
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where Dix is the dicyclic group of order 4x, see e.g. [47]. The formula in (a) means
factorization of L as a product of two disjoint groups.

Proof. By definition, h1 is of order 4, h4 is of order p, while h2 and h3 are of order
p − 1. The proof of (c) is evident, since we have a standard set of generators for

AGL(1, p). One can also easily check that hp−1
3 = 1, h21 = h

(p−1)/2
3 and h3h1h3 = h1

in order to show (d).
Now, we show that the intersection of the groups L1 = 〈h1, h3〉 and L2 = 〈h2, h4〉

is trivial. By contradiction, suppose that a non-identity element g ∈ L belongs to
L1∩L2. For i �= 0 we have orbits AL1

i = {Ai, Ci} and AL2
i = {A1, . . . , Ap−1}, therefore

g fixes all relations of type Ai. The same argument works for all relations of type
Ci, Ei and Fi. Since relations Ai, Ci and Di behave similarly in the group L2, we
can also say that all the relations Di are fixed by g whenever Ai and Ci are fixed.
Further, each relation Bi is fixed in L2, therefore g also fixes these relations. Thus,
g fixes all the relations, a contradiction. Hence |L| ≥ 2p(p− 1)2.

Finally, by routine calculations one obtains h2h1 = (h1h3)h2, h2h3 = h3h2, h4h1 =
h1h4, h4h3 = h3h4. This implies that each element of L can be represented as a
product of an element from Di(p−1)/2 and an element from AGL(1, p). Therefore
|L| ≤ 2p(p− 1)2, completing the proof of (a) and (b).

Remark 6.2. It follows from the previous proof that h3 = h−1
1 h2h1h

−1
2 , and so L ∼=

〈h1, h2, h4〉.

Proposition 6.7. The group L, introduced in Proposition 6.6, is a subgroup of index
p− 1 in the group AAut(M).

Proof. Observe that h4 = g2, h2 = g3g5 and h1 = g−1
5 g1g

−1
4 . Compare the orders of

L and AAut(M).

We are still looking for a more suitable, in a sense canonical description of the
group L.

Proposition 6.8. The group L can be presented in the form of a split extension
of the dicyclic group of order 2p(p − 1) with the cyclic group of order p − 1, i.e.
L ∼= Dip(p−1)/2 � Zp−1.

Proof. Let us define Zp−1 = 〈h2〉. The subgroup, which will serve as Dip(p−1)/2, we
define as 〈h1, h3h4〉, since (h3h4)

p(p−1) = 1, (h3h4)
p(p−1)/2 = h21 and (h3h4)h1(h3h4) =

h1. It remains to check that h−1
2 h1h2 = h3h1 = (h3h4)

p · h1 ∈ Dip(p−1)/2, and that
h−1
2 (h3h4)h2 = (h3h4)

k−p(k−1) ∈ 〈h1, h3h4〉, where k is the smallest integer, for which
hk−1
4 sends F1 to Fω.

Proposition 6.9. The group CAut(M) contains the subgroup H � L, where L is
the above group Dip(p−1)/2 � Zp−1 of order 2p(p− 1)2.

Proof. Recall that L = 〈h1, h2, h4〉. Thus for each permutation hi, i ∈ {1, 2, 4} we
need to find a permutation fi, acting on the set Ω of cardinality 2p2, which belongs to
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the normalizer of H in S(Ω) and induces permutation hi on the set of basic relations
of M.

Define f1 : Ω → Ω by [x, y] �→ (x, y) and (k, q) �→ [−k, q]. This permutation
induces h1 on the relations of M. The permutation f2 defined by [x, y] �→ [x, ωy]
on points, and (k, q) �→ (kω, qω) on lines (where ω is a primitive element of GF(p))
induces h2. Finally, f4 defined by [x, y] �→ [x, y + 1] on points and fixing all lines in
L induces h4.

Theorem 6.10. The group CAut(M) is isomorphic to H � L = H � (Dip(p−1)/2 �

Zp−1) and has order 2p4(p− 1)2.

Proof. It follows from Proposition 6.9 that H�L ≤ CAut(M), where L is presented
in Proposition 6.8. By the proof of Theorem 6.5, the relations A1, B1, D1, E0 form a
base of AAut(M). In the context of the current proof this fact can be reformulated
as follows: any permutation from CAut(M), which is an automorphism of the rela-
tions A1, B1, D1, E0, belongs to the group Aut(M) = H . Taking into account that
Aut(E0) ∼= Aut(Bp) has order p3(p − 1)2, while this group acts transitively on the
relations Ai and Bi with two orbits of length p − 1, we conclude, using the orbit-
stabilizer lemma, that Aut(A1) ∩Aut(B1) ∩ Aut(D1) ∩Aut(E0) is of order p

3.

A significant consequence of the results presented in this section is that the group
CAut(M)/Aut(M) ∼= L has index p − 1 in the group AAut(M). In other words,
for all odd primes p, the group AAut(M) contains proper algebraic automorphisms,
that is, those that are not induced by suitable elements from CAut(M).

7 Four new infinite families of non-Schurian ASs

Now we wish to introduce four families of color graphs with vertex set Ω. The proof
of the fact that we are getting fusion schemes will be given in two independent ways:
a combinatorial one, via the use of the tensor T of structure constants of M; and
an algebraic one, via interpreting all detected color graphs as algebraic mergings.

7.1 Introducing new color graphs

Let us consider the following subsets of Ω× Ω:

• R0 = A0 ∪ C0,
• Si = Ai ∪ Ci, where i ∈ Z

∗
p,

• Ti = Bi ∪Di, where i ∈ Z
∗
p,

• Ui = Ei ∪ Fi, where i ∈ Zp. Note that the relation U0 coincides with the set of
(undirected) flags in the canonical copy of the biaffine plane Bp.

Further, let S∗
i = Si ∪ Sp−i, T

∗
i = Ti ∪ Tp−i and U

∗
i = Ui ∪ Up−i be the respective

symmetrizations of the relations Si, Ti and Ui, canonically denoted for each i ∈
{1, . . . , (p− 1)/2}. Finally, let S = S1 ∪ . . .∪Sp−1 and U = U1 ∪ . . .∪Up−1. Observe
that U is the set of antiflags in Bp.
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It is straightforward to check that {R0, S1, . . . , Sp−1, T1, . . . , Tp−1, U0, U1, . . . ,
Up−1} forms a partition of Ω× Ω.

It remains to define the requested color graphs Mi with vertex set Ω, where
i ∈ {1, . . . , 4}.
Color graph 1. Denote by M1 the color graph with colors given by the sets R0,
S1, . . . , Sp−1, T1, . . . , Tp−1, U0, U1, . . . , Up−1.
Color graph 2. Denote by M2 the color graph with colors given by R0, S

∗
1 ,

S∗
2 , . . . , S

∗
(p−1)/2, T1, T2, . . . , Tp−1, U0, U

∗
1 , U

∗
2 , . . . , U

∗
(p−1)/2.

Color graph 3. Denote by M3 the color graph with colors given by R0, S, T1,
T2, . . . , Tp−1, U0, U .
Color graph 4. Finally, denote by M4 the color graph with colors given by R0, S,
T ∗
1 , T

∗
2 , . . . , T

∗
(p−1)/2, U0, U .

Note that for p = 3 the color graphs M2 and M3 coincide.
These four color graphs play a central role in this paper.

7.2 Proving the existence of ASs

We show that the color graphs M1–M4 defined in the previous section are ASs.
It is sufficient to show the existence of intersection numbers (structure constants)
because all other axioms of an AS are trivially satisfied. For convenience, we invoke
the following notational simplification for the indices of intersection numbers. We
write si, ti, ui in place of Si, Ti, Ui, respectively. For example, cuksi,tj indicates the
number of elements z ∈ Ω such that (x, z) ∈ Si and (z, y) ∈ Tj for any (x, y) ∈
Uk. A subscripted or superscripted zero always indicate the relation R0, while any
index i not accompanied by a specified symbol indicates any feasible relation. For
the sake of brevity, we indicate only those intersection numbers in which starred
relations (such as U∗

k ) do occur in the superscript. In each case we are providing
only one argumentation (usually for points), because the dual consideration (for
lines) is similar. We make frequent use of Kronecker’s symbol δi,j in order to shorten
computations and formulas.

To make the enumeration easier the following observations are helpful:

Observation 7.1. For all values of integers i ∈ {1, . . . , p− 1} and j ∈ {1, . . . , (p−
1)/2} we have R0, S, Si, Ti, S

∗
j , T

∗
j ⊆ (P×P)∪ (L×L), and U, U0, Ui, U

∗
j ⊆ (P×L)∪

(L × P). Thus, the intersection numbers of type cuksi,sj, c
uk
si,tj, c

uk
ti,sj, c

uk
ti,tj, c

uk
ui,uj, c

sk
si,uj,

ctksi,uj, c
sk
ti,uj, c

tk
ti,uj, c

sk
ui,sj, c

tk
ui,sj, c

sk
ui,tj, c

tk
ui,tj are zero for all choices of i, j, k.

Remark 7.1. Below, the symbol ∗ indicates composition of relations. In a coherent
algebra this operation corresponds to a product of corresponding adjacency matrices.
In a CC the result is usually a multirelation, that is, a set of relations together with
their multiplicities.

Observation 7.2. For the compositions of relations Si, Sj, Ti, Tj we have Si∗Tj = Tj,
Ti ∗Sj = Ti and if i+ j �= 0, then Si ∗Sj = Si+j and Ti ∗Tj = Ti+j. As a consequence
we obtain the following: csksi,tj = csktj,si = ctksi,sj = 0, and for i + j �= 0: cskti,tj = 0,
csksi,sj = δi+j,k.
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Observation 7.3. For each color X we have R0 ∗ X = X ∗ R0 = X, and for any
Y �= XT we obtain X ∗ Y �= R0 �= Y ∗X. Thus for all i and j such that i �= j we
have cj0,i = cji,0 = 0, and when i �= j′ we have c0i,j = 0.

Observation 7.4. Let P1, P2 ∈ P be two collinear points in Bp, and let L1 = {� ∈
L |P1 ∈ �}. Then for all �i, �j ∈ L1 we have d(P2, �i) = d(P2, �j) if and only if i = j,
where d(P, l) is the previously defined quasidistance.

All these intersection numbers appear in Appendix 1 to [24]. They were de-
rived by geometrical arguments, usually by considering points and lines at a given
quasidistance from two objects.

Theorem 7.5. The following hold:

(a) M1,M2,M3,M4 are ASs.
(b) The combinatorial groups of automorphisms of M1,M2,M3,M4 contain a

subgroup isomorphic to H.
(c) M2 is a merging of M1, M3 is a merging of M2, and M4 is a merging of

M3.
(d) rk(M1) = 3p− 1, rk(M2) = 2p, rk(M3) = p+ 3, rk(M4) = (p+ 7)/2.

Proof. Parts (a) and (b) have already been proven. Proofs of (c) and (d) easily follow
from the definition of Mi, where i ∈ {1, . . . , 4}.

As we have seen in the previous section, the algebraic group AAut(M) is of order
2p(p − 1)3. It is easy to check that this group has four orbits of length 2, 2p − 2,
2p− 2 and 2p, respectively, on the set of basic relations of M. These orbits are:

{A0, C0}, {A1, . . . , Ap−1, C1, . . . , Cp−1}, {B1, . . . , Bp−1, D1, . . . , Dp−1},
{E0, E1, . . . , Ep−1, F0, F1, . . . , Fp−1}.

Now we provide an alternative proof of the fact that the color graphs Mi are ASs,
where i ∈ {1, . . . , 4}. This proof is simple and elegant.

Theorem 7.6. The color graphs M1,M2,M3 and M4 appear as algebraic mergings
of M and are ASs.

Proof. Let q = (p − 1)/2. Then the algebraic mergings corresponding to the sub-
groups K1 = 〈g1〉, K2 = 〈g1, gq3〉, K3 = 〈g1, g3〉 and K4 = 〈g1, g3, gq4, g

q
5〉 of AAut(M)

lead to M1, M2, M3 and M4, respectively. This implies that each of these color
graphs is a CC. Note that permutation g1 merges together A0 and C0 into R0. There-
fore M1 becomes an AS. Taking into account that the groups K2, K3 and K4 are
overgroups of K1, the remaining color graphs are also ASs.

Proposition 7.7. The following holds: M1, M2 and M3 are commutative, but
non-symmetric; M4 is symmetric and hence commutative.

Remark 7.2. A careful inspection of the introduced subgroupsKi of AAut(M), where
i ∈ {1, . . . , 4}, shows that for p ≥ 5 none of them is a subgroup of the group
K = CAut(M)/Aut(M). Therefore, according to general properties of algebraic
mergings, the obtained ASs might be, in principle, non-Schurian. We now prove
rigorously that exactly this is the case.
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7.3 Combinatorial automorphism groups of constructed ASs

In this section we will focus on the combinatorial groups of automorphisms of the
constructed schemes. Recall that this group consists of all permutations φ : Ω → Ω
that preserve relations, i.e. Rφ

i = Ri for all Ri ∈ R.

Theorem 7.8. Let Aut(M1), Aut(M2), Aut(M3) and Aut(M4) be the combina-
torial groups of automorphisms of M1, M2, M3 and M4, respectively. Then the
following hold:

(a) Aut(M1) ≤ Aut(M2) = Aut(M3) ≤ Aut(M4),
(b) |Aut(M1)| = p3,
(c) |Aut(M2)| = 2p3,
(d) |Aut(M3)| = 2p3,
(e) |Aut(M4)| = 8p3.

Proof. It is clear that the previously defined permutations tab and ϕ (in definition
of group H) are elements of each automorphism group Aut(Mi), that is, H is a
subgroup of Aut(Mi) for each 1 ≤ i ≤ 4.

(a) The chain of inequalities Aut(M1) ≤ Aut(M2) ≤ Aut(M3) ≤ Aut(M4) fol-
lows directly from Theorem 7.5, simply by applying Galois correspondence to
the lattice of CCs and that of their corresponding automorphism groups. The
equality Aut(M2) = Aut(M3) follows by inspection of the group orders, to be
accomplished in parts (c) and (d).

Below, we consider separately the claims (b) through (e). In each proof, G denotes
the group Aut(Mi), while G[0,0],(0,0) will denote the stabilizer in G of both the point
[0, 0] and the line (0, 0). The proof of (b) is given with enough details.

(b) We apply the orbit-stabilizer lemma to prove that |Aut(M1)| ≤ p3. We already
know that H is a subgroup of Aut(M1), hence the result follows. (Moreover,
this shows that Aut(M1) ∼= H ∼= Z

2
p � Zp.) For the sake of brevity, let us

denote G = Aut(M1).

First, we claim that there is no automorphism that sends a point to a line.
Toward a contradiction, suppose that α ∈ G sends the point P1 to the line
r = (k, q), k, q ∈ Zp. Without loss of generality we may assume P1 = [0, 0],
because G acts transitively on P. In such a case, we have Pα = L and Lα = P,
because of the relations Si. Consider now the line l = (0, 0) and its image
lα1 = (u, v), u, v ∈ Zp. Clearly (P1, l1) ∈ U0, whence v = k ·u+ q. Now consider
the point [1, 0]. Since ([0, 0], [1, 0]) ∈ T1 and ([1, 0], (0, 0)) ∈ U0, it follows that
[1, 0]α = (k + 1, q − u). Similarly, (1, 0)α = [u + 1, q + k(u + 1)]. However
([1, 0], (1, 0)) ∈ U1, and therefore ([1, 0], (1, 0))α ∈ U1. But ([1, 0], (1, 0))α =
((k+1, q−u), [u+1, q+k(u+1)]) ∈ U−1, since q+k(u+1)−(k+1)(u+1)−q+u =
−1, a contradiction for any odd prime p. This proves that PG = P and LG = L,
as claimed.
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Since G is transitive on the points, |[0, 0]G| = |P| = p2. Let G[0] := G[0,0]

be the stabilizer of the point [0, 0] in G. The points [0, 1], [0, 2], . . . , [0, p − 1]
are fixed by G[0], because they form unique pairs together with [0, 0] in the
relations S1, . . . , Sp−1, respectively. As the line (0, 0) contains the point [0, 0],
there are at most p distinct images of (0, 0) under the action of G[0]. However,

it is easy to check that (0, 0)ϕ
i
= (−i, 0) for i ∈ {0, 1, . . . , p− 1}, which proves

that |(0, 0)G[0]| = p.

Now let G0 = G[0,0],(0,0) be the stabilizer in G of both (0, 0) and [0, 0]. Then G0

fixes all lines (0, i) parallel to (0, 0), because (0, i) forms a unique pair with (0, 0)
in Si. If we now consider an arbitrary point [x, y] with x �= 0, then its image
under G0 must be contained in the line (0, y). Moreover, ([0, y], [x, y]) ∈ Tx
and for any π ∈ G0 it follows that ([0, y], [x, y])π = ([0, y], [t, y]) ∈ Tx for some
t ∈ Zp. This establishes that t = x, and hence the point [x, y] is fixed under G0.
Thus G0 fixes all points and therefore all lines as well. By the orbit-stabilizer
lemma, |G| = p2 · p · 1 = p3 and so G ∼= H .

(c) By routine inspection, the mapping π defined by [x, y] �→ (x,−y−2x), (x, y) �→
[x+2,−y] is an automorphism of M2. From this it follows that G = Aut(M2)
is transitive on Ω = P ∪ L, whence |[0, 0]G| = 2p2. Similarly, as in part (b),
we may again show that the line (0, 0) has p distinct images under the action
of the stabilizer G[0] of [0, 0]. Again, considering the stabilizer G0 of [0, 0] and
(0, 0) we conclude (see [24]) that |G| = 2p3.

(d) It is clear that the permutation π appearing in part (c) is also an automorphism
of M3, i.e. π ∈ Aut(M3) = G. Moreover, the initial steps of part (c) again
establish |[0, 0]G| = 2p2. We consider once more the stabilizer G0 of (0, 0) and
[0, 0]. Again, we obtain |G| = 2p3 as desired. (In fact, we confirmed that
Aut(M2) ∼= Aut(M3) ∼= 〈t01, t10, ϕ, π〉.)

(e) Here we set G = Aut(M4), and consider permutations α and β defined by
[x, y]α = [x,−y], (k, q)α = (−k,−q) and [x, y]β = [−x,−y], (k, q)β = (k,−q).
Similarly to parts (b) and (c), one can verify that G ∼= 〈t10, t01, ϕ, π, α, β〉,
whence |G| = 8p3. (Comparing α with f1, f2, f4, inducing proper color auto-

morphisms of M, one can notice that α = f
(p−1)/2
2 .)

Remark 7.3. We are now ready to share with the reader a possibility for the alter-
native proof of the claim that Aut(M) = H , which was mentioned in the previous
section. It immediately follows from (b) of Theorem 7.8, since M1 is a merging of
M and due to the Galois correspondence, we obtain H = Aut(M1) ≥ Aut(M) ≥ H
implying Aut(M) = H . We believe that the proof of this equality, proved earlier by
different methods, is of independent interest, demonstrating different methodology,
not appealing to the use of the orbit-stabilizer theorem.

7.4 Main corollary

Corollary 7.9. For p > 3 the M1, M2, M3 and M4 are pairwise distinct non-
Schurian ASs.
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Proof. Recall that the rank of H = Z
2
p �Zp on V = P ∪L is 6p− 2. Thus Aut(M1)

is also of rank 6p − 2, while the rank of M1 is 3p − 1. This proves that M1 is
non-Schurian for p ≥ 3.

For the ASs M2 and M3, we consider the permutation π ∈ Aut(M2) = Aut(M3)
introduced in part (c) of Theorem 7.8. As the result of π, we obtain the following
2-orbits: Ai ∪ C−i, Bj ∪ Dj and Ei ∪ F−i, for i ∈ Zp and j ∈ Z

∗
p. This proves that

Aut(M2) = Aut(M3) is of rank 3p−1. As the ranks of M2 and M3 are 2p and p+3
respectively, we conclude that M2 and M3 are non-Schurian for p ≥ 3. However,
one can check that M2 and M3 coincide when p = 3.

Finally, with the aid of permutations α and β introduced in part (e) of Theorem
7.8, it is easy to see that the 2-orbits of Aut(M4) are Ai∪A−i∪Ci∪C−i, Bj ∪B−j ∪
Dj∪D−j and Ei∪E−i∪Fi∪F−i, for i ∈ {0, 1, . . . , (p−1)/2} and j ∈ {1, . . . , (p−1)/2}.
Thus the rank of Aut(M4) is equal to (3p + 1)/2. As the rank of M4 is (p + 7)/2,
we conclude that M4 is non-Schurian for p > 3.

Remark 7.4. For p = 3 we obtain only two non-Schurian ASs: M1 and M2. Indeed,
the ASsM2 andM3 coincide, whileM4 is Schurian, since (3·3+1)/2 = (3+7)/2 = 5.
These two non-Schurian ASs are of order 2 ·32 = 18 and according to the catalogue of
small ASs of Hanaki and Miyamoto [26], we cover all non-Schurian ASs of order 18.

8 Combinatorial vs. group-theoretical regularity

This section is devoted to a discussion of the concept of symmetry in graph theory.
Suppose that Γ is a graph, possibly directed, undirected, colored. Usually, diverse
requirements to the symmetry of Γ are formulated in the terms of transitivity of
action of the group G = Aut(Γ) on ingredients of Γ of a concrete kind, like vertices,
edges, arcs, etc. Such requirements are of global nature and the related investiga-
tion depends on the use of tools from group theory. In many cases the knowledge
of consequences of the Classification of Finite Simple Groups turns out to be very
helpful, see e.g. [15]. In this fashion classification of highly symmetrical graphs may
be regarded as a problem in applied group theory. In AGT there is a long-standing
tradition to approximate group-theoretical symmetry by other requirements, formu-
lated in terms of combinatorial or spectral regularity. Combinatorial regularity is
expressed in local terms. Most simple and well-known example is a regular graph:
each vertex has the same amount of neighbours.

CCs serve as a combinatorial approximation of transitivity of the action of group
G = Aut(Γ) on arcs of each monochromatic graph of a colored graph Γ. One of the
most significant concepts in CCs is the coherent closure W (Γ) of a given graph Γ:
this is the smallest CC, which contains Γ as a union of its basic relations. The
definition of W (Γ) is correct, see [37]. Usually, W (Γ) is called Weisfeiler-Leman
closure, paying tribute to the seminal paper [53] written by Weisfeiler and Leman,
see also [52]. In fact, they described a polynomial-time algorithm for the computation
of W (Γ). Usually, it is formulated and fulfilled in the terms of matrices, while W (Γ)
is regarded as a coherent algebra, equivalent to the corresponding CC. We refer to [7]
for one of the existing practical program implementations of the WL-stabilization,
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the modern name for the efficient procedure, introduced in [53]. A small example
of the use of WL-stabilization for purely pedagogical purposes is presented in our
text [34] (Section 6.4, Example 6.31).

For a few decades the smallest known non-Schurian CC was a rank 3 AS on 15
points, formed by a doubly regular tournament T15 and its complement, see [46]. It
turns out that the group Aut(T15) is of order 21, thus it can not act transitively on
the vertex set of T15, neither on the set of its directed arcs, having cardinality 105.
The fact that this AS is non-Schurian may be justified on a local level with the aid
of 5-vertex invariants of arcs of T15, see [39]. Note that the use of 4-vertex invariants
is not enough for the same purposes.

There are 16 non-Schurian ASs on 16 points. We briefly discuss one of them.

Example 8.1. The Shrikhande graph Sh appears as the complement to the Latin
square graph over the group Z4. It follows from the general theory of such graphs,
that |Aut(Sh)| = 192, see e.g. [27]. Sh is also a strongly regular graph (briefly SRG).
In other words, the reflexive relation R0, Sh and Sh together are basic graphs of a
rank 3 AS. It is clear that this AS is non-Schurian, because the vertex stabilizer of
order 12 can not act transitively on the set of nine non-neighbours of the considered
vertex in graph Sh. Note that this proof of the non-Schurian property was obtained
with the aid of information of global nature, related to properties of the group G.

Good news are that once more we may justify the desired property, relying only on
local invariants of Sh, this time considering its 4-vertex subconfigurations, see [38].

Following the outlined methodology, we are trying to find the smallest value
of κ, for which the non-Schurian property of the detected schemes may be justified
(using just local invariants of size κ). Some computer aided experiments are arranged
(jointly with M. Ziv-Av). It is already clear that κ ≥ 5. The results will be reported
elsewhere.

A simple bipartite regular graph Γ is semisymmetric, if Aut(Γ) acts transitively
on the edge set, but intransitively on the vertex set. Systematic consideration of
semisymmetric graphs goes back to the seminal paper [22] by Folkman. He proved
that there are no semisymmetric graphs on 2p2 vertices, when p is a prime. In other
words, global symmetry on the edges of a regular bipartite graph on 2p2 vertices
implies global symmetry on the vertices. The existence of the AS M1 demonstrates
that this is not valid for color graphs.

As it was discussed, all detected non-Schurian ASs demonstrate local symmetry,
which is not fully supported by global symmetry.

9 Some ASs of small rank appearing as mergings of M

Recall that the main result of this paper is the discovery and investigation of four
infinite families of non-Schurian ASs, which appear as algebraic mergings of the
master CC M. For each of these four families rank of schemes grows linearly with
increasing p. From the earliest inception of AGT, special attention has been paid to
ASs of small rank. The smallest possible (non-trivial) rank is 3. Especially interesting
are primitive rank 3 schemes, which are generated by SRGs in the symmetric case,
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p AS Schur NonSch NonComm NonSym
p = 3 13 11 2 2 9
p = 5 29 23 6 6 17
p = 7 51 33 18 8 38

Table 3: Numbers of mergings of M.

p AS Schur NonSch NonComm NonSym
p = 3 3 2 1 0 2
p = 5 8 5 3 0 4
p = 7 15 6 9 0 11
p = 11 15 6 9 0 11
p = 13 35 15 20 0 19

Table 4: Numbers of algebraic mergings of M.

and doubly regular tournaments in the non-symmetric case. One may attempt to
prove that in our case such primitive object can not appear for p > 5. Similarly,
it is possible to justify that there exist only predictable (Schurian) rank 4 mergings
with large imprimitive automorphism groups, that is, objects that do not carry any
surprises. For merging schemes of rank at least 5 the picture is quite different.

9.1 Attempts of systematical enumeration of all mergings

At initial stage of this project we were enumerating all the ASs that arise as mergings
of M. For p = 3, using traditional COCO we immediately enumerate 34 proper
mergings, which form 13 isomorphism classes, see Section 5. For p = 5 COCO does
not finish computations in time measurable by a few days. This is why we used
COCO II (version by Ziv-Av), which enumerates all AS mergings up to combinatorial
isomorphism. A similar task may be fulfilled for p = 7, but for p = 11 it appears to
be practically impossible. A summary of results is included in Table 3.

At the next stage of systematic enumeration we were hunting just for those ASs
(up to isomorphism) that arise as algebraic mergings of M. Here it was possible to
get complete results for values of p up to 13. A summary of these results is given in
Table 4.
A legend to these tables is as follows: AS = # of ASs, Schur = # of Schurian ASs,
NonSch = # of non-Schurian ASs, NonComm and NonSym =# of non-commutative
and non-symmetric ASs, respectively.

Let us switch from discussion of computational efforts to their theoretical gener-
alizations.

9.2 Coherent closure of basic graphs of M

Recall that, up to isomorphism, there are three kinds of basic graphs of the master
CC M. Let us consider each of them separately. In this context the vertex set of
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graphs coincides with the set Ω. We can identify the basic graphs with corresponding
basic relations.

Proposition 9.1. The following hold for the basic graphs (Ai,Ω) and (Ci,Ω):

(a) The rank of the WL-closure of the graphs is equal to p+ 5.
(b) The WL-closure of the graphs is Schurian.

Proof. We prove the results for the graph (Ai,Ω), as similar results for (Ci,Ω) can be
proved analogously. By Lemma 6.1 we have Aut(Ai,Ω) ∼= (Sp 	Zp)×Sp2 . This group
has two orbits: P and L. There are p+1 2-orbits on the set P, two 2-orbits on L, and
two 2-orbits between P and L. Altogether we obtain that rk(Aut(Ai,Ω)) = p+ 5.

Now, we have to take into account that the directed cycle Cp with p vertices is
naturally generating its powers in the WL-procedure. This implies (a) and (b).

Proposition 9.2. The following hold for the basic graphs (Bi,Ω) and (Di,Ω):

(a) The rank of the WL-closure of the graphs is equal to p+ 5.
(b) The WL-closure of the graphs is Schurian.

Proof. We prove the results for the graph (Bi,Ω), as similar results for (Di,Ω) can
be proved analogously. This time by Lemma 6.2 we have Aut(Bi,Ω) ∼= (Zp 	Sp)×Sp2 .
Further reasonings are similar as in the proof of the previous proposition.

Proposition 9.3. The following hold for the basic graphs (Ei,Ω) and (Fi,Ω):

(a) The rank of the WL-closure of the graphs is equal to 10.
(b) The WL-closure of the graphs is Schurian.

Proof. There are 3 basic relations on the vertex set P of the biaffine plane: reflexivity,
collinearity of points, and their non-collinearity. Dually, we have 3 basic relations on
the set L. There are two relations from P to L (incidence and non-incidence), as well
as from L to P. This proves (a). To prove (b), let us interpret the group Aut(Bp)
as F2

p �UGL(2, p), where F
2
p is the 2-dimensional vector space over the field Fp, and

UGL(2, p) is the group of upper triangle matrices with non-zero determinant over Fp.
Clearly, the group Aut(Bp) has the desired order (p−1)2 ·p3. Now we have to describe
5 orbits of the stabilizer of vector (0, 0) on P, having lengths 1, p − 1, p(p − 1), p
and p(p− 1). Similarly, there are 5 orbits of this stabilizer on the set L.

9.3 Classical biaffine plane as a distance-regular graph

Definition of a distance-regular graph is usually given in more sophisticated terms.
Advantage of our definition, provided below, is the use of the of WL-closure.

A regular connected undirected graph Γ of valency k and diameter d is called
a distance-regular graph (briefly DRG), if rk(W(Γ)) = d. Similar definition can be
given in case, when Γ is a directed graph without undirected edges. Trivial examples
of DRGs are given by undirected cycles. We refer the interested reader to [14] for
reasonably full theory of DRGs.
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1 3 6 6 2

3 1 2 1 2 2 1 3

Figure 8: The intersection diagram of the Pappus graph.

Example 9.1. The Pappus graph P is a DRG on 18 vertices of valency 3 and diame-
ter 4. Significant properties of P appear on the intersection diagram, see Figure 8.

Usually, instead of an intersection diagram of a DRG Γ, its intersection array
i(Γ) is used. In our case we obtain i(P ) = {3, 2, 2, 1; 1, 1, 2, 3}.

One more essential property of P is that it is antipodal with naturally defined
quotient graph Γ̄. It turns out that the quotient graph is also a DRG. In our situation
it has diameter 2 and is isomorphic to the complete bipartite graph K3,3.

Note that P is also distance-transitive (briefly DTG). One of the possible defini-
tions of this property is to claim that this is a DRG whose WL-closure is Schurian.

We are now ready to formulate the crucial property of biaffine planes in the
framework of the theory of DTGs. Recall that (Ei∪Fi,Ω) is the undirected incidence
graph of the classical biaffine plane Bp. Let us denote it by Inc(Bp).

Theorem 9.4. Let p be a prime. For the incidence graph Inc(Bp) of the biaffine
plane Bp the following hold:

(a) It is a DRG of valency p and diameter 4 with intersection array

i(Inc(Bp)) = {p, p− 1, p− 1, 1; 1, 1, p− 1, p}.

(b) It is a DTG with automorphism group of order 2(p− 1)2 · p3.
(c) It is bipartite and antipodal.
(d) Its spectrum is:

{p1,√p(p−1)p, 02p−2, (−√
p)(p−1)p, (−p)1}.

Proof. This graph appears as a particular case considered on p.425 in [14], here
m = k = p, μ = 1. A proof of parts (a)-(c) was imitated in Example 9.1 for
p = 3. To prove (d) one has to take into account that the WL-closure of Inc(Bp)
is a symmetric rank 5 AS and to consult [9] for general techniques of description of
spectra of ASs.

An interesting task is to classify all DTGs with intersection array as in The-
orem 9.4. It was considered in a number of publications, including [16] and [31].
Finally, a complete classification was obtained using twisted fields of Albert type.

9.4 An auxiliary Schurian rank 8 AS and its automorphism group

We are now in position to present a few infinite families of non-Schurian ASs of rank
5 and 6, arising by mergings of M.
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The subgroup K of AAut(M) was considered, where K = 〈g1, g3, g24, g25〉. (Here
we are following the notation from the previous sections.) In the next step we
applied K on M for all odd primes up to p = 19. In each case we constructed the
corresponding algebraic merging N6 and investigated its properties. As a result, we
concluded with the following observation.

Observation 9.5. For all odd primes p there exists a non-Schurian rank 6 algebraic
merging N6 of the master CC M. The group Aut(N6) is a transitive rank 8 group of
order 1

2
(p− 1)2p3. The group CAut(N6) has order (p− 1)2p3. The group AAut(N6)

has order 2 and thus coincides with the group CAut(N6)/Aut(N6). The scheme N6 is
commutative. It is non-symmetric when p ≡ 3 (mod 4) and symmetric when p ≡ 1
(mod 4).

Naturally, we became interested in the group Aut(N6) and its centralizer algebra,
a Schurian AS of rank 8, which plays here a role of an auxiliary structure. Let us
denote it by N8. Again, it is non-symmetric when p ≡ 3 (mod 4) and symmetric
when p ≡ 1 (mod 4). They are all commutative. In what follows we concentrate on
N8 and its group Aut(N8) = Aut(N6).

• Basic relations of N8 have valencies 1, (p−1)/2, (p−1)/2, (p2−p)/2, (p2−p)/2,
p, (p2 − p)/2, (p2 − p)/2. We label them Ri for i ∈ {0, 1, . . . , 7}.

• The graphs (R1,P) and (R2,P) are isomorphic to p◦Tp, where Tp is a classical
(Paley) DRT on p points, when p ≡ 3 (mod 4) and to p ◦ Palp, where Palp is
Paley SRG on p points, when p ≡ 1 (mod 4).

• The graphs (R3,P) and (R4,P) are wreath products Tp wrEp and PalpwrEp,
respectively (depending on the value p mod 4).

• Restrictions of the (disconnected) graphs (Ri,Ω) onto L are described similarly,
that is (Ri,L), for i ∈ {1, . . . , 4}.

• The graph (R5,Ω) is isomorphic to Inc(Bp).
• Finally, the graphs (R6,Ω) and (R7,Ω) appear as unions of (p− 1)/2 another
copies of Inc(Bp), which are labeled with the aid of non-zero squares and non-
squares in the finite field Fp, provided that labeling of R5 corresponds to 0 in
Fp.

9.5 All mergings of N8 in case p ≡ 3 (mod 4)

It turns out that the lattice of all mergings of N8 is slightly richer in the case when
p ≡ 3 (mod 4). This is why we start by considering this case.

Proposition 9.6. Let p ≡ 3 (mod 4), p > 3.

(a) There exist exactly 14 proper mergings of N8. Their ranks vary from 3 to 7.
(b) There are 5 non-Schurian mergings and 9 Schurian mergings.
(c) There are 3 non-Schurian mergings of rank 6 and 2 of rank 5.
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(d) Non-Schurian rank 6 mergings correspond to the partitions

{{R0}, {R1, R2}, {R3}, {R4}, {R5, R6}, {R7}},

{{R0}, {R1, R2}, {R3}, {R4}, {R5, R7}, {R6}},
{{R0}, {R1, R2}, {R3}, {R4}, {R5}, {R6, R7}}.

(e) There are two non-Schurian rank 5 mergings. They correspond to the partitions

{{R0}, {R1, R2}, {R3, R4}, {R5, R6}, {R7}},

{{R0}, {R1, R2}, {R3, R4}, {R5, R7}, {R6}}.
They are isomorphic and their group have rank 7 with order twice larger than
|Aut(N8)|.

Proof. A rigorous proof is based on literal extrapolation of the results obtained for
small values of p. This is possible due to the essence of the described basic graphs
of N8.

Remark 9.1. In fact, we detected two infinite families of non-Schurian rank 6 ASs.
Let us denote them (up to isomorphisms) by N6,1 and N6,2. It is clear that valencies
for basic relations of N6,1 are 1, p− 1, (p2 − p)/2, (p2 − p)/2, (p2 − p)/2, (p2 + p)/2,
while for N6,2 they are 1, p− 1, (p2 − p)/2, (p2 − p)/2, p, p2 − p. It turns out that
N6 = N6,2.

The valencies for the rank 5 merging N5 are 1, p−1, p2−p, (p2−p)/2, (p2+p)/2.
Remark 9.2. By analyzing the lattice of the mergings obtained we easily conclude
that N6,1 = W(R3, R5 ∪ R6), N6,2 = W(R3, R6 ∪ R7), and N5 = W(R5 ∪ R6). Thus
both N6,1 and N6,2 appear as the WL-closure of two basic graphs, while for N5 just
one graph is sufficient.

9.6 All mergings of N8 in case p ≡ 1 (mod 4)

As was mentioned, this case is a bit simpler.

Proposition 9.7. Let p ≡ 1 (mod 4). Then the following hold:

(a) There exist exactly 10 proper mergings of N8. Ranks of mergings vary from 3
to 7.

(b) There is only one non-Schurian merging, it has rank 6, and 9 Schurian merg-
ings.

(c) Non-Schurian rank 6 merging N6 corresponds to partition

{{R0}, {R1, R2}, {R3}, {R4}, {R5}, {R6, R7}}.

(d) Aut(N6) = Aut(N8).
(e) Basic graphs of N6 have valencies 1, p− 1, (p2 − p)/2, (p2 − p)/2, p, p2 − p.

Proof. For parts (a)–(d), the proof is similar to one in the previous proposition.
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9.7 Towards one more family of non-Schurian rank 5 mergings

It is becoming clear that the four infinite families of ASs M1–M4, considered in our
text, are just a tip of the iceberg of non-Schurian mergings of the master CC M.
The amount of non-Schurian mergings grows with increasing value of p, while rank
of such schemes varies from 5 to 3p− 1. Other infinite families of low constant rank
non-Schurian ASs exist, as well. Below, we describe methodology that allowed to
detect existence of one such family and discuss its significant features.

Let us start from p = 13. The list of 35 algebraic mergings contains a rank 11
Schurian, commutative, non-symmetric AS N11. Aut(N11) is a transitive group of
order 158, 184 = 72 · 133. AAut(N11) ∼= CAut(N11)/Aut(N11) ∼= Z4. The subdegrees
of Aut(N11) are 11, 34, 131, 394, 1561. The 2-orbits of valency 3 are antisymmet-
ric. Relations of valency 13 and 39 correspond to symmetric bipartite graphs, in
particular (R6,Ω) is the incidence graph of B13.

Clearly, the group Aut(N11) is a subgroup of Aut(Inc(B13)). A more careful
analysis shows that Aut(N11) = (Z2

13 : K) ·Z2, where K is a subgroup of UGL(2, 13)
of index 4. More precisely, K = USL(2, 13) · Z3, where USL(2, 13) consists of upper
triangular matrices, whose determinant is equal to 1. COCO detected 13 mergings
of N11, among them four combinatorially isomorphic non-Schurian rank 5 mergings
N5,2 with valencies 1, 12, 52, 117, 156. Such a merging appears as a WL-closure of a
bipartite graph Γ of valency 52. This graph Γ is a union of 4 copies of Inc(B13). It is
significant to mention that Γ is not arc-transitive. The group Aut(Γ) = Aut(N11) =
Aut(N5,2) splits edges of Γ into two 2-orbits of valency 13 and 39. However, in the
context of the generated AS, these edges are not distinguishable.

We also computed the spectrum of the basic graphs for N5,2. In particular,

Λ(Γ) = {±521, 024,±
√
39

156}.

The considered example appears as the first member of an infinite family of
rank 5 non-Schurian ASs N5,2 with the automorphism group of rank 11 and order
p3 · (p− 1)2/2. Such an AS N5,2 exists for each prime p = 12k + 1, in particular, for
p = 13, 37, . . .. It is generated by a bipartite graph Γ of valency p(p+ 3)/4, which is
not edge-transitive. Its diameter is 3 for p = 13.

10 Links to known combinatorial structures

It turns out that our master CCM, as well as the diverse ASs arising as its mergings,
are essentially related to a number of known combinatorial structures. These struc-
tures are holders of other kinds of nice symmetry, expressible in terms of extremal
and spectral graph theory. We will consider not only sporadic examples, but also
some infinite families.

As usual, the smallest case p = 3 attracts special attention. We just recall once
more that the graph defined by U0 for p = 3 is the famous Pappus graph. Recall that
an SRG Γ is called primitive, if both Γ and its complement Γ̄ are connected. Using
COCO, we confirmed existence of such a rank 3 primitive merging just for p = 5 (in
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comparison with a few other investigated values of p). It is generated by the famous
Hoffman-Singleton graph, which is SRG with parameters (50, 7, 0, 1), and can be
described in terms of M. More precisely, to obtain this graph we have to take the
union of relations A1, A4, C1, C4, E0 and F0. This construction seems to be one of
the motivations for McKay, Miller and Širáň in their discovery of an infinite family of
graphs on 2q2 vertices, where q is a prime power. The original description was given
in [43] in terms of voltage assignments. Here we consider only the graphs with 2p2

vertices, p an odd prime. We are using notation H(p) for the graphs considered. The
original description was simplified a few times by different authors, see references
in [48]. For our purposes the best one is that given by Hafner (see [25]).

McKay-Miller-Širáň graphs may be obtained as a suitable union of relations of
M. Specifically:

H(p) = E0 ∪ F0 ∪
⋃
i∈X

Ai ∪
⋃
j∈X′

Cj .

In particular, H(5) is the Hoffman-Singleton graph [30], which was discussed above.
The McKay-Miller-Širáň graphs are currently the best known solutions to the de-
gree/diameter problem for diameter 2 and valency (3q − 1)/2, where q is a prime
power.

The description provided of the graph H(p) stresses promising potential of the
methodology presented in the current paper for the purposes of further clever hunting
for extremal graphs. Indeed, to get a graph H(p) we start from Inc(Bp) and simply
add to it some very natural mergings of restrictions of M on P and L. Clearly there
is a lot of freedom how to generalize graphs H(p), provided correct vision of their
structure is used in the role of the starting polygon. At this stage we simply refer to
[2], [3] and [8]. We warn the reader that the terminology used in these texts strongly
differs from the one in the current paper. On the other hand, we pay attention to
the short note [4], written in a friendly style, with nicely depicted graph H(3).

The incidence graphs of biaffine planes are regarded as a particular case of a rich
family of so-called Wenger graphs [54]. In a recent paper [17] the spectra of these
graphs are derived, and it also contains many references concerning Wenger graphs.

Knowledge of the spectrum of a graph Γ provides general possibility to judge
symmetry of Γ from one more point of view. Usually, graphs with a few distinct
eigenvalues are regarded as of most interest. For example, graphs with three distinct
eigenvalues serve as a spectral analogue of a concept of an SRG, see, e.g. [44]. In
this context it is clear that graphs appearing in the master CC M are of a special
interest. For families M1−M4 of non-Schurian ASs, as well as for mergings of small
rank, the number of different eigenvalues of basic graphs remains small.

One more interesting class of regular graphs is also defined in terms of spectra.
Recall that a connected simple regular graph Γ of valency k is called Ramanujan if
and only if for all its eigenvalues λ with |λ| �= k we have |λ| ≤ 2

√
k − 1. We refer to

a nice book [50], where the concept of Ramanujan graph is considered, in particular,
jointly with the representation theory of Heisenberg groups. The incidence graphs
of Bp provide one of the simplest and well-known classes of Ramanujan graphs.

Example 10.1. We consider again the rank 5 merging of M presented in Section 9
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for p = 13. Its basic graphs have valencies 1, 12, 52, 117 and 156. The spectrum

of the basic graph Γ2 of valency 52 is {521,
√
39

156
, 024,−

√
39

156
,−521}. Surely,√

39 < 2
√
51. Moreover, the “spectral gap” λ1 − λ2 is quite large here. Thus, Γ2 is

indeed a Ramanujan graph on 338 vertices.

Remark 10.1. It is well-known that the most interesting Ramanujan graphs have
small valency in comparison with the number of vertices. Thus the provided graph
does not carry any great surprises. Nevertheless, the way how it was considered
might be of some interest for experts.

There is one more fairly well known graph on 18 vertices that may be easily found
inside our master CC on 18 points. This graph belongs to the family of directed
strongly regular graphs (briefly DSRGs), a natural generalization of strongly regular
(undirected) graphs to the case of mixed graphs. This concept was introduced by
A. Duval in his seminal paper [18]. We will use the established notation (n, k, t, λ, μ)
for its parameter set. The discussed graphs are regular digraphs of valency k, and
satisfy AJ = JA = kJ and A2 = t · I + λ · A + μ(J − I − A), where I is the
identity matrix. Clearly, we always have 0 ≤ t ≤ k. If t = k then we are getting the
usual SRGs, while the case t = 0 corresponds to doubly regular tournaments. For
0 < t < k the wording genuine DSRG was suggested. The main ingredients of the
theory of DSRGs were developed in [18] by Duval. In particular, he mentioned the
existence of a DSRG with the parameters (18, 4, 3, 0, 1), and constructed an infinite
family of such graphs with parameters (k2 + k, k, 1, 0, 1), where k ≥ 2. It seems that
Duval was unaware of the fact that his particular graph on 18 vertices had already
been discovered 10 years earlier by J. Bosák (see e.g. [12, 13]), who was looking
for so-called mixed Moore graphs. In modern terms, these are DSRGs with λ = 0
and μ = 1, which appear as a natural generalization of classical (undirected) Moore
graphs. For this class of mixed graphs, Bosák developed a theory quite similar to
the more general one established by Duval for all DSRGs later on.

For a long time Bosák’s results remained undetected by the majority of experts in
AGT. Fortunately, the authors of [45] rediscovered Bosák’s publications and breathed
new life into them. The results of Bosák were definitely not known to the authors of
[21] and [35]. They, in fact, independently duplicated some of Bosák’s constructions
in terms of 2-designs, paying special attention to the case (18, 4, 3, 0, 1). Nowadays
we refer to the graph with these parameters as the Bosák graph B18. This graph
is one of the main heroes in [35]; see Example 7.2 of that paper. The depiction of
B18 provided there vividly shows that it has K3,3 as a quotient graph. Also it was
shown in [35] that G = Aut(B18) has order 108, and an explicit set of generators
for G was given. (Incidentally, the original depiction of B18 given by Bosák in [13]
carries very much the same flavour as the one given in [35].) The graph B18 also
attracted attention of Jørgensen [32] who gave a description of B18 as a Cayley
graph over a suitable (non-Abelian) group of order 18. This led the current authors
to prepare a draft (2013) in which B18 is considered in the framework of our master
configuration M on 18 points. In particular, we showed that the coherent closure
of B18 is a certain rank 7 Schurian AS which arises as a merging of M. The arc set
of B18 is described as a union of relations of M, specifically A1, C2, E0 and F0. The
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undirected part of B18 is isomorphic to the Pappus graph.

11 Regarding mathematics of Dan Archdeacon

Our paper is dedicated to the memory of Dan Archdeacon. We feel the scope of his
mathematical interests, style of presentation, and extraordinary personal features
visible from his texts, to be very relevant to our own presentation.

D.A. started from classical combinatorics (Latin squares); however, he very quick-
ly switched to graph theory, having a lucky possibility to participate in the establish-
ment of research targets, development of new techniques and posing diverse attractive
open problems in the area of topological graph theory (briefly TGT). In a sense, TGT
was maturing together with him. His PhD thesis obtained reputation quite quickly
as a ground-breaking and highly cited text in TGT.

In a number of papers D.A. was investigating embeddings of bipartite graphs.
Later on this research scope was extended, with each new step relying more and more
seriously on the use of voltage assignments. The concept of a voltage assignment is
of a purely algebraic nature, presenting a significant ingredient of techniques from
group theory, a demand of which naturally grew out of TGT.

The automorphism group G of a graph (map) Γ reflects symmetry of Γ. For many
nice graphs a suitable subgroup of G may be reflected in an ad hoc picture, creating
a special feeling of beauty for the reader. The paper [5] with self-explanatory title
contains a number of such nice diagrams.

We continue with [6]; Theorem 2.2 in it deals with a family of maps Mn on 2n2

vertices of valency 2n. It is shown that Aut(Mn) is a group of order 8n3, satisfying
certain defining presentations. Special attention is paid to the maps R10.13, n = 3
and R76.20, n = 5. (The labeling refers to the famous census of regular maps by
Marston Conder, 2009.)

For n = p, p an odd prime, the graphs considered coincide with the ones treated
in our paper; see also [24]. We believe that many other graphs, touched upon in this
article, will be targeted in TGT in future.

12 Concluding discussion

One of the goals of this paper was to arrange an arena suitable for interdisciplinary
exchange of ideas at the intersection of graph theory, geometry, group theory and
computer algebra. Below, we collect additional information which was not included
to the main body of the text. To save space we have not includeid all the related
references.

12.1 Biaffine plane

The authors learned the term “biaffine plane” from the paper [56] of P. Wild who
used it in a few of his publications as well as in his Ph.D. thesis (University of London,
1980). The term was used earlier by G. Pickert, one of the classic experts of modern
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finite geometries. A more extensive bibliographical search resulted in the discovery of
a paper written by A. Bennett [10] and published in 1925. This text does not contain
any references. Thus, we ask experts in history of finite geometries to determine the
earliest origins of this terminology.

Of course, the incidence graph of a biaffine plane is a certain antipodal DRG of
diameter 4.

12.2 Heisenberg group

The name Heisenberg group, for a class of groups, goes back to Werner Heisenberg,
one of the creators of quantum mechanics. He was definitely among the pioneers
who were using the language of (non-commutative) matrix groups in physics. Real
history of related efforts is not so straightforward, and became more clear recently,
see e.g. a paper by Ian Aitchison et al. (2004). Original subjects of interest of
physicist were Heisenberg groups over continuous fields, e.g. R. As was mentioned,
the texts [11, 50] played a significant role to pay attention of the physicists to the
finite case. Another independent source of activity is [1]. Here the term Heisenberg
group is not used, though actually it lives inside of the extended Clifford group.

These and other pioneering papers literally opened the box of Pandora. A handful
of keywords for related modern research activities are: coherent states, discrete space-
time, equivalent tight frames, mutually unbiased bases, quantum nets. Fortunately,
a number of experts in physics realized natural links with AGT. We refer explicitly
just to [40] and [51].

12.3 Wielandt’s influence

Helmut Wielandt (1910–2001) was a student of Issai Schur. Wielandt is definitely
one of the creators of modern finite permutation group theory, with a relatively short
but influental textbook (1964), a pearl in this area. His rotaprint version of lectures
[55] is not easily available and thus a less known text.

The concept of a k-closure, and in particular of a 2-closure of a permutation group
(G,Ω), was introduced in [55]. In our paper the 2-closure is of a crucial significance.
As was demonstrated, some of considered permutation groups naturally appear as full
automorphism groups of a suitable color graph with vertex set Ω, provided a special
combination of 2-orbits of (G,Ω) is found. Sometimes a detected color graph may
be substituted by a unicolor graph. Consideration of the WL-closure in conjunction
with the 2-closure turns out to be a very efficient tool.

The concept of a non-Schurian coherent algebra goes back to Schur (1933).
Wielandt was considering it for a particular case of Schur rings, that is, coherent
algebras W that admit a regular group as a subgroup of Aut(W ). R. Pöschel in-
troduced the term of a non-Schurian Schur ring in 1974. Later on this term was
extended to arbitrary coherent algebras, see e.g. [37].

The idea to distinguish between Schurian and non-Schurian objects via the use
of local invariants also goes back to Wielandt.
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12.4 The Pappus graph

The Pappus graph P is the graph Inc(B3). The name and the concept has a quite
long history. In the 19th century it was related to planar configurations, that is,
to incidence systems having realization on the Euclidean plane, where blocks are
represented by lines. Exactly in this context it was considered by T. Reye (1876) as
the incidence graph of one of the three possible symmetric 93-configurations, see also
a classical book by D. Hilbert and S. Cohn-Vossen (1932).

A literal breakthrough was reached in the seminal paper by Coxeter (1950), where
self-dual configurations were considered together with their regular incidence (Levi)
graphs. In particular, the Pappus configuration is simultaneously treated (with all
details) via its (orthodoxal) planar realization, as well as with the aid of incidence
structures. The Hamiltonian diagram of the Pappus graph appears exactly in that
paper. Coxeter was considering this configuration again and again in quite diverse
contexts. In particular, its full automorphism group was investigated.

The group Aut(P ) is very “nice”. The latter property may be expressed in various
group-theoretical reformulations. This is why the Pappus graph frequently appears
in modern AGT as one of the exceptional examples. To give just one striking case
take, for instance, cubic symmetric tricirculants, see [41].

12.5 Graphs, maps and voltage assignments

A regular map is a symmetric tessellation of a closed surface. Typically, it is consid-
ered as an embedding of a given graph Γ on a surface. Here “symmetric” means that
the full automorphism group of a map acts transitively on its flags. Classification of
arc-transitive graphs admitting regular embeddings is one of the central activities in
TGT. In fact, the Pappus graph P has a regular embedding on the torus. A diagram,
visually giving such an embedding of P , is also presented in Coxeter (1950). It con-
sists of “nice” hexagons in P . The automorphism group of this map is a subgroup
of index 2 in Aut(P ).

For graphs with imprimitive automorphism groups the search for possible regular
maps is closely related to the consideration of the quotient graphs with respect to a
suitable imprimitivity system. Here the techniques of voltage assignments is used.
The text by Nedela and Škoviera (1997) is one of the first serious attempts to describe
techniques necessary for maps.

12.6 Use of computers

As was mentioned, this project heavily depends on the use of computer tools.
Here we are mainly working with CCs and ASs, as well as with the permutation

groups related to them. For this purpose, in 1990–92 a computer package was created
in Moscow as a result of the activities of I.A. Faradžev and the second author.
This package goes by the name COCO, and was introduced in [19]; see also [20] for
deeper consideration of the used methodology and algorithms. COCO is still very
helpful for performing initial computational experiments. Nevertheless, nowadays
the mainstream of our computer aided activities is based on the use of the free
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software GAP [23] (Groups, Algorithms and Programming), in particular its share
package GRAPE [49] which works in conjunction with nauty [42]. There are a few
ongoing activities to transform COCO to a modern package with conditional title
COCO II.

12.7 History and style of this paper

A few times in the current text there have been references to its previous version
[24], available from the arXiv. Recall that the related research started in the frame-
work of postdoctoral studies of the first author at the Ben-Gurion University of the
Negev, beginning in November 2011. Quite soon a successful dialogue between an
advisor and a beginning researcher had been transformed into an enjoyable mutual
cooperation. The preliminary results of this cooperation were reported at a handful
of conferences by both coauthors; see details in [24]. This unusual history of the
project determined, in a sense, the style of [24]. We were wishing for the reader to
become a witness of all the steps from the first computational experiments up to the
final theoretic proofs. Also some of the data not included in this paper are available
in [24]. On the other hand, certain presentational ingredients of the initial version
are intentionally kept in the current paper. In particular, we mean elements of a
heuristical methodology, which were implicitly touched on a few times before. One
such topic is the calculation of the spectra of an infinite series of ASs. For metric
ASs the methodology for such calculations is presented in [9]. In our case we were
forced to combine computer aided activity with further steps on a theoretical level.

12.8 Remaining research challenges

For a long time the second author was acquainted with some ideas developed by
Lazebnik, Ustimenko and Woldar; see references in [24], and in particular [57].
Roughly speaking, they were hunting for extremal bipartite graphs with 2pk ver-
tices, p a prime. Our case k = 2 is the simplest one in comparison with their efforts.
To describe adjacency in a potential candidate graph, a system of equations over the
field Zp, for two vectors from two copies of the vector space (Zp)

k, is typically used.
This leaves a lot of degrees of freedom for future heuristic search.

We hope that the language of basic graphs of detected new ASs provides a new
platform for further systematic investigation. The general case 2pk turns out to
be much more difficult; for example, even for p = k = 3 the use of traditional
COCO turns out to be hopeless. Nevertheless, the description of an algebraic group
for starting CC, and analysis of suitable algebraic non-Schurian mergings, seems to
be an extraordinarily promising tool for a successful hunt for new kinds of clever
analogues of the incidence graphs of generalized polygons; cf. again [57].

A reasonably striking goal is to classify all ASs that arise by merging of the
master CC M. The arithmetical structure of the number p − 1 seems to provide
suitable information in attempts to reach such a classification. Another interesting
task is to classify maps for basic graphs of detected non-Schurian ASs. Such maps
are promising candidates for generalization of the concept of a regular map. Indeed,
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though the automorphism group of a basic graph Γ does not act transitively on its
arcs, nevertheless the arcs of Γ admit combinatorial regularity inside a graph.

We also expect a potential impact on experts in quantum mechanics. Everything
around the concept of a non-Schurian AS seems to provide a kind of new promising
tool for physicists.

Recently, our attention has been drawn to [29]. Here, starting from an Hadamard
matrix H of order n and an AS S of order n, an AS S(H) of order 4n is constructed.
This allows one to get a lot of schemes S(H), which are isomorphic algebraically, but
not combinatorially. There is definite hope that substitution of H by a generalized
Hadamard matrix GH(p, 1) and of S by the wreath product of two ASs of order
p may result in a better understanding of some classes of ASs, which appear as
mergings of M. We are glad to share this idea with the reader.
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binatorics and Gröbner Bases, Springer, Berlin, 2009, 3–65.

[28] D.G. Higman, Coherent algebras, Linear Alg. Appl. 93 (1987), 209–239.

[29] M. Hirasaka, K. Kim and H. Yu, Isomorphism classes of association schemes
induced by Hadamard matrices, Europ. J. Combin. 51 (2016), 37–46.

[30] A.J. Hoffman and R.R. Singleton, On Moore graphs with diameters 2 and 3,
IBM J. Res. Develop. 4 (1960), 497–504.

[31] A.A. Ivanov, R.A. Liebler, T. Penttila and C.E. Praeger, Antipodal distance-
transitive covers of complete bipartite graphs, Europ. J. Combin. 18 (1997),
11–33.

[32] L. Jørgensen, New mixed Moore graphs and directed strongly regular graphs,
Discrete Math. 338 (2015), 1011–1016.
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