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1 Introduction

An Eulerian digraph is a directed graph such that at each vertex the in-degree equals
the out-degree. We allow our digraphs to have loops (edges uu, where each loop
counts towards the in-degree and the out-degree), and parallel edges, that is, two
copies of an edge uv, or two anti-directed edges uv and vu. Our digraphs are not
necessarily connected despite the usual convention underlying Eulerian graphs.

An embedding of an Eulerian digraph in a surface is a (not necessarily cellular)
embedding of the underlying graph such that in- and out-edges alternate in the
rotation at each vertex; hence the restriction that the in-degree equals the out-
degree. In particular, an Eulerian digraph with an embedding on the plane is called
diplanar. This kind of embedding for a digraph is very natural and was considered
earlier in various contexts: Andersen et al. [1] were motivated by questions about
Eulerian trails with forbidden transitions; Bonnington et al. [3, 4] and others [5, 7]
introduced digraph embeddings in the context of topological graph theory; Johnson
[9] and Farr [6] explored different relations to the theory of graph minors in this
context. Other authors have considered different ways to embed directed graphs. For
example, Sneddon [10] studied “clustered” planar embeddings of digraphs where, at
each vertex, all of the in-arcs occur sequentially in the local rotation. In [10] and [11],
three different variations of minors are presented, each of which produces a finite set
of obstructions to clustered planarity. Clustered upward embeddings on the plane
(where all edges are pointed “upwards”) were considered in relation to graph drawing
by Hashemi [8].

Each face of an embedded Eulerian digraph is bounded by a directed cycle. If
the surface is orientable, then the faces fall into two classes: those whose boundary
cycle is clockwise and those whose boundary cycle is anti-clockwise. It follows that
the dual is bipartite. This is not true for embeddings on a non-orientable surface,
where the duals are necessarily non-bipartite.

A natural partial ordering on the set of all Eulerian digraphs is that of con-
tainment: we say that G contains an Eulerian digraph H if H is isomorphic to a
subdigraph of G. Note that this is equivalent to saying that we can form H from G
by a sequence of removing directed cycles and removing isolated vertices. Note that
removing directed cycles keeps us in the class of Eulerian digraphs, which is why we
allow disconnected graphs.

We are interested in the class of digraphs that embed on a fixed surface. One
difficulty with the containment partial ordering is that embedding on a surface is
not hereditary under this order. An example is given in Figure 1; the removal of the
dashed triangle gives a digraph which is not diplanar.

But all is not lost. Let us restrict our attention to Eulerian digraphs with max-
imum in- and out-degree at most 2. The degree of each vertex (the sum of the
in-degree and out-degree) is hence either 0, 2, or 4. We will usually delete isolated
vertices, and suppress vertices v of degree 2 by replacing the directed arcs uv, vw
with a single arc uw. Hence we assume our digraphs are regular of degree 4, so
called quartic Eulerian digraphs. For notational purposes, we will denote the class
of all quartic Eulerian digraphs by E4. For quartic Eulerian graphs we consider the
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Figure 1: Removing directed cycles does not preserve diplanarity

partial order (E4,�) where we remove directed cycles, followed by suppressing any
degree 2 vertices.

Quartic Eulerian digraphs are a very natural class of graphs to consider, as they
provide the simplest non-trivial way of studying embeddings of directed graphs. In
this sense they are the equivalent of studying embeddings of cubic undirected graphs.
They also appear as medial graphs of embeddings of undirected graphs in orientable
surfaces (see a discussion later in this section).

The following lemma shows that embedding on a fixed surface is hereditary for
the class of quartic Eulerian digraphs in E4 with respect to the partial order �.

Lemma 1.1. Let G ∈ E4 be a quartic Eulerian digraph. Suppose that G embeds on
a surface S. If H � G, then H also embeds on S.

Proof. Consider the embedding of G. By removing the edges of a cycle C in G, the
in-out property is preserved on the embedding of G − E(C). Clearly, suppressing
vertices of degree 2 also preserves embeddability. Since H is obtained from G by a
sequence of such operations, it follows that H is also embeddable in S.

Whenever a property P is hereditary for a finite poset of digraphs, it is natural
to consider minimal elements that do not have property P . These are called minimal
excluded digraphs or obstructions for the property P : these are digraphs that do not
have property P , but any strictly smaller digraph has. Excluding these obstructions
gives a characterization of digraphs with the given property.

The main focus of this paper is a partial progress towards the following goal.

Problem 1.2. Determine the complete set of obstructions for diplanar quartic Eu-
lerian digraphs.

Bonnington, Hartsfield, and Širáň [4] examined a similar problem for embedding
(not necessarily quartic) Eulerian digraphs. Their embeddings also required that the
in- and out-edges alternate around a vertex. The difference between our results and
theirs occurs both in the class of graphs considered and the partial order used: they
allowed Eulerian digraphs of arbitrarily large degree, and the partial order allowed
the directed version of arc-contractions. They gave a characterization of the minimal
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non-planar digraphs under their partial order. They used this partial order precisely
because the property of embedding on a surface is not preserved under removing
directed cycles for digraphs with maximum degree exceeding 4. The combination
of a different partial order and a more restricted class of graphs make the problems
considered in [4] and those considered here quite different. This is reflected in the
different obstruction sets. Furthermore, no known method exists that allows one
result to derive from the other.

Another partial order, obtained by splitting vertices of degree 4 into two vertices
of degree 2, has been considered as well (see [2] and a thesis of Johnson [9]).

Returning to the relationship with embedded undirected graphs, our central prob-
lem can also be formulated as follows. Given a graph G embedded in a surface S,
the medial graph is the graph M whose vertices are the edges of G, and two vertices
of M are adjacent whenever the corresponding edges are consecutive in a face of
the embedded G. Thus, the medial graph is 4-regular. When S is orientable, we
can direct M by directing the facial cycles, and then placing the induced directions
on the edges of the medial graph. Under this orientation, M becomes a quartic
Eulerian digraph. Our problem is equivalent to finding the minimum genus graph
G whose directed medial graph M(G) is our given D. In particular, our problem
is to characterize those digraphs M which are the directed medial graphs of planar
graphs.

We give some preliminary lemmas in Section 2, present the known list of obstruc-
tions in Section 3, and indicate directions for future research in Section 4.

2 Preliminary Results

We first establish some terminology. It will be convenient to distinguish when the
underlying undirected graph is planar, and when the directed graph is diplanar as
defined in the introduction. A pair of edges uv, vu will be called a digon. A pair of
parallel edges uv, uv will be called an anti-digon.

For the convenience of the reader, we state some basic properties that will be
used in the proofs. Let H be an Eulerian digraph. Then the following properties
clearly hold.

(i) For every partition (A,B) of V (H), the number of edges in the cut from A to
B is the same as the number of edges in the cut from B to A.

(ii) E(H) can be partitioned into directed cycles. A particular consequence of this
is that if H is not a directed cycle and xy ∈ E(H), then H − xy contains a
directed cycle.

(iii) If xy is an edge in H and a digraph H ′ is obtained from H − xy by removing
some directed cycles, then H ′ contains a directed path from y to x.

In this section we give some results that may help us to focus on the underlying
problem. We start with some simple facts about quartic obstructions.
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Lemma 2.1. Let G be a minimal non-diplanar digraph in E4. Then G has the
following properties.

(a) The underlying multigraph Ĝ has no loops, and has at most two undirected
edges joining any two vertices. Moreover, Ĝ is 4-edge-connected.

(b) G is strongly 2-edge-connected, i.e., for any two pairs of vertices u1, u2 and
v1, v2, there are edge-disjoint directed paths P1, P2, where Pi starts at ui for i = 1, 2,
and one of the paths ends at v1 and the other one at v2.

G′
1 G′

2

x1

x2 y2

y1

G′
1 G′

2

x1

x2 y2

y1

Figure 2: Dealing with 2-edge-cuts

Proof. The first claim in (a) is easy and the details are left to the reader. The second
claim in (a) follows from (b), whose proof we discuss next.

Considering part (b), it is easy to prove that G must be connected. Suppose
that it is not strongly 2-edge-connected. By Menger’s theorem there is an edge-cut
consisting of fewer than four arcs. Since G is Eulerian, the cut has precisely two arcs
e1 = x1y1 and e2 = y2x2, one in each direction. Let us remove these arcs and form
digraphs G1, G2 as follows. The digraph G− e1 − e2 consists of two components G′1
and G′2, and we may assume that x1, x2 ∈ V (G′1) and y1, y2 ∈ V (G′2). We then set
G1 = G′1 +x1x2 and G2 = G′2 + y2y1. By using property (ii) from above, it is easy to
see that G1 ≺ G and G2 ≺ G. By the minimality of G, digraphs G1 and G2 can be
embedded on the plane. We may assume that the added edges are on the boundary
of the infinite face oriented differently. Figure 2 shows how these embeddings can be
combined to obtain an embedding of G, thus yielding a contradiction.

e1

f1

f2

e2

v1 v2

e1

f1

f2

e2

v

Figure 3: Contracting a digon

Let G ∈ E4 be a quartic Eulerian digraph and let D be a digon. Define the
quotient G/D to be the quartic digraph formed by identifying vertices u and v and
deleting the two arcs in D. We also say that G/D is obtained from G by contracting
the digon D.

Lemma 2.2. Suppose that G ∈ E4 contains a digon D, and let H = G/D.
(a) If G is a diplanar obstruction, then H is also a diplanar obstruction.
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(b) If H is a diplanar obstruction, then G is a diplanar obstruction if and only
if G− E(D) is diplanar.

Proof. Let v1, v2 be the vertices of D, and let ei, fi be the edges incident with vi in
G− E(D) for i = 1, 2, as shown in Figure 3.

(a) Let us first show that H is not diplanar. If it were, we could split the vertex
v obtained in contracting D (since e1, f1 are consecutive in the local rotation around
v) and then one could add the digon D so that a diplanar embedding of G would
be obtained. (See Figure 3 moving right to left.) To show that H is a diplanar
obstruction it therefore suffices to see that for every cycle C in H, H − E(C) is
diplanar. If C does not pass through v, then we can use the planar embedding of
G − E(C). In this embedding, the digon D bounds a face and thus it is easy to
change it so that an embedding of H −E(C) is obtained. (See Figure 3 moving left
to right.) If C uses the edges e1 and f1 (or e2 and f2) then there is nothing to prove
since in that case diplanarity of G−E(C) implies diplanarity of H −E(C) with an
added loop at v. Finally, if C uses the edges e1 and f2 (say), then we first embed
G − E(C) − v1v2; by contracting the edge v2v1 of D, we thus obtain an embedding
of H − E(C). This shows that H is a diplanar obstruction.

(b) Since H is a diplanar obstruction, we see as above that G is not diplanar.
Thus, it suffices to see that G−E(C) is diplanar for every cycle C in G. The proof
is similar to that in part (a) except that now we use embeddings of H − E(C) to
obtain embeddings of G−E(C). We omit the details. The only added ingredient is
that G − E(D) also needs to be diplanar, which is guaranteed by the condition in
the statement.

By Lemma 2.2, it suffices to find all diplanar obstructions without digons. Those
that have digons, can be obtained from these by “splitting vertices” and adding
digons (that is, the reverse operation to contraction of a digon). All we need to
check is that after any such splitting we obtain a diplanar digraph prior to inserting
the digon. Each vertex of H ∈ E4 can be split in two ways and then a digon joining
the two resulting vertices of degree 2 can be added. We say that splitting of a vertex
is admissible if the digraph obtained after the splitting is diplanar. If v is split into
vertices v1, v2 of degree 2, and p ≥ 1 is an integer, we can add a path of p digons by
adding vertices x1, . . . , xp−1 and digons between xi and xi−1 for i = 1, . . . , p, where
x0 = v1 and xp = v2. It is clear (by admissibility of the splitting and by Lemma
2.2(b)) that this always gives a diplanar obstruction.

The following result gives the complete description of diplanar obstructions con-
taining digons.

Theorem 2.3. Let H be a minimal non-diplanar graph in E4. Let {v1, . . . , vs} be a
set of s ≥ 1 vertices of H. For i = 1, . . . , s, consider an admissible splitting of vi
resulting into two vertices v1i , v

2
i of degree 2 and add a path of pi ≥ 1 digons. Then the

resulting digraph is a diplanar obstruction. Conversely, every diplanar obstruction
which gives rise to H after contracting a set of digons can be obtained from H in this
way.
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Proof. Adding one digon to any admissible splitting gives rise to a diplanar obstruc-
tion. After adding the digon, all previous splittings keep their admissibility. The two
new vertices have the property that one of the splittings is not admissible since it
gives a digraph isomorphic to the original obstruction, while the other one is admis-
sible. By using these new admissible splittings, all we achieve is to extend a digon
to a path of digons. This yields the theorem.

3 The Obstructions

In this section we give the current set of known diplanar obstructions.

3.1 Doubled cycles

The doubled cycle
−→
C

(2)
n (n ≥ 3) is formed by replacing each edge (i, i + 1) (i =

1, . . . , n, summation modulo n) in a directed cycle
−→
C n with two directed edges in

parallel (that is, an anti-digon). It is not hard to show that these graphs are non-
diplanar and that they are minimal since removing any directed cycle leaves a digraph
of maximum degree 2.

Figure 4: Doubled cycles of lengths 3, 4, and 5

By splitting a vertex of
−→
C

(2)
n (and suppressing the resulting vertices of degree 2),

we obtain
−→
C

(2)
n−1. Thus, Lemma 2.2(b) implies that we cannot obtain further diplanar

obstructions by adding digons to
−→
C

(2)
n when n ≥ 4. The exception is when n = 3.

In that case, we can split one, two or three vertices and obtain diplanar obstructions
shown in Figure 5, where each digon can be replaced by a path of digons. Note that
adding all three digons can be done in two different ways. One gives the 3-prism P+

3 ,
the other one the Möbius ladder M+

3 .

K+
4

−→
W

a

4
P+
3

−→
M

+

3

Figure 5: Adding digons to the doubled cycle of length 3
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3.2 Circulants and Möbius ladders

Consider a directed cycle (1, 2, . . . , 2n), where n ≥ 3 is odd. For each even i, add
the arc (i, i + n), and for each odd i, add the arc (i, i − 1). This gives a digraph−→
M+

n called the Möbius ladder since it can be obtained from the usual (undirected)
Möbius ladder with n spokes by replacing every other rim edge with a digon. The
digraphs for n = 3, 5 in Figure 6 are shown as embedded in the projective plane; the
generalization is obvious.

Figure 6: Möbius ladders in the projective plane and the contraction Z5

Contracting all 5 digons in
−→
M+

5 gives an example of a diplanar obstruction based
on the orientation of K5 shown in Figure 6, where it is denoted as Z5. In general,

contracting all n digons in
−→
M+

n gives a diplanar obstruction based on the Cayley
digraph Zn with group Zn (n = 2k+1) using the generating set {1, k}. The following
proposition follows by considering the canonical directed embedding of Zn in the
projective plane, and noting that any directed cycle with fewer than n vertices will
be “essential” in that embedding, thus yielding a directed planar embedding upon
removal.

Proposition 3.1. For n ≥ 5, Zn is a diplanar obstruction.

For n ≥ 5, each vertex of the diplanar obstruction Zn has only one admissible

splitting; that is, the one used to obtain
−→
M+

n . The other splitting gives rise to a

digon, whose contraction yields Zn−2 which is not diplanar. It follows that
−→
M+

n is a
diplanar obstruction. Moreover, all diplanar obstructions whose digon contractions

yield Zn are obtained from
−→
M+

n by contracting some digons and replacing some of
them by paths of digons of greater length.

Finally, we note that the obstruction Z3 is isomorphic to
−→
C

(2)
3 and the admissible

splittings were discussed in Section 3.1.

3.3 Two simple sporadic examples

Two sporadic examples without digons and anti-digons,
−→
K 2,2,2 and

−→
K 4,4, are shown in

Figure 7. These examples were found by looking at small 4-regular graphs. Checking
that these are diplanar obstructions is fairly easy, since the number of vertices is small
and the order of the automorphism group is large.
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Figure 7: Non-diplanar orientations of K2,2,2 and K4,4

The octahedron K2,2,2 is planar but its orientation
−→
K 2,2,2 does not have its faces

bounded by directed triangles. Since the octahedron has (essentially) a unique em-
bedding on the plane, this digraph is not diplanar. There are many non-diplanar
orientations of this graph, but up to symmetries, this is the only orientation of K2,2,2

that gives a diplanar obstruction for diplanarity. Any other orientation can be ob-
tained from the planar one by reversing orientations of edges of an Eulerian subgraph,
for which we may assume that it has at most 6 edges. Changing orientation of a

triangle is easy to exclude (removing the “opposite triangle” leaves
−→
C

(2)
3 ). The same

holds if the orientation on two disjoint triangles is switched. The only directed cy-
cles besides facial triangles are hamilton cycles, all of which are isomorphic to each
other. But switching their orientation is the same as switching the orientation on
two disjoint triangles. The only remaining possibility is to switch the edges on two

triangles sharing a vertex. This gives
−→
K 2,2,2. For this orientation, there are only two

directed triangles (those used in switching); removing one of them gives a diplanar
digraph consisting of three digons. Removing a cycle of any larger length leaves at
most two vertices of degree 4, which is necessarily diplanar.

The other example is even easier. Since K4,4 is not planar,
−→
K 4,4 cannot be

diplanar. Up to symmetries,
−→
K 4,4 has only two different directed cycles, a 4-cycle

and an 8-cycle, and their removal leads to diplanar digraphs.

3.4 Obstructions containing anti-digons

Two further examples of diplanar obstructions with anti-digons are shown in Figure 8.

Figure 8: Two diplanar obstructions with anti-digons

These are just special cases of diplanar obstructions that can be obtained by tak-
ing a cyclic sequence of anti-digons as shown in Figure 9(a) and (b), or combining
building blocks of different lengths shown in Figure 9(c). The first kind will be de-

noted by
−→
L n, where n is the number of anti-digons; it will be called the anti-ladder
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if n is even and Möbius anti-ladder if n is odd. The second kind is obtained by
taking p ≥ 1 copies of the digraph shown in Figure 9(c), whose respective number
of anti-digons are n1, n2, . . . , np (and each ni ≥ 1). Then the right vertex of each of
these is identified with the left vertex of the next one (cyclically). The resulting di-

graph, denoted
−→
N (n1, . . . , np), is clearly a diplanar obstruction. We observe that the

diplanar obstructions in Figure 8 are
−→
N (2) and

−→
N (1, 1), respectively. Furthermore,

it is also worth observing that
−→
C

(2)
3 =

−→
N (1).

(a) (b)

(c)

Figure 9: Building blocks for diplanar obstructions with anti-digons. (a) and (b)
are ladders (even number of anti-digons) and Möbius ladders (odd number of anti-
digons), (c) shows a basic building block for the remaining diplanar obstructions.

Theorem 3.2. Suppose that G is a diplanar obstruction in E4 that has no digons,
but contains an anti-digon D. If every cycle in G intersects D, then G is isomorphic

to
−→
C

(2)
n for some n ≥ 3. Otherwise G is either a (Möbius) anti-ladder

−→
L n (n ≥ 2)

or is isomorphic to
−→
N (n1, . . . , np), where p and n1, . . . , np are positive integers.

Proof. Let u, v be the vertices of D and suppose the parallel edges in D are oriented
from u to v. Let u1, u2 and v1, v2 be the in-neighbors of u and the out-neighbors
of v, respectively. By Lemma 2.1(a), these vertices are distinct from u and v. By
Lemma 2.1(b), G contains edge-disjoint paths P1, P2 from {v1, v2} to {u1, u2} and
by adjusting notation, we may assume that Pi joins vi and ui, i = 1, 2. Let Qi =
Pi + uiu + uv + vvi.

Suppose first that every cycle in G intersects D. In that case G−E(Q1∪Q2) has
no edges, meaning that G = Q1 ∪ Q2. The paths P1 and P2 must have a vertex in
common since G is not diplanar. Following the path P2, we see that its intersections
with P1 form a sequence of vertices whose order on P1 is in the direction from v1
towards u1 (otherwise, there would be a cycle in G−D). Since there are no vertices

of degree 2 in G, this gives that G is isomorphic to
−→
C

(2)
n , where n ≥ 3.

Suppose now that G has a cycle C disjoint from D. By removing E(C), we obtain
a diplanar graph. We may assume that P1 and P2 are edge-disjoint from C. In the
diplanar embedding of G−E(C), one of the paths must be embedded in the interior
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of the disk bounded by the anti-digon D, and the other path in the exterior. Let Bi

be the component of G−E(C) containing Pi. Note that C contains a path from B1

to B2 and a path from B2 to B1. This implies that there are no other components
beside B1 and B2 since the removal of a cycle contained in such a component would
give a non-diplanar digraph.

We can take a (v1, u1)-trail Q1 in B1 and a (v2, u2)-trail Q2 in B2. We say that
the triple (C,Q1, Q2) is a connector in G′ := G−{u, v} if C has a vertex in common
with Q1 and has a vertex in common with Q2. A connector exists for every cycle C
in G′ – we obtain one by taking Qi to be an Eulerian trail in Bi for i = 1, 2. The
connector is full if E(Qi) = E(Bi) for i = 1, 2. A basic observation about connectors
is that D together with the edges in the connector is not diplanar. This implies the
following property.

Claim 1. Every connector in G′ is full.

Proof. Let H = G′ − E(C ∪ Q1 ∪ Q2). Observe that H is Eulerian. If (C,Q1, Q2)
is not full, there is a cycle in H. By removing that cycle from G, a non-diplanar
digraph is obtained, which contradicts the property of the diplanar obstructions.

Let (C,Q1, Q2) be a connector. Let v1 = x1, x2, . . . xp−1, xp = u1 be the sequence
of vertices on the trail Q1. We denote by Q1(xi, xj) the segment of Q1 from xi to
xj (with slight abuse of notation if the vertex xi or xj appears twice on Q1, where i
and j are clear from the context).

Claim 2. If xi = xj, where i < j, then V (C) ∩ V (Q1) ⊆ {xi+1, . . . , xj−1}.

Proof. Since xi appears twice in Q1, it is not on C. Suppose that C passes through
a vertex xk on Q1, where k < i or k > j. Replace Q1 by the trail Q′1 = Q1(x1, xi) ∪
Q(xj, xp). Then (C,Q′1, Q2) is still a connector, contradicting Claim 1.

Suppose that x and y are two vertices on C. They split the cycle in two directed
paths, the (x, y)-segment C(x, y) from x to y and the (y, x)-segment C(y, x) from y
to x.

Claim 3. Suppose that vertices xi and xj (i < j) on the trail Q1 lie on C. Then
C(xi, xj) does not intersect Q2.

Proof. Let C ′ be a cycle in Q1(xi, xj) ∪ C(xj, xi). It is easy to see that u1, u2, v1, v2
are in the same connected component of G′−E(C ′). This implies that G−E(C ′) is
not diplanar, a contradiction.

Claim 4. Suppose that vertices xi and xj (i < j) on the trail Q1 lie on C. Then xi

and xi+1 form an anti-digon and one of the edges xixi+1 is on C.

Proof. We may assume that j > i is smallest possible such that xj belongs to C.
Our goal is to prove that j = i + 1 and that C(xi, xi+1) = xixi+1. If xi+1 is not on
C, then Claim 1 implies that it appears twice on Q1. However, the segment between
these two appearances cannot contain both xi and xj, which contradicts Claim 2.
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Therefore we know that j = i + 1. Let C ′ = C(xi+1, xi) + xixi+1 and let Q′1 be
obtained from Q1 by replacing the edge xixi+1 by C(xi, xi+1). Claim 3 implies that
C(xi+1, xi) intersects Q2, thus (C ′, Q′1, Q2) is a connector. By what we proved above,
the vertex x′ on Q′1 following xi must be on C ′. However, x′ was originally part of
the cycle C and by Claim 3, two of its edges were on Q1. Thus, x′ can be on C ′ only
if x′ = xi+1, which gives the conclusion of the claim.

Claim 5. If C has more than one vertex in Q1, then it has precisely two vertices that
are consecutive on Q1 and form an anti-digon in G. Moreover, one of the following
cases occurs: either v1 and u1 form an anti-digon, or v1 = u1. The same holds for
v2 and u2.

Proof. Claim 4 implies that the vertices in Q1 ∩ C form an interval on Q1 and all
edges on this interval are contained in anti-digons. If there is more than one anti-
digon then the removal of a cycle in Q2 ∪ {vv2, u2u, uv} gives a digraph which is
not diplanar. Thus, C intersects Q1 precisely in two consecutive vertices xi, xi+1.
By using Claim 1 it is easy to infer that Q1(x1, xi) is a simple path (no repeated
vertices) and so is Q1(xi+1, xp). Each vertex on these two subpaths apart from xi

and xi+1 appears precisely twice, once on each subpath (since G has no vertices of
degree 2). If the two subpaths are disjoint, then there are no vertices apart from
xi and xi+1. This means that i = 1 and p = 2, and thus Q1 = v1u1 forms an
anti-digon. Otherwise, v1 = x1 appears twice on Q1. Suppose that xt = x1 = v1
where i + 1 < t ≤ p. Consider a cycle C ′ contained in Q1(x1, xt). We may take C ′

so that it passes through v1. There is a corresponding connector (C ′, Q′1, Q
′
2) where

Q′1 = Q1(xt, xp) and Q′2 contains all edges of Q2 ∪ C. The claims applied to this
connector show that C ′ has at most two vertices in common with Q′1. If there are
two, the proof above shows that Q′1 = v1u1 (forming an anti-digon) and, since C ′

contains x1 = xt, we have t = p− 1. On the other hand, if C ′ intersects Q′1 only in
x1, then there are no other vertices on Q′1 and we have t = p and thus v1 = u1.

The proof for v2 and u2 is the same. This completes the proof of the claim.

In the next claim we shall consider the case when v1 = u1. In this case, we
consider the connector (C,Q1, Q2), where Q1 is just the vertex v1 = u1, C is a cycle
in G′ containing the two edges incident with v1 in G′, and Q2 is a (v2, u2)-trail in the
rest of G′.

Claim 6. If v1 = u1 and the connector (C,Q1, Q2) is as described above, then C =
v1y1y2v1 is a 3-cycle, and the vertices y1y2 form an anti-digon.

Proof. It follows from previous claims that C intersects Q2 in at most two vertices
and that C has no other vertices apart from those on Q1 and Q2. Of course C is not
a digon (since we have excluded digons), thus it must have two vertices on Q2. The
claim now follows from Claim 5.

After this preparation, we are able to complete the proof. Start with the digon
D and consider its neighbors u1, u2, v1, v2. If v1 and u1 form an anti-digon D′, we
use Claim 5 on D′ and continue doing this as long as we either come back to D by
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taking the next and the next digon and so on, or we come to the situation that an
out-neighbor and an in-neighbor of the anti-digon are the same vertex, call it x. In
the latter case, the next neighbors of x form another anti-digon by Claim 6. It is
now evident that we obtain the structure as described by the theorem.

4 Conclusion

We conclude with some pointers to further research. In this paper we presented all
known diplanar obstructions. It is not known if our list is complete. We determined
how to obtain all obstructions with digons from those that have none. Upon applying
Theorem 3.2, this would mean that we could turn our attention to characterising
diplanar obstructions where the underlying graph is simple, and either a) planar,
or b) non-planar. If the underlying graph is non-planar, then we could consider
when the underlying graph contains a Möbius ladder Mn for different values of n.
(Consideration of this particular family has proved useful in a similar problem for
characterising planar induced subgraphs.) The remaining case would then be when
the underlying graph is simple, planar, and 3-connected, which the authors hope
would be more straightforward.
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