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Abstract

In this paper, we present a new lower bound on the size of separating
hash families of type {wq−1

1 , w2} where w1 < w2. Our result extends the
paper by Guo, Stinson and Tran on binary frameproof codes [Des. Codes
Crypto. 77 (2015), 301–319]. This bound compares well against known
general bounds, and is especially useful when trying to bound the size of
strong separating hash families. We also show that our new bound is tight
by constructing hash families that meet the new bound with equality.

1 Introduction

Let X, Y be finite sets of size n and q, respectively. Let F be a family of functions
from X to Y with |F| = N . Given positive integers w1, w2, . . . , wt, we say that F
is a {w1, w2, . . . , wt}-separating hash family, denoted SHF(N ;n, q, {w1, w2, . . . , wt}),
if for every choice of subsets X1, X2, . . . , Xt ⊆ X with |Xi| = wi for i = 1, . . . , t
and Xi ∩ Xj = ∅ for i �= j, there exists some f ∈ F such that f(Xi) ∩ f(Xj) = ∅
for i �= j. Such f is said to separate the sets X1, . . . , Xt. The parameter multiset
{w1, w2, . . . , wt} is called the type of the SHF.

The notion of separating hash families was introduced by Stinson et al. in [9]. It is
a generalization of many other combinatorial structures such as perfect hash families
[6], frameproof codes [4], and secure frameproof codes [8]. We would like to study
bounds on the size of separating hash families when given the other parameters.

It is often useful to represent separating hash families in matrix form. When
given an SHF(N ;n, q, {w1, w2, . . . , wt}), construct an N × n q-ary matrix A with
A(i, j) = fi(xj) where f1, . . . , fN is some fixed ordering of the functions in F and
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x1, . . . , xn is some fixed ordering of the elements of X. This matrix is called the
representation matrix of F . Specializing our definition of an SHF to this form, the
equivalent property for when a matrix is the representation matrix of an SHF is as
follows.

Theorem 1.1. An N ×n q-ary matrix A is the representation matrix of an SHF(N ;
n, q, {w1, w2, . . . , wt}) if and only if, for every choice of t column sets C1, . . . , Ct in
A where Ci ∩ Cj = ∅ for i �= j and |Ci| = wi for i = 1, . . . , t, there exists a row r
such that A(r, ci) �= A(r, cj) whenever ci ∈ Ci and cj ∈ Cj where i �= j.

A list of t column sets (C1, . . . , Ct), as specified in Theorem 1.1, will be termed a
column set t-tuple.

We will only consider SHFs with
∑

i wi ≤ n and q ≥ t in order to avoid vac-
uous cases. The following properties regarding SHFs with different parameter sets
{w1, . . . , wt} are easy to prove.

Theorem 1.2. Let F be an SHF(N ;n, q, {w1, w2, . . . , wt}) with
∑

i wi ≤ n and q ≥ t.

(i) If w′
1 ≤ w1 then F is also an SHF(N ;n, q, {w′

1, w2, . . . , wt}).

(ii) If w′
1 = w1 + w2 then F is also an SHF(N ;n, q, {w′

1, w3, . . . , wt}).

We now present some known results on general separating hash families.

Theorem 1.3 ([3]). If there exists an SHF(N ;n, q, {w1, . . . , wt}) with w1, w2 ≤ wi

for i = 3, . . . , t, then

n ≤ γq�
N

u−1
�,

where u =
∑

iwi and γ = (w1w2 + u− w1 − w2).

Theorem 1.4 ([1]). If there exists an SHF(N ;n, q, {w1, . . . , wt}), then

n ≤ (u− 1)q�
N

u−1
�,

where u =
∑

iwi.

Theorem 1.5 ([2]). If there exists an SHF(N ;n, q, {w1, . . . , wt}) with t ≥ 3 and
u =

∑
i wi ≥ 4, then

n ≤ (u− 1)q�
N

u−1
� + 2− 2

√
3q�

N
u−1

� + 1.

In the remainder of this paper, we will present a construction and a new bound on
the size of an SHF of the type {wq−1

1 , w2}, where wq−1
1 denotes the multiset consisting

of q− 1 copies of w1 and w1 < w2. Using Theorem 1.2, one can extend this result to
bounds for more general types of SHF, such as strong separating hash families [7].
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2 A construction for SHF of type {wq−1
1 , w2}

We first give a construction for SHF of type {wq−1
1 , w2}.

Construction 2.1. Fix positive integers n, q, w1, w2 with w2 + (q − 1)w1 ≤ n.
Let S =

{(C1, . . . , Cq−1) : Ci ⊆ {1, . . . , n} with |Ci| = w1 for all i and Ci ∩ Cj = ∅ if i �= j},
and let T =

{(C1, . . . , Cq−1) ∈ S : c1 < c2 < . . . < cq−1 where ci is the smallest element of Ci}.
Now for (C1, . . . , Cq−1) ∈ T , let r(C1,...,Cq−1) be the vector

r(C1,...,Cq−1)(i) =

{
j if i ∈ Cj

0 otherwise.

Let A be the matrix that contains all rows r(C1,...,Cq−1) for every (C1, . . . , Cq−1) ∈ T .

Theorem 2.1. The matrix A from Construction 2.1 is an SHF(N ;n, q, {wq−1
1 , w2})

where

N =
1

(q − 1)!

(
n

w1

)(
n− w1

w1

)
· · ·

(
n− (q − 2)w1

w1

)
.

Proof. Let C0, . . . , Cq−1 be pairwise disjoint subsets of {1, . . . , n} such that |C0| = w2

and |Ci| = w1 for i = 1, . . . , q−1. By construction, there exists a unique permutation
π over {1, . . . , q − 1} such that the (q − 1)-tuple (Cπ(1), . . . , Cπ(q−1)) is contained in
T . The column set q-tuple is separated by the row r(Cπ(1),...,Cπ(q−1)) in A. Thus A is

the representation matrix of an SHF of type {wq−1
1 , w2}.

Clearly A has n columns and |T | rows. For any (C1, . . . , Cq−1) ∈ T , every
permutation π over {1, . . . , q − 1} gives a unique element (Cπ(1), . . . , Cπ(q−1)) ∈ S.
Since there are (

n

w1

)(
n− w1

w1

)
· · ·

(
n− (q − 2)w1

w1

)
elements in S, we have that

|T | = 1

(q − 1)!

(
n

w1

)(
n− w1

w1

)
· · ·

(
n− (q − 2)w1

w1

)
,

as desired.

3 A bound for the SHF of type {wq−1
1 , w2}

In this section, for a certain range of values n, we prove a lower bound on N for
existence of an SHF(N ;n, q, {wq−1

1 , w2}). Whenever it is applicable, this lower bound
is tight, in view of Theorem 2.1.

Our bound is in fact a generalization of Theorem 2.2.3 in [5], which we provide
here for reference.
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Theorem 3.1 ([5]). Let w,N be positive integers such that w ≥ 3 and w+1 ≤ N ≤
2w + 1. Suppose there exists an SHF(N ;n, 2, {1, w}). Then n ≤ N .

We will extend the idea of the proof of Theorem 2.2.3 in [5] by counting the total
number of column set q-tuples separated in an SHF versus the number of column set
q-tuples separated by a single row in the SHF. We can then give a lower bound on the
number of rows required by dividing these two quantities. The following definition
will be used throughout this section.

Definition 3.1. Let x ∈ Qn where Q = {0, 1, . . . , q − 1}. We say that x is of
weight (i1, i2, . . . , iq−1) if the number of entries equal to k in x is exactly ik, for each
k = 1, . . . , q − 1. The number of entries equal to 0 is thus i0 = n−

∑q−1
k=1 ik.

The next definition gives a simplified notation for counting the number of column
set q-tuples separated by a row of weight (i1, i2, . . . , iq−1). The correctness of this
fact will be proven in Lemma 3.2.

Definition 3.2. Let w1, w2 be positive integers with w1 < w2. For integers i0, i1, . . . ,
iq−1 with i0 ≥ w2, ik ≥ w1 for k = 1, . . . , q − 1 and n ≥

∑q−1
k=0 ik, define

T (q−1)
w1,w2,n

(i1, . . . , iq−1) =

(
i1
w1

)(
i2
w1

)
· · ·

(
iq−1

w1

)(
n−

∑q−1
k=1 ik

w2

)
.

Lemma 3.2. Let w1, w2 be positive integers with w1 < w2. For integers i0, i1, . . . , iq−1

with i0 ≥ w2, w1 ≤ ik < w2 for k = 1, . . . , q − 1 and n ≥
∑q−1

k=0 ik, the number of
column set q-tuples separated by a row of weight (i1, . . . , iq−1) is

Z = (q − 1)! T (q−1)
w1,w2,n(i1, . . . , iq−1).

Proof. Since w1 ≤ ik < w2 for k = 1, . . . , q − 1, it is clear that a row r of weight
(i1, . . . , iq−1) only separates column set q-tuples of the form (C0, . . . , Cq−1) with
|Ck| = w1 for k = 1, . . . , q − 1 and |C0| = w2. The columns in C0 correspond to
entries in r that are equal to 0. The columns in Ck for k = 1, . . . , q − 1 correspond
to distinct entries in r that are equal to 1, . . . , q−1. There are (q−1)! permutations
of the set {1, . . . , q− 1}, thus the total number of columns set q-tuples separated by
r is

Z = (q − 1)!

(
i0
w2

)(
i1
w1

)(
i2
w1

)
· · ·

(
iq−1

w1

)
= (q − 1)! T (q−1)

w1,w2,n(i1, . . . , iq−1).

Using Lemma 3.2, we would like to determine the maximum number of column
set q-tuples separated by a row of weight (i1, . . . , iq−1). The following lemma shows
that this maximum is achieved when i1 = · · · = iq−1 = w1.
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Lemma 3.3. Let w1, w2 be positive integers such that w1 < w2, and let q, n be positive
integers with q ≥ 2 and

w2 + (q − 1)w1 ≤ n ≤ w2 + (q − 1)w1 +
w2

w1
− 1.

Then for every k = 1, . . . , q − 1, we have

T (q−1)
w1,w2,n

(i1, . . . , iq−1) > T (q−1)
w1,w2,n

(i1, . . . , ik−1, ik + 1, ik+1, . . . , iq−1).

In particular, T
(q−1)
w1,w2,n obtains its global maximum at (w1, . . . , w1) over the domain of

integers (i1, . . . , iq−1) for which T
(q−1)
w1,w2,n is defined.

Proof.

T (q−1)
w1,w2,n

(i1, . . . , iq−1) > T (q−1)
w1,w2,n

(i1, . . . , ik−1, ik + 1, ik+1, . . . , iq−1)

⇔
(
ik
w1

)(
n−

∑q−1
l=1 il

w2

)
>

(
ik + 1

w1

)(
n−

∑q−1
l=1 il − 1

w2

)

⇔ ik − w1 + 1

ik + 1
>

n−
∑q−1

l=1 il − w2

n−
∑q−1

l=1 il
.

Letting I =
∑q−1

l=1 il and rearranging the inequality gives

(ik + 1− w1)(n− I) > (n− I − w2)(ik + 1)

⇔ −w1(n− I) > −w2(ik + 1)

⇔ n
w1

w2
< ik + 1 +

w1

w2
I

⇔ n < ik
w2

w1
+ I +

w2

w1

where the last inequality holds by the assumption n < w2 + (q − 1)w1 +
w2

w1
since

w1 ≤ ik and (q − 1)w1 ≤ I.

Before we prove the main theorem, we need a final lemma that corresponds to a
special case.

Lemma 3.4. Let q, w be positive integers with q ≥ 3 and w ≥ 2. Let n = 2w+ q−2.
Then

(q − 1)! T
(q−1)
1,w,n (1, . . . , 1) > 2(q − 2)! T

(q−1)
1,w,n (1, . . . , 1, w).

Proof. Expanding the desired inequality gives

(q − 1)!

(
1

1

)q−1(
n− q + 1

w

)
> 2(q − 2)!

(
1

1

)q−2(
w

1

)(
w

w

)

⇔ (q − 1)

(
2w − 1

w

)
> 2w.

One can check that
(
2w−1
w

)
> w for w ≥ 2, and the proof follows since q− 1 ≥ 2.
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Theorem 3.5. Let w1, w2 be positive integers with w1 < w2, and let q, n be positive
integers with q ≥ 2 and

w2 + (q − 1)w1 ≤ n ≤ w2 + (q − 1)w1 +
w2

w1
− 1. (3.1)

If there exists an SHF(N ;n, q, {wq−1
1 , w2}) then

N ≥ 1

(q − 1)!

(
n

w1

)(
n− w1

w1

)
· · ·

(
n− (q − 2)w1

w1

)
.

Proof. Let A be the representation matrix of an SHF(N ;n, q, {wq−1
1 , w2}). For any

row r of A and k ∈ {0, 1, . . . , q− 1}, let ik be the number of occurrences of symbol k
in row r. By permuting the alphabet on row r if necessary, we may assume without
loss of generality that i1 ≤ i2 ≤ . . . ≤ iq−1 ≤ i0. Furthermore, we may assume
that i1 ≥ w1 and i0 ≥ w2, since otherwise r cannot separate any column set q-tuple
(C0, C1, . . . , Cq−1) with |Ck| = w1 for 1 ≤ k ≤ q − 1 and |C0| = w2 and we may
remove r from the matrix. Observe that

iq−1 = n− i0 −
q−2∑
k=1

ik

≤ n− w2 − (q − 2)w1

≤ w1 +
w2

w1

− 1 from (3.1)

≤ w1 + (w2 − w1)

= w2.

We consider the following two cases.

(i) iq−1 = w2. The above inequalities must all be equalities, so we have w1 = 1,
ik = 1 for k = 1, . . . , q − 2, i0 = w2 and

n = w2 + (q − 1)w1 +
w2

w1

− 1 = 2w2 + q − 2.

Let w = w2. We only need to consider the case q ≥ 3 since q = 2 is covered
by Theorem 3.1. The number of column set q-tuples separated by r is exactly
2(q − 2)! T

(q−1)
1,w,n (1, . . . , 1, w), which is less than the number of column set q-

tuples separated by a row of weight (w1, . . . , w1) = (1, . . . , 1) by Lemma 3.2
and Lemma 3.4.

(ii) iq−1 < w2: By Lemma 3.2, the number of column set q-tuples separated by r is

Z = (q − 1)! T (q−1)
w1,w2,n

(i1, . . . , iq−1).

The number of column set q-tuples separated by a row of weight (w1, . . . , w1)
is greater than Z by Lemma 3.3 unless ik = w1 for k = 1, . . . , q − 1.
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In either case, the number of column set q-tuples separated by r is maximized only
when the row is of weight (w1, . . . , w1). The total number of column set q-tuples
that need to be separated is

T =

(
n

w1

)(
n− w1

w1

)
· · ·

(
n− (q − 2)w1

w1

)(
n− (q − 1)w1

w2

)
.

Thus

N ≥ T

(q − 1)! T
(q−1)
w1,w2,n(w1, . . . , w1)

=
1

(q − 1)!

(
n

w1

)(
n− w1

w1

)
· · ·

(
n− (q − 2)w1

w1

)
.

The following result is an immediate consequence of Theorems 2.1 and 3.5.

Corollary 3.6. Let w1, w2 be positive integers with w1 < w2, and let q, n be positive
integers with q ≥ 2 and

w2 + (q − 1)w1 ≤ n ≤ w2 + (q − 1)w1 +
w2

w1
− 1.

Then the minimum value of N such that there exists an SHF(N ;n, q, {wq−1
1 , w2}) is

N =
1

(q − 1)!

(
n

w1

)(
n− w1

w1

)
· · ·

(
n− (q − 2)w1

w1

)
.

4 Applications

Theorem 3.5 is particularly useful for studying the combinatorial objects known as
strong separating hash families (denoted SSHF), introduced by Sarkar and Stinson
in [7]. They are equivalent to an SHF of type {1t1 , t2} for some positive integers
t1, t2. We can give a strong bound for the code length of SSHFs as a corollary.

Corollary 4.1. Let n, t1, t2 be positive integers with t1 ≥ q − 1 and t1 + t2 ≤ n ≤
2(t1 + t2)− q. Suppose there exists an SHF(N ;n, q, {1t1, t2}). Then

N ≥
(

n

q − 1

)
.

Proof. By Theorem 1.2, an SHF(N ;n, q, {1t1 , t2}) is also an SHF(N ;n, q, {1q−1, t1 +
t2 − q + 1}). Applying Theorem 3.5, if t1 + t2 ≤ n ≤ 2(t1 + t2)− q, then we have

N ≥ 1

(q − 1)!
n(n− 1) . . . , (n− q + 2),

as desired.
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Example 4.1. Let q = 3, t1 = 4 and t2 = 3. Suppose there exists an SHF(N ; 11, 3,
{1, 1, 1, 1, 3}) (Corollary 4.1 applies to n = 7, 8, 9, 10 as well). Then N ≥

(
11
2

)
= 55.

In other words, for N ≤ 54, we have that n ≤ 10.

Compare this with known results: Theorem 1.3 and Theorem 1.4 both give the
bound n ≤ 6(39) = 118098 for N = 54; Theorem 1.5 gives the bound

n ≤ 6(39) + 2− 2
√
3(39) + 1 < 118023

for N = 54.

Finally, Table 1 (overleaf) lists various parameter choices for q, w1, w2 and com-
pares the bound in Theorem 3.5 to some known bounds for general SHFs. The
symbol Ω means the computed bound is above the Java double maximum value of
(2− 2−52)21023.

5 Conclusion

We have presented a new bound in Theorem 3.5 for SHF of type {wq−1
1 , w2}. As

an application, we derived a bound in Corollary 4.1 for SSHFs that compares well
against known general bounds. One can also choose other types of SHFs and apply
Theorem 3.5 to obtain competitive bounds, since Table 4 demonstrates a large gap
between our result and best known general bounds.

There is an inherent difficulty of generalizing Theorem 3.5 to other types. For
example, if we relax the type of the SHF to {wq−2

1 , w2, w3} where w1 < w2 < w3, then
a row of weight (w1, . . . , w1, w2, w2) could separate the column set consisting of w2

columns in multiple ways. This difficulty is even more prevalent when the type set
{w1, . . . , wt} consists of a large number of different values. It would be interesting
to develop a counting method that can overcome this difficulty. Another extension
of our result could be in the direction of allowing the type multiset {w1, . . . , wt} to
contain more elements than q, i.e., t > q. Making progress in either direction would
allow us to derive more powerful bounds for general SHFs.
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q w1 w2 N ≤ implies n ≤
Theorem 3.5 Theorem 1.3 Theorem 1.4 Theorem 1.5

3 1 2 9 4 243 243 213
3 1 3 20 6 2916 2916 2824
3 1 4 35 8 32805 32805 32526
3 1 5 54 10 354294 354294 353454
3 1 6 77 12 3720087 3720087 3717563
3 2 3 104 6 3.09× 109 2.32× 109 2.32× 109

3 2 4 377 8 5.81× 1026 4.07× 1026 4.07× 1026

3 2 5 629 9 5.91× 1038 3.94× 1038 3.94× 1038

3 2 6 1484 11 7.43× 1079 4.77× 1079 4.77× 1079

3 3 4 2099 9 6.64× 10112 3.98× 10112 3.98× 10112

3 3 5 4619 10 4.84× 10221 2.69× 10221 2.69× 10221

3 3 6 17159 12 Ω Ω Ω
4 1 2 19 5 4096 4096 3987
4 1 3 54 7 2.09× 107 2.09× 107 2.09× 107

4 1 4 118 9 6.59× 1012 6.59× 1012 6.59× 1012

4 1 5 219 11 1.29× 1020 1.29× 1020 1.29× 1020

4 1 6 362 13 3.96× 1028 3.96× 1028 3.96× 1028

4 2 3 1259 8 1.33× 1096 1.06× 1096 1.06× 1096

4 2 4 6929 10 Ω Ω Ω
4 2 5 13859 11 Ω Ω Ω
4 2 6 45044 13 Ω Ω Ω
4 3 4 200199 12 Ω Ω Ω
4 3 5 560559 13 Ω Ω Ω
4 3 6 3203199 15 Ω Ω Ω
5 1 2 33 6 390625 390625 389658
5 1 3 125 8 2.86× 1015 2.86× 1015 2.86× 1015

5 1 4 329 10 2.48× 1034 2.48× 1034 2.48× 1034

5 1 5 714 12 6.46× 1063 6.46× 1063 6.46× 1063

5 1 6 1364 14 1.57× 10107 1.57× 10107 1.57× 10107

5 2 3 17324 10 Ω Ω Ω
5 2 4 135134 12 Ω Ω Ω
5 2 5 315314 13 Ω Ω Ω
5 2 6 1351349 15 Ω Ω Ω
5 3 4 28027999 15 Ω Ω Ω
5 3 5 95295198 16 Ω Ω Ω
5 3 6 775975199 18 Ω Ω Ω

Table 1: Comparison of Bounds for SHF(N ;n, q, {wq−1
1 , w2})
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