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Abstract

In this paper, we prove the following: for any orientable surface Sg of
genus g > 0 and any ε > 0, there exists an integer R = R(g, ε) such that:

(i) every graph G on Sg with representativity at least R has a 5-coloring
such that one color class has cardinality at most ε|V (G)|;

(ii) every even-sided map G on Sg with representativity at least R has a
3-coloring such that one color class has cardinality at most ε|V (G)|;
and

(iii) every even triangulation G on Sg with representativity at least R
has a 4-coloring such that one color class has cardinality at most
ε|V (G)|.

We also prove that ε|V (G)| in (ii) and (iii) cannot be replaced with
o(|V (G)|).
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1 Introduction

A surface is a compact 2-dimensional manifold without boundary, and is known to
be homeomorphic to either the orientable surface of genus g ≥ 0, denoted by Sg, or
the nonorientable surface of genus k, demoted by Nk. A simple closed curve γ on a
surface F is contractible (respectively, essential) if γ does (does not) bound a closed
2-cell on F. A map on a surface F means a fixed embedding of a graph on F, and
essential and contractible cycles of G are defined similarly to those closed curves on
F. For a graph G, let |G| denote the number of vertices. A k-cycle is a cycle of
length k, and it is even (respectively, odd) if the length is even (respectively, odd).
A map G is a triangulation (respectively, quadrangulation) if each face is bounded
by a 3-cycle (respectively, 4-cycle). A triangulation is even if each vertex has even
degree. For a map G and its vertex v, the link of v is the boundary walk of the 2-cell
region formed by all faces incident to v in G.

A k-coloring of a graph G is a map c : V (G) → {1, 2, . . . , k} such that for any
edge xy of G, c(x) �= c(y). A graph G is k-colorable if G admits a k-coloring.
The chromatic number of G, denoted χ(G), is the smallest integer k such that G is
k-colorable. A graph G is k-chromatic if χ(G) = k.

One of the most famous theorems in topological graph theory is the Four Color
Theorem [5], which states that every planar graph is 4-colorable. The statement is so
simple, but only computer-assisted proofs are known; see also [21]. The work around
this problem influenced many results in graph theory.

Heawood [10] pointed out that every map on a surface F is H(F)-colorable, where
H(F) is the Heawood number

H(F) =

⌈
7 +

√
24g(F) + 1

2

⌉
,

and g(F) is the Euler genus of F, which equals 2g and k for Sg and Nk, respectively. In
the 1970s, Ringel and Youngs [20] proved that the complete graph with exactly H(F)
vertices is embeddable in F, except when F is the Klein bottle. This result solves
the so-called “Map Color Theorem” completely. That is, the estimate of chromatic
numbers by the Heawood number is best possible except for the Klein bottle.

Though the map color theorem was solved, Albertson [1] wondered if the Four
Color Theorem should be essential for coloring maps on surfaces. That is, he asked
whether or not every map on a surface is 4-colorable after deleting a constant number
of vertices, as in the following (see also [15, Page 62]).

Conjecture 1 (Albertson’s Four color problem) For any surface F, there ex-
ists an integer N = N(F) such that every map on F is 4-colorable after deleting at
most N vertices.

The representativity of a map G on a non-spherical surface F is the minimum
number of crossing points of G and γ, where γ ranges over all essential simple closed
curves on F [23]. (For a map on the sphere, we define its representativity to be the
infinity.) Here, we may suppose that G and γ intersect only at vertices, and the
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vertices in G ∩ γ attaining the representativity are representative of G. A map G
is k-representative if G has representativity at least k. We say that a locally planar
map on a surface F satisfies property P if there exists an integer N(F) such that
every N(F)-representative map on F satisfies P.

Conjecture 1 is still open even for the torus. Now we give the following conjecture,
which is a restatement of Albertson’s problem:

Conjecture 2 For any surface F, there exists a pair of integers N = N(F) and
R = R(F) such that every R-representative map on F is 4-colorable after deleting at
most N vertices.

Here we explain that Conjecture 2 is indeed a restatement of Conjecture 1. We use
induction on the genus of surfaces. For the sphere, the two statements are equivalent
since the Four Color Theorem holds and spherical maps have the representativity
infinity. Assume that the assertion of Conjecture 1 is true for surfaces with lower
genus. Consider a map G on a surface F with representativity r. If r ≥ R(F), then
directly applying the assertion of Conjecture 2, we can find a vertex set S ⊆ V (G)
with |S| ≤ N(F) and χ(G− S) ≤ 4. On the other hand, if r < R(F), then removing
the set T of the r representative vertices from G, we get a map G′ on a surface F′ of
genus lower than F. By induction hypothesis, G′ has a vertex set S ′ ⊆ V (G′) with
|S ′| ≤ N(F′) and χ(G′ − S ′) ≤ 4, and hence we have a vertex set S = S ′ ∪ T with
|S| ≤ R(F) +N(F′) and χ(G− S) = χ(G′ − S ′) ≤ 4.

Conjecture 2 is still open, but in this paper we prove the following result, focusing
on a 5-coloring of maps with one color class small.

Theorem 3 For any orientable surface Sg of genus g > 0 and any positive number
ε, there exists an integer R = R(g, ε) such that if G is an R-representative map on
Sg, then G admits a 5-coloring such that one color class has at most ε|G| vertices.

Thomassen [24] proved that every locally planar map on any surface is 5-colorable,
where “5” is best possible. That is, any non-spherical surface admits non-4-colorable
maps with arbitrarily large representativity. Hence Theorem 3 improves Thomassen’s
5-color theorem with respect to the size of one color class. We discuss optimality of
the condition ε|G| in Section 3. Moreover, Theorem 3 also gives a result on a large
independent set in a locally planar map as follows, which was shown in [3]. To obtain
the corollary, take a largest class of four color classes of G − S as an independent
set, where S is a color class of a 5-coloring of G with |S| ≤ ε|G| in Theorem 3.

Corollary 4 For any orientable surface Sg of genus g > 0 and any positive number
ε, there exists an integer R = R(g, ε) such that every R-representative map on Sg

has an independent set S with |S| ≥ 1−ε
4
|G|.

Let us consider an analogy of Theorem 3 for quadrangulations and even trian-
gulations on surfaces. For those two classes of maps on surfaces, the following is
folklore:

Proposition 5 (i) Every quadrangulation on the plane is 2-colorable.
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(ii) Every even triangulation on the plane is 3-colorable.

Hutchinson [12] proved that every locally planar quadrangulation on any ori-
entable surface is 3-colorable, and Hutchinson, Richter and Seymour [14] proved
that every locally planar even triangulation on any orientable surface is 4-colorable,
where “3” and “4” are known to be best possible in both classes of maps on orientable
surfaces.

We also prove an extension of those results for locally planar quadrangulations
and even triangulations with respect to the size of smallest color class:

Theorem 6 For any orientable surface Sg of genus g > 0 and any positive number
ε, there exist integers R2 = R2(g, ε) and R3 = R3(g, ε) satisfying the following,
respectively.

(i) If G is an R2-representative quadrangulation on Sg, then G admits a 3-coloring
such that one color class has at most ε|G| vertices.

(ii) IfG is anR3-representative even triangulation on Sg, thenG admits a 4-coloring
such that one color class has at most ε|G| vertices.

We also prove in Section 3 that the bounds “ε|G|” cannot be replaced with o(|G|)
in Theorem 6 (i) and (ii). Similarly to Corollary 4, we have the following for large
independent sets.

Corollary 7 For any orientable surface Sg of genus g > 0 and any positive number
ε, there exist integers R2 = R2(g, ε) and R3 = R3(g, ε) satisfying the following,
respectively.

(i) If G is an R2-representative quadrangulation on Sg, then G has an independent
set with size at least 1−ε

2
|G| vertices.

(ii) If G is an R3-representative even triangulation on Sg, then G has an indepen-
dent set with size at least 1−ε

3
|G| vertices.

2 Proof of theorems

The proofs of our theorems follow the combination of the standard methods, which
were used in several papers, for example, [2, 4, 12, 14, 16, 18].

2.1 Preliminary

We first introduce an important tool for dealing with locally planar maps on surfaces.
Let K and G be two maps on the same surface F. We say that K is a surface minor
of G if K is a map on F obtained from G by a sequence of contractions and deletions
of edges on F.
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Lemma 8 (Robertson and Seymour [22]) For any map K on a non-spherical surface
F, there exists an integer R = R(F, K) such that every R-representative map on F

has a surface minor of K, up to homeomorphism.

Let [C,C ′] denote an annulus triangulation, that is, a triangulation on the annulus
with disjoint boundary cycles C and C ′. If [C,C ′] is an annulus triangulation, then
C and C ′ are homotopic. Similarly, we can define an annulus quadrangulation. Let
(C,C ′] be the map obtained from [C,C ′] by removing all vertices of C, and let (C,C ′)
be the map obtained from [C,C ′] by removing all vertices of C and C ′.

For the orientable surface Sg of genus g > 0, it is known that there are 2g simple
closed curves a1, b1, a2, . . . , ag, bg on Sg such that for i = 1, . . . , g, ai and bi cross
exactly once transversely, and each of ai and bi crosses no other aj and bj with i �= j.
See Figure 1 for an example. We call the set {a1, b1, . . . , ag, bg} canonical generators
of the fundamental group of Sg. This will play an essential role for the proofs of our
main theorems.
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�	a1 a2 a3 a4 ag

b1 b2 b3 b4 bg

Figure 1: Canonical generators of the fundamental group of Sg.

For a cycle C in a graph G, a chord of C is an edge in G that is not an edge of C
but the two ends are contained in C. If C does not have a chord, then C is chordless.
Also a cycle C in a graph G is nice if either C has even length or C contains a vertex
of degree exactly 4 in G.

For a triangulation G on a surface F, the induced subgraph H of G is orderly if
it satisfies the following two conditions:

(i) every contractible 3-cycle in H bounds a face of G, and

(ii) every contractible 4-cycle in H is either the boundary of two triangular faces
of G sharing an edge, or the link of a vertex of degree exactly 4 in G.

For a graph G and U ⊆ G, we denote by N(U) the set of vertices that are not in U
but are adjacent to at least one vertex in U . Inductively, we define N i+1(U) for i ≥ 1
as the set of vertices not in N i(U) ∪ N i−1(U) but adjacent to at least one vertex in
N i(U), where N0(U) = U and N1(U) = N(U). For a 2-sided cycle C in a map G on a
surface F, we define R(C) and L(C) as the right and left neighbors of C, respectively.
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So, N(U) = R(U) ∪ L(U). Furthermore, we define Ri(C) and Li(C), similarly to
N i(C). Let GC be the subgraph of G induced by V (C) ∪N(C) ∪ · · · ∪N4(C).

The following is the Nice Cycle Lemma proved by Albertson and Hutchinson [2];
see also [4].

Lemma 9 (Nice Cycle Lemma [2]) Let G be a 15-representative triangulation
on a non-spherical surface F and let C be a chordless essential nonseparating cycle
in G. If GC is orderly, then GC admits a chordless nice cycle homotopic to C.

2.2 Proof of Theorem 3

In this subsection, we prove Theorem 3, using a similar idea to the one in [2].

Proof of Theorem 3. We first prepare g pairwise disjoint simple non-homologous
closed curves a1, . . . , ag on Sg, i.e. no subset of them is surface-separating. See the
simple closed curves a1, . . . , ag as in Figure 1 for example. Let � =

⌈
1
ε

⌉
, and let K

be a map on Sg such that for each simple closed curve ai, there are 11�+ 2 pairwise
disjoint homotopic cycles, and that all the (11�+2)g cycles are pairwise disjoint in K.
By Lemma 8, there exists an integer R′ = R′(Sg, K) such that any R′-representative
map G on Sg has K as a surface minor. Let R = max{R′, 15}, where we note that
R depends only on g and ε.

Let G be an R-representative map on Sg, and we prove that G admits a 5-coloring
c with the condition desired in Theorem 3. We may assume that G is a triangulation
on Sg.

Since G has K as a surface minor, G admits (11� + 2)g pairwise disjoint cycles
C0

1 , . . . , C
11�+1
1 , C0

2 , . . . , C
11�+1
2 , . . . , C0

g , . . . , C
11�+1
g such that C0

i , . . . , C
11�+1
i are all ho-

motopic to ai on Sg for i = 1, . . . , g. We may assume that those cycles C0
i , . . . , C

11�+1
i

appear on the annulus in this order. Consider the 11�g cycles of them, avoiding
C0

1 , C
11�+1
1 , C0

2 , . . . , C
11�+1
g . If some cycle, say Cj

i with 1 ≤ i ≤ g and 1 ≤ j ≤ 11�,

of the 11�g cycles has a chord e = xy, then Cj
i can be bypassed by using e and

we obtain shorter cycles homotopic to Cj
i , since e ∪ P or e ∪ P ′ bounds a disk on

Sg (because of the cycle C0
i or C11�+1

i ), where P ∪ P ′ = Cj
i and P ∩ P ′ = {x, y}.

Therefore, all of the 11�g cycles are chordless. Since they are homotopic to ai for
some i, all of them are supposed to be essential and nonseparating. Recall that for
0 ≤ j ≤ �−1,

[
C11j+1

i , C11j+11
i

]
denotes the annulus triangulation between the cycles

C11j+1
i and C11j+11

i . (When F is the torus, we have two choices for such annulus
triangulations, but we choose the one containing all cycles C11j+2

i , . . . , C11j+10
i .) It is

easy to see that for some integer k with 0 ≤ k ≤ �− 1, we have

g∑
i=1

∣∣∣[C11k+1
i , C11k+11

i

]∣∣∣ ≤ |G|
�

≤ ε|G|. (1)

Thus, it suffices to prove that G has a 5-coloring c : V (G) → {1, 2, 3, 4, 5} such that

c−1(5) ⊆
g⋃

i=1

[
C11k+1

i , C11k+11
i

]
.
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Let i be an integer with 1 ≤ i ≤ g. Recall that GC11k+5
i

is the subgraph of

the annulus triangulation
[
C11k+1

i , C11k+9
i

]
induced by V (C11k+5

i )∪ · · · ∪N4(C11k+5
i ).

Then we are going to use Lemma 9 for C11k+5
i after the following modification to

satisfy the orderly condition. In fact, we perform the following two operations in[
C11k+1

i , C11k+9
i

]
.

• If GC11k+5
i

contains a contractible 3-cycle with interior having vertices of G,

then delete all of the vertices in the interior.

• If GC11k+5
i

contains a contractible 4-cycle with interior having at least two ver-

tices of G, then replace the interior with one vertex and connect it to all of the
four vertices in the contractible 4-cycle.

Let G̃ be the resulting triangulation by all these possible operations, and let C̃11k+5
i

be the cycle after the above modification from C11k+5
i . To be exact, if C11k+5

i passes
through the interior of a contractible 4-cycle, then we reroute C11k+5

i to pass through

the added vertex in the contractible 4-cycle. Note that G̃
˜C11k+5
i

is orderly, where

G̃
˜C11k+5
i

is the subgraph of G̃ induced by V (C̃11k+5
i ) ∪ · · · ∪ N4(C̃11k+5

i ). Therefore,

by Lemma 9, there exists a chordless cycle, say Di, in G̃
˜C11k+5
i

such that Di is nice

and homotopic to C̃11k+5
i . Note that Di ⊆

[
C11k+1

i , C11k+9
i

]
. By the symmetry of

the left and the right sides of Di, we may assume that the cycles C11k+1
i , . . . , C11k+9

i

appear on the annulus triangulation
[
C11k+1

i , C11k+9
i

]
from left to right, and hence

R(Di) ⊆
[
C11k+1

i , C11k+10
i

]
.

We now remove the cycles D1, . . . , Dg from G̃, and then we naturally obtain
a map on the sphere, say G0, with exactly 2g boundaries, which correspond to
L(D1), R(D1), . . ., L(Dg) and R(Dg), respectively.

Let G1 be the triangulation on the sphere obtained from G0 by adding 2g new
vertices vL1 , v

R
1 , . . ., v

L
g , v

R
g so that for i = 1, . . . , g and X = L,R, the vertex vXi is

put on the disk bounded by X(Di) and joined to all vertices in X(Di). Then, by the
Four Color Theorem, G1 has a 4-coloring c1 : V (G1) → {1, 2, 3, 4}.

Now we will bring the cycles D1, . . . , Dg back to G0, and construct a 5-coloring

c̃ of G̃. Let i be an integer with 1 ≤ i ≤ g. We first suppose that c1(v
L
i ) = c1(v

R
i ).

By symmetry, say c1(v
L
i ) = c1(v

R
i ) = 1. In this case, there are no vertices u in

L(Di) ∪ R(Di) such that c1(u) = 1. If Di has even length, then we can color the
cycle Di by the colors 1 and 5 alternately; Otherwise, Di contains a vertex of degree
exactly 4 in G̃, and hence we can color Di − u by the colors 1 and 5 alternately and
then we color the vertex u by a color that does not appear in the neighbors of u.

Suppose next that c1(v
L
i ) �= c1(v

R
i ). By symmetry, say c1(v

L
i ) = 1 and c1(v

R
i ) = 2.

Then there are no vertices u in L(Di) with c1(u) = 1 and no vertices u′ in R(Di)
with c1(u

′) = 2. In this case, we recolor those vertices in (Di ∪ DR2

i ] as follows,
where DR2

i is an essential cycle in R2(Di) that is homotopic to Di. Since R(Di) ⊆[
C11k+1

i , C11k+10
i

]
, we have DR2

i ⊆ [
C11k+1

i , C11k+11
i

]
.

First we recolor all vertices in DR2

i colored by 2 to the color 5. Then we exchange
the colors 1 and 2 for all vertices in (Di ∪DR2

i ]. Since, after the first step, there are
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no vertices in DR2

i colored by 2, these two steps construct a proper 5-coloring of G0

such that the colors 1 and 5 do not appear in L(Di)∪R(Di). (Recall that R(Di) has
no vertices u′ with c1(u

′) = 2.) Hence by the same way as in the previous paragraph,
we can color the cycle Di.

Let c̃ be the 5-coloring of G̃ obtained by the above procedures for all i. Now we
construct a 5-coloring of G by adding all deleted vertices to G̃. Suppose that GC11k+5

i

contains a contractible 3-cycle, say C, with interior having vertices of G for some i.
Note that the three vertices in C have all distinct colors by c̃. Since the interior of
C, together with C, forms a plane triangulation, it has a 4-coloring. By changing
the colors to meet the colors of C by c̃, we can extend the coloring c̃ to the interior
of C.

On the other hand, suppose next that GC11k+5
i

contains a contractible 4-cycle, say

C = xyzw, with interior having at least two vertices of G for some i. Note that the
quadrilateral region bounded by C has no diagonal xz nor yw, since, for otherwise,
we can go to the case for non-facial triangular regions. Depending on the colors of
x, y, z and w by c̃, we have the following three cases.

(1) The vertices x, y, z and w have all distinct colors by c̃.

(2) The vertices x, y, z and w have three colors by c̃ in total.

(3) The vertices x, y, z and w have two colors by c̃ in total.

Let H be the subgraph induced by all vertices in the interior of C, together with
x, y, z and w. Note that H is a plane map with all faces triangular, except for the
outer quadrilateral face bounded by C. In either case, we show that H has a 5-
coloring such that the colors of x, y, z and w coincide with these by c̃. Note that we
only consider the interior of C, which is contained in

[
C11k+1

i , C11k+11
i

]
. We use the

symmetry between the colors 1, 2, 3, 4 and 5 in the following arguments.

Case (1) We may assume that the colors of x, y, z, w by c̃ are 1, 2, 3 and 4, respec-
tively. Let H(1) be the map obtained from H by adding the edge connecting x and
z through the outside of C. Note that H(1) is a plane triangulation. By the Four
Color Theorem, H(1) has a 4-coloring c(1), using the colors 1, 2, 3 and 4. Since x, y
and z form a triangle in H(1), we may assume that the colors of them are 1, 2 and 3,
respectively. Note that c(1)(w) = 2 or 4, but if c(1)(w) = 4, then we are done. So, we
may assume that c(1)(w) = 2. In this case, we first change the color 4 with 5, and
then change the color 2 with 4 except for y. So, y will be the only vertex of color 2.
This gives a 5-coloring of H as desired.

Case (2) We may assume that the colors of x, y, z, w by c̃ are 1, 2, 1 and 3, respec-
tively. Let H(2) be the map obtained from H by identifying the vertices x and z.
Note that H(2) is a plane triangulation, which has no loop since the interior of C has
no diagonal. By the Four Color Theorem, H(2) has a 4-coloring c(2) using the colors
1, 2, 3 and 4. Note that c(2) directly gives a 4-coloring of H with c(2)(x) = c(2)(z).
Then by the same way as in Case (1), we obtain a 5-coloring of H as desired.
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Case (3) We may assume that the colors of x, y, z, w by c̃ are 1, 2, 1 and 2, respec-
tively. Let H(3) be the map obtained from H by identifying the vertices x and z.
Note that H(3) is a plane triangulation with no loop. By the Four Color Theorem,
H(3) has a 4-coloring c(3) using the colors 1, 2, 3 and 4. By the symmetry of the colors,
we may assume that c(3)(x) = c(3)(z) = 1 and c(3)(y) = 2. If c(3)(w) = 2, then we are
done. So, we may also assume that c(3)(w) = 3. In this case, change the color 2 with
5, and then put the color 2 to both y and w. So, y and w will be the only vertices
of color 2. This gives a 5-coloring of H as desired.

In all cases, H has a 5-coloring such that the colors of the vertices in C coincide
with those by c̃. We can extend the 5-coloring c̃ of G̃ to the 5-coloring c of G by
repeating the above procedures. Note that

c−1(5) ⊆
g⋃

i=1

[
C11k+1

i , C11k+11
i

]
.

Hence it follows from the inequality (1) that

|c−1(5)| ≤
g∑

i=1

∣∣∣[C11k+1
i , C11k+11

i

]∣∣∣ ≤ ε|G|.

This completes the proof. �

2.3 Proof of Theorem 6 (i)

For an even-sided map G on a surface F, the following holds:

Lemma 10 (Lemma 9 in [19]) Let G be an even-sided map on a surface F. Then
two closed walks have the same parity of length if they are homotopic on F.

Lemma 11 Let A = [D1, D4] be an annulus quadrangulation with a 2-coloring
c0 : V (A) → {1, 2}. Suppose that A has four pairwise disjoint homotopic essential
cycles D1, D2, D3, D4 appearing on the annulus in this order. Then A has a 3-coloring
c : V (A) → {1, 2, 3} such that

(i) for any v ∈ V (D1), c(v) = c0(v),

(ii) for any v ∈ V (D4), c(v) = 3− c0(v), and

(iii) if c(v) = 3, then v is contained in (D1, D3].

Proof. Let c1 : V (A) → {1, 2, 3} be the 3-coloring of A such that for any v ∈ V (D1),
c1(v) = c0(v), and for any v /∈ V (D1),

c1(v) =

{
1 if c0(v) = 1,

3 if c0(v) = 2.
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Let c2 : V (A) → {1, 2, 3} be the 3-coloring of A such that for any v ∈ V ([D1, D2]),
c2(v) = c1(v), and for any v /∈ V ([D1, D2]),

c2(v) =

{
3 if c1(v) = 3,

2 if c1(v) = 1.

Let c3 : V (A) → {1, 2, 3} be the 3-coloring of A such that for any v ∈ V ([D1, D3]),
c2(v) = c1(v), and for any v /∈ V ([D1, D3]),

c3(v) =

{
2 if c2(v) = 2,

1 if c2(v) = 3.

Then the 3-coloring c3 of A is a 3-coloring as required. �

We prove Theorem 6 (i).

Proof of Theorem 6 (i). Take canonical generators {a1, b1, . . . , ag, bg} of the funda-
mental group on Sg. (See Figure 1 for example.) Moreover, for i = 1, . . . , g, let ci be
a simple closed curve on Sg which is homotopic to the concatenation of ai and bi.

Let � =
⌈
1
ε

⌉
, and let K be a map on Sg with a set of 4�× 3g essential cycles

g⋃
i=1

Ai ∪
g⋃

i=1

Bi ∪
g⋃

i=1

Ci,

where Ai = {A1
i , . . . , A

4�
i }, Bi = {B1

i , . . . , B
4�
i } and Ci = {C1

i , . . . , C
4�
i } such that

(i) A1
i , . . . , A

4�
i are 4� pairwise disjoint cycles homotopic to ai,

(ii) B1
i , . . . , B

4�
i are 4� pairwise disjoint cycles homotopic to bi,

(iii) C1
i , . . . , C

4�
i are 4� pairwise disjoint cycles homotopic to ci, and

(iv) for any Di ∈ Ai ∪Bi ∪ Ci and Dj ∈ Aj ∪ Bj ∪ Cj with i �= j, then Di and Dj

are disjoint.

By Lemma 8, there exists an integer R = R(Sg, K) such that every R-representative
map has K as a surface minor, where R depends only on g and ε.

Let G be an R-representative quadrangulation on Sg. Then G has K as a surface
minor. Thus, G has a set of 4� × 3g pairwise disjoint cycles corresponding to the
above 4�×3g cycles ofK, for which we denote the cycles in G using the same symbols
as those in K.

Here we claim that for each i, at least one of A1
i , B

1
i and C1

i has even length.
If at least one of A1

i and B1
i contains a cycle of even length, then we are done.

Otherwise, i.e., if both A1
i and B1

i have odd length, then C1
i must have even length,

since it is homotopic to the concatenation of two odd cycles A1
i and B1

i . By Lemma
10, for each Ai, Bi and Ci, all members in the set have the same parity of length.
Put Di = {D1

i , . . . , D
4�
i } be a set of 4� pairwise disjoint cycles of even length, for
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i = 1, . . . , g, where Di is one of Ai, Bi and Ci. We may suppose that D1
i , . . . , D

4�
i lie

on the surface in this order.
Recall that

[
D4j+1

i , D4j+3
i

]
denotes the annulus quadrangulation between the cy-

cles D4j+1
i and D4j+3

i . (When F is the torus, we have two choices for such annulus
quadrangulations, but we choose the one containing the cycle D4j+2

i .) Note that the
annulus map

[
D4j+1

i , D4j+3
i

]
is bipartite, since it can be regarded as an even-sided

map on the sphere. It is easy to see that for some k with 0 ≤ k ≤ �− 1,

g∑
i=1

∣∣∣[D4k+1
i , D4k+3

i

]∣∣∣ ≤ |G|
�

≤ ε|G|.

Let G0 be the map on the sphere obtained from G by cutting along D4k+4
i and pasting

a disk to the two boundary components corresponding toD4k+4
i , for i = 1, . . . , g. (See

[24] for the detail of cutting.) Let D′4k+4
i and D′′4k+4

i denote the facial cycles of G0

corresponding to D4k+4
i in G, and for each v ∈ V

(
D4k+4

i

)
, let v′ ∈ V

(
D′4k+4

i

)
and

v′′ ∈ V (D′′4k+4
i ) be the vertices corresponding to v, for i = 1, . . . , g.

Since G0 can be regarded as an even-sided map on the sphere, G0 is bipartite
and hence has a unique 2-coloring c0. We construct a desired 3-coloring c of G,
modifying the 2-coloring c0 of G0. For all vertices v ∈ V (G)−⋃g

i=1

(
D4k+1

i , D4k+4
i

)
,

we let c(v) = c0(v). Observe that for i = 1, . . . , g, exactly one of the two cases
happens:

• c0(v
′) = c0(v

′′) for each v ∈ V
(
D4k+4

i

)
, or

• c0(v
′) �= c0(v

′′) for each v ∈ V
(
D4k+4

i

)
.

In the former, we also let c(v) = c0(v) for any vertex v of
(
D4k+1

i , D4k+4
i

)
. In

this case, the third color is not used in
(
D4k+1

i , D4k+4
i

)
. On the other hand, in the

latter case, introducing the third color, we exchange the two colors in the annulus
map

[
D4k+1

i , D4k+4
i

]
, by Lemma 11.

In this case, c−1(3) ⊆ ⋃g
i=1 V

([
D4k+1

i , D4k+3
i

])
. Hence we have

|c−1(3)| ≤
g∑

i=1

∣∣∣[D4k+1
i , D4k+3

i

]∣∣∣ ≤ |G|
�

≤ ε|G|. �

2.4 Proof of Theorem 6 (ii)

We proceed to even triangulations on surfaces. For dealing with them, we use the
following lemma, which allows us to reduce even triangulations G on Sg to a 3-
colorable plane map by cutting G along a set of essential cycles.

Lemma 12 For any orientable surface Sg of genus g > 0, there exists an integer
R′ = R′(g) satisfying the following; Let G be an R′-representative even triangulation
on Sg, and let {a1, b1, . . . , ag, bg} be canonical generators of the fundamental group
of Sg. (See Figure 1.) Then there exist g pairwise non-homotopic cycles D1, . . . , Dg

in G satisfying the following three conditions.



A. NAKAMOTO AND K. OZEKI /AUSTRALAS. J. COMBIN. 67 (2) (2017), 101–118 112

(i) Each Di is homotopic to a simple closed curve obtained by the concatenation
of at most four simples closed curves in {a1, b1, . . . , ag, bg}.

(ii) The cycles D1, . . . , Dg are pairwise disjoint.

(iii) Let G0 be the map obtained from G by cutting along D1, . . . , Dg, and pasting
a disk to the 2g boundary components corresponding to them. Then G0 is a
3-colorable plane map.

This lemma was essentially proved by Hutchinson, Richter and Seymour [14],
considering an algebraic invariant for even triangulations, called the “monodromy”.
(See [11] for more detailed definition.) Therefore, we briefly explain how to modify
the proof in [14] for proving Lemma 12.

Let G be an even triangulation on a surface F. Let W = f0f1 · · · fk with f0 = fk
be a sequence of faces of G, called a closed face walk, such that fi and fi+1 share an
edge, for i = 0, 1, . . . , k − 1. Let W i = f0 · · · fi for i = 0, 1, . . . , k. (So, W k = W .)
Define the bijection σG,W i,f0 : V (f0) → V (fi) recursively until i = k, as follows.
For i = 0, σG,W 0,f0 = id, where “id” represents the identity map. For i > 0, define
σG,W i,f0 so that σG,W i,f0 and σG,W i−1,f0 coincide on V (fi−1) ∩ V (fi). Then σG,W,f0

determines a unique element in the symmetric group S3 of degree 3.
It is easy to see that

• if two closed face walks W1 and W2 of G containing f are homotopic (i.e., the
two closed walks W ∗

1 and W ∗
2 of the surface dual G∗ of G corresponding to W1

and W2 respectively are homotopic on F as simple closed curves), then we have
σG,W1,f = σG,W2,f , and

• ifW is contractible on F (i.e., W ∗ bounds a closed 2-cell on F), then σG,W,f = id.

So, by σG,W,f for each closed face walk W containing f , we can define a homomor-
phism σG,f : π1(F, x) → S3, called the monodromy of G, regarding W ∗ as an element
of the fundamental group π1(F, x) of F with base point x, where x is a point on F

corresponding to f ∗ of G∗.
The proof of the lemma in [14] was done by induction on g. For each step, they

cut the map on Sg along “k-wide handle T with T ∩ X = ∅ and with balanced
end-circuits”, which means k pairwise disjoint essential homotopic identity-assigned
closed face walks. (See [14, Page 235].) This handle T corresponds to a cycle Di

in Lemma 12. Since the set X corresponds to the “holes” obtained by the previous
cutting, the condition “T ∩X = ∅” guarantees condition (ii). In order to find such
a “handle with balanced end-circuit”, they used the statement (3.4) in [14, Page
232], but the main point on the homotopy type was shown in the statement (2.5) in
Page [14, Page 229]. In fact, they prepare three homotopy types α1, α2 and α3, and
proved that at least one concatenation of at most four simple closed curves in such
three homotopy types is “balanced” (i.e., identity-assigned). This implies condition
(i). After cutting the graph along all Di’s, we finally obtain the plane map, which is
indeed the map G0 with condition (iii). Then by the statement (4.2) in [14, p. 233]
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and the condition of “balanced end-circuits”, the map G0 is 3-colorable, and hence
condition (iii) is also satisfied. This proves Lemma 12.

We also use the following lemma, which can be proved similarly to Lemma 11.
(We can find a similar idea in the proof of Theorem (4.1) in [14, pp. 236–237].)
Therefore, we omit the proof of it.

Lemma 13 Let A = [D1, D5] be an annulus triangulation which has five pairwise
disjoint homotopic essential cycles D1, D2, D3, D4, D5 lying on the annulus in this
order. Suppose that A has a 3-coloring c0 : V (A) → {1, 2, 3}. Then for any element
s ∈ S3, A has a 4-coloring cs : V (A) → {1, 2, 3, 4} such that

(i) for any v ∈ V (D1), cs(v) = c0(v),

(ii) for any v ∈ V (D5), cs(v) = s
(
c0(v)

)
, and

(iii) if cs(v) = 4, then v is contained in (D1, D4].

Now we are ready to prove Theorem 6(ii).

Proof of Theorem 6(ii). Take canonical generators {a1, b1, . . . , ag, bg} of the funda-
mental group on Sg. (See Figure 1 for example.) Let � =

⌈
1
ε

⌉
, and let K be a map

on Sg such that

• for any simple closed curve γ obtained by the concatenation of at most four
simple closed curves in {a1, b1, . . . , ag, bg}, K contains 5� pairwise disjoint cycles
homotopic to γ, and

• for any two such cycles Dγ and Dγ′ homotopic to γ and γ′, respectively, if γ
and γ′ do not intersect, then Dγ and Dγ′ are disjoint.

So, the first condition requires K to have 5�
{
(2g)4 + (2g)3 + (2g)2 + 2g

}
distinct

cycles on Sg. By Lemma 8, there exists an integer R′′ = R′′(Sg, K) such that every
R′′-representative map has K as a surface minor. Let R = max{R′, R′′}, where
R′ = R′(g) is the integer as in Lemma 12. Note that R depends only on g and ε.

Let G be an R-representative even triangulation on Sg. Then G hasK as a surface
minor. In particular, G contains g pairwise non-homotopic essential cyclesD1, . . . , Dg

satisfying conditions (i), (ii) and (iii) of Lemma 12. By conditions (i), (ii) and the
conditions onK, K contains 5�g pairwise disjoint cycles D1

1, . . . , D
5�
1 , . . . , D

1
g , . . . , D

5�
g

such that all of D1
i , . . . , D

5�
i are homotopic to Di for i = 1, . . . , g.

It is easy to see that for some k with 0 ≤ k ≤ �− 1,

g∑
i=1

∣∣∣[D5k+1
i , D5k+4

i

]∣∣∣ ≤ |G|
�

≤ ε|G|,

where
[
D5k+1

i , D5k+4
i

]
is the annulus triangulation between the cycles D5k+1

i and

D5k+4
i . (When F is the torus, we have two choices for such annulus triangulations,

but we choose the one containing the cycles D5k+2
i and D5k+3

i .) Let G0 be the map
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on the sphere obtained from G by cutting along D5k+5
i and pasting a disk to the

two boundary components corresponding to D5k+5
i , for i = 1, . . . , g. Let D′5k+5

i

and D′′5k+5
i denote the facial cycles of G0 corresponding to D5k+5

i in G, and for
each v ∈ V

(
D5k+5

i

)
, let v′ ∈ V

(
D′5k+5

i

)
and v′′ ∈ V (D′′5k+5

i ) be the two vertices
corresponding to v, for i = 1, . . . , g. By condition (iii) in Lemma 12, G0 is 3-colorable,
and let c0 be a 3-coloring of G0.

We construct a desired 4-coloring c of G, modifying the 3-coloring c0 of G0. For
all vertices v ∈ V (G) − ⋃g

i=1

(
D5k+1

i , D5k+5
i

)
, we let c(v) = c0(v). Observe that for

i = 1, . . . , g, all vertices v ∈ V (D5k+5
i ) satisfies

• c0(v
′) = s

(
c0(v

′′)
)
for some s ∈ S3,

since any two homotopic closed face walks of G are assigned the same element in S3.
So, by using Lemma 13, we can exchange the three colors in the annulus map[

D5k+1
i , D5k+5

i

]
by introducing the fourth color. Let c be the resulting 4-coloring of

G. In this case,

|c−1(4)| ≤
g∑

i=1

∣∣∣(D5k+1
i , D5k+4

i

]∣∣∣ ≤ |G|
�

≤ ε|G|,

since we use the forth color of c only in
(
D5k+1

i , D5k+4
i

]
. �

3 Optimality of the bounds in Theorems 3 and 6

In this paper, we dealt with locally planar maps on orientable surfaces, related to
Albertson’s 4-color problem (Conjecture 1) and Conjecture 2. We also considered
an analogy for locally planar quadrangulations and even triangulations on orientable
surfaces.

In order to strengthen Theorem 3, we wonder if the following theorem can be
used (see also [3, 7]):

Theorem 14 (Hutchinson and Miller [13]) Every map G with n vertices on an
orientable surface Sg admits a vertex set S ⊆ V (G) with |S| = O(

√
gn) such that

G− S is planar.

Theorem 14 does not assume locally planarity of maps on surfaces, and hence
Theorem 14 gives a better estimate, without using ε, for a vertex set S with G− S
4-colorable. (Indeed, this directly shows the existence of an independent set T in a
map G with n vertices on an orientable surface Sg with |T | = n

4
−O(

√
gn), which is

an improvement of Corollary 4.) Hence we ask the following as a common extension
of Theorems 3 and 14:

Question 15 Does every locally planar map G with n vertices on an orientable
surface Sg admit a 5-coloring c : V (G) → {1, 2, 3, 4, 5} such that |c−1(5)| = O(

√
gn)?
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Furthermore, considering Albertson’s 4-color problem (Conjecture 1), we may be
able to improve Question 15 so that |c−1(5)| does not depend on n (while it must
depend on g).

On the other hand, the following examples show that the bounds “ε|G|” in The-
orem 6 (i) and (ii) are best possible in the sense that they cannot be replaced with
o(|G|).

First we consider the case for quadrangulations in Theorem 6 (i). Let G′ be an
r-representative non-bipartite quadrangulation on Sg. Since G′ is a non-bipartite
quadrangulation, G′ has an essential odd cycle C. Let G be a non-bipartite quad-
rangulation on Sg obtained from G′ by cutting along C, and inserting an annulus
quadrangulation C�Pm between the two boundary components, where C�Pm de-
notes the Cartesian product of C and the path Pm with m vertices. Then G is an
r-representative quadrangulation on Sg with m pairwise disjoint odd cycles. Hence,
for any 3-coloring of G, each of the m odd cycles contains at least one vertex from
each of the three color classes. If we take such an integer m = ω(|G′|) and re-

gard |C| as a constant, we obtain m = |G|−|G′|+|C|
|C| = Θ(|G|), and hence the bound

“|c−1(3)| ≤ ε|G|” in Theorem 6 (i) cannot be replaced with o(|G|).
In a similar way, for any positive integer r, we can construct an r-representative

even triangulationG on Sg withm pairwise disjoint non-3-colorable closed face walks,
where m = Θ(|G|). Observe that each of such closed face walks requires at least one
vertex from each of the four color classes, for any 4-coloring of G. This implies that
the bound “|c−1(4)| ≤ ε|G|” in Theorem 6 (ii) cannot be replaced with o(|G|).

4 Remarks for nonorientable surfaces

Our theorems are only for locally planar maps on orientable surfaces. Let us consider
what we can say about those on nonorientable surfaces. For nonorientable surfaces
Nk of genus k, the following are known:

(i) every locally planar map on Nk is 5-colorable [24],

(ii) every locally planar quadrangulation on Nk is 4-colorable [6, 9], and

(iii) every locally planar even triangulation on Nk is 5-colorable [6, 9],

where each of the estimate is best possible. Furthermore, for (ii) and (iii), 4-chromatic
quadrangulations and 5-chromatic even triangulations on Nk were characterized in
[6] and [17], respectively. Hence we ask the following:

Question 16 Does every 3-colorable locally planar quadrangulation on Nk admit
a 3-coloring with one color class small? Does every 4-colorable locally planar even
triangulation on Nk admit a 4-coloring with one color class small?

Mohar and Seymour [16] proved that a locally planar 4-chromatic quadrangula-
tion G on Nk is 4-critical (i.e., G − v is 3-colorable for any vertex v) if and only if
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every contractible 4-cycle of G bounds a face. This implies that every locally planar
4-chromatic quadrangulation G on Nk has a vertex v such that G− v is 3-colorable.
Hence we ask the following question:

Question 17 Does every locally planar quadrangulation G on Nk admit a 4-coloring
c : V (G) → {1, 2, 3, 4} such that |c−1(4)| = 1 and |c−1(3)| = ε|G|?

As a partial solution, Esperet and Stehlık [8] proved that every quadrangulation
G on the projective plane admits a 4-coloring c : V (G) → {1, 2, 3, 4} such that
|c−1(4)| = 1 and |c−1(3)| = O(

√
Δ|G|), where Δ is the maximum degree of G.

The first author of the present paper proved that a locally planar even triangula-
tion G on Nk is 5-chromatic if and only if G is the face subdivision of some even-sided
map H including a 4-chromatic quadrangulation H ′ as a subgraph, i.e. G is obtained
from H by adding a single vertex to each face of H and joining it to all vertices
on the corresponding boundary [17]. Hence G has a vertex v such that G − v is
4-colorable, by choosing v from V (H). Therefore, we finally ask:

Question 18 Does every locally planar 5-chromatic even triangulation G on Nk

admit a 5-coloring c : V (G) → {1, 2, 3, 4, 5} such that |c−1(5)| = 1 and |c−1(4)| =
ε|G|?

Final Notes

The authors would like to dedicate this paper to Professor Dan Archdeacon to mourn
his untimely passing. The first author of this paper had one joint paper with him
[6] on chromatic number of quadrangulations. The present paper deals with an
extension of the results of the joint paper, and the authors hope that Dan has an
interest in it.
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[8] L. Esperet and M. Stehĺık, The width of quadrangulations of the projective
plane, preprint.

[9] S. Fisk and B. Mohar, Coloring graphs without short non-bounding cycles, J.
Combin. Theory Ser. B 60 (1994), 268–276.

[10] P.J. Heawood, Map colour theorem, Quart. J. Math. 24 (1890), 332–338.

[11] Y. Higuchi, A. Nakamoto, K. Ota and T. Sakuma, N-Flips in even triangulations
and Dehn twists on the torus, Discrete Math. 311 (2011), 1128–1135.

[12] J.P. Hutchinson, Three-coloring graphs embedded on surfaces with all faces
even-sided, J. Combin. Theory Ser. B 65 (1995), 139–155.

[13] J.P. Hutchinson and G.L. Miller, On deleting vertices to make a graph of positive
genus planar, In: Discrete Algorithms and Complexity Theory, Academic Press
(1987), 81–98.

[14] J.P. Hutchinson, R.B. Richter and P. Seymour, Coloring Eulerian triangulations,
J. Combin. Theory Ser. B 84 (2002), 225–239.

[15] T.R. Jensen and B. Toft, Graph Coloring Problem, Wiley (1995).

[16] B. Mohar and P.D. Seymour, Coloring locally bipartite graphs on surfaces, J.
Combin. Theory Ser. B 84 (2002), 301–310.

[17] A. Nakamoto, 5-Chromatic even triangulations on surfaces, Discrete Math. 308
(2008), 2571–2580.

[18] A. Nakamoto, S. Negami, and K. Ota, Chromatic numbers and cycle parti-
tions of quadrangulations on nonorientable closed surfaces, Discrete Math. 285
(2004), 211–218.

[19] S. Negami and A. Nakamoto, Diagonal transformations in graphs on closed
surfaces, Sci. Rep. Yokohama Nat. Univ., Sec. I 40 (1993), 71–97.



A. NAKAMOTO AND K. OZEKI /AUSTRALAS. J. COMBIN. 67 (2) (2017), 101–118 118

[20] G. Ringel, Map Color Theorem, Springer, 1974.

[21] N. Robertson, D. Sanders, P.D. Seymour and R. Thomas, The four-color theo-
rem, J. Combin. Theory Ser. B 70 (1997), 2–44.

[22] N. Robertson and P.D. Seymour, Graph minors. VII. Disjoint paths on a surface,
J. Combin. Theory Ser. B 45 (1988), 212–254.

[23] N. Robertson and R. Vitray, Representativity of surface embeddings, “Paths,
flows, and VLSI-layout” (Bonn, 1988), 293–328, Algorithms Combin. 9, Spring-
er, Berlin, (1990).

[24] C. Thomassen, 5-coloring maps on surfaces, J. Combin. Theory Ser. B 59
(1993), 89–105.

(Received 20 Dec 2015; revised 19 July 2016)


