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Abstract

The beans function BG(x) of a connected graph G is defined as the maxi-
mum number of points on G such that any pair of points have distance at
least x > 0. We shall exhibit lower and upper bounds of BG(x) for x < 1
and a class of graphs which have the same number of edges and whose
beans functions distinguish them. Also, we give some non-isomorphic
graphs which have the same beans function.

1 Introduction

Imagine that there are two glasses on a table. Fill each of the glasses with beans
and count the number of beans used to fill it. If the numbers of beans are different,
then we can conclude that these glasses have different shapes. If we used the same
number of beans for both, then we try to fill them again with beans of another size.
As the beans get smaller, then the number of beans will tend to be proportional
to the volume. Conversely, if a glass has a very narrow neck, then large beans
could lead to a significant amount of vacant space, and the number of beans can,
to a degree, characterise different glass shapes. This situation leads us to consider
a function counting the number of beans of given size in a glass. Such a function
might distinguish the shapes of glasses. In this paper, we shall consider a similar
notion for graphs, called “the beans function”.

Let G be a connected graph without loops and multiple edges. We regard each
edge as a line segment having a unit length and focus on not only the vertices but
also any point lying along such a line segment. We denote the set of points on
G by X(G). This allows us to define the distance d(p, q) between two points p
and q ∈ X(G) to be the length of a shortest curve joining them along G. Define
BG(x) to be the maximum number of points placed on G so that any pair of points
have distance at least x, where x ranges over the set of positive real numbers R+.
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Then BG(x) can be regarded as a function BG : R+ → N . We call this the beans
function of G. We often use Uε(p) to present the ε-neighborhood of a point p, that
is, Uε(p) = {q ∈ X(G) : d(p, q) < ε}. This works as a “bean” of radius ε without its
skin.

When x is a natural number, BG(x) is closely related to the combinatorial prop-
erty of a connected graph G. For example, we have:

BG(1) = max{ |V (G)|, |E(G)| }.

Just place points at all vertices or at the midpoints of all edges. If G is not a tree,
then the latter case attains the maximum. Also, BG(2) is related to the maximum
size of independent sets and of matchings. It is clear that BG(x) = 1 if x exceeds
the diameter of G plus 1.

In this paper, we shall focus on small beans, whose diameter is less than 1. One
might suspect that BG(1/n) = n|E(G)| in most cases and wonder whether BG(x)
depends only on |E(G)|. We shall establish sharp lower and upper bounds for BG(x)
to give an affirmative answer to the former in Section 2 and show examples to deny
the latter in Section 3. Also, we shall show examples for non-isomorphic graphs
which have the same beans function in Section 4.

Our terminology for graph theory is quite standard and can be found in [2].

2 Lower and upper bounds

First, we shall give general lower and upper bound for the beans function BG(x) of
a connected graph G with 0 < x < 1. For the sake of convenience, we call a set of
points on G an x-set if any pair of points in S have distance at least x.

A set of edges in a graph G is called a matching if any two distinct edges in it
have no common endpoints. The matching number of G is defined as the number of
edges contained in a matching of the maximum size and is denoted by μ(G) in this
paper.

THEOREM 1. Let G be a connected graph and let x ≤ 1 be a positive real number.
Put ε = 1− �1/x�x.

(i) If ε ≥ x/2, then:

�1/x� · |E(G)|+ μ(G) ≤ BG(x) ≤ �1/x� · |E(G)|+ |V (G)| − 1.

(ii) If ε < x/2, then:

�1/x� · |E(G)| ≤ BG(x) ≤ �1/x� · |E(G)|+ μ(G).

If G is a tree, then this lower bound can be replaced with �1/x� · |E(G)|+ 1.
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Here we shall present an easy example to show the sharpness of the bounds given
in Theorem 1. This will help the reader to undestand the proof below. Let Ck be a
cycle of length k ≥ 3. It is clear that BCk

(x) = �k/x� for all x < 1. Put 1 = n ·x+ ε
with n ∈ N and 0 ≤ ε < x. Then we have:

BCk
(x) = �k/x� =

⌊
(n · x+ ε)k

x

⌋
= n · k +

⌊
ε · k
x

⌋
= �1/x� · |E(Ck)|+

⌊
ε · k
x

⌋
.

This implies that BCk
(x) = �1/x� · |E(Ck)| if ε = 0 and that BCk

(x) = �1/x� ·
|E(Ck)|+�k/2� if ε = x/2. Since μ(Ck) = �k/2�, we can say that Ck attains the lower
bounds in (i) and (ii) in Theorem 1. On the other hand, if ε = (k − 1)/k · x > x/2,
then BCk

(x) = �1/x� · |E(Ck)| + k − 1. If ε is smaller than but very close to x/2
and if k is odd, then BCk

(x) = �1/x� · |E(Ck)|+ �k/2�. These coincide with the two
upper bounds in the theorem.

Proof of Theorem 1. Let S be an x-set of points of the maximum size for x ≤ 1.
That is, we have |S| = BG(x). Choose one of the points in S closest to each vertex
v ∈ V (G) and denote it by v̄. If v ∈ S, then we set v̄ = v. We may assume that
ū �= v̄ for distinct vertices u and v. Note that v̄ exists at v or on an edge incident to v
since x ≤ 1; otherwise, S∪{v} would be a larger x-set. Put dv = d(v̄, v). If dv > x/2,
then we can make another x-set from S by replacing v̄ with the vertex v′ lying on
the segment between v and v̄ with d(v, v′) = x/2, since d(p, v) ≥ d(v̄, v) > x/2 for all
points p in S around v. Thus, we may assume that 0 ≤ dv ≤ x/2 for each vertex v.

Let e = uv be an edge of G having two endpoints u and v, and let Se be the set
of points in S lying along e. It may happen that ū or v̄ lies on e. If ū = u, then
we choose only one of the edges incident to u, say e, and consider that ū belongs to
Se and to no others. Under this setting, we have S =

⋃
e∈E(G) Se and Se ∩ Se′ = ∅

for any two distinct edges e and e′. There are the following three cases for an edge
e = uv.

Case 1: Suppose that Se contains neither ū nor v̄. Then e−Ux−du(u)∪Ux−dv(v)
contains all points in Se. If 2x− du − dv ≤ 1, then the number of such points should
be:

|Se| =
⌊
1− 2x+ du + dv

x

⌋
+ 1 =

⌊
1 + du + dv

x

⌋
− 1.

If 2x− du − dv > 1, then e− Ux−du(u) ∪ Ux−dv(x) = ∅ and hence |Se| = 0. Since
x ≤ 1 + du + dv < 2x, we have �(1 + du + dv)/x� = 1. This means that the above
formula for |Se| works in this case, too.

Case 2: Suppose that Se contains only one of ū and v̄, say ū. Then e− Udu(u) ∪
Ux−dv(v) contains all points in Se; in particular, if ū = u, then Udu(u) = U0(u) = ∅.
If du + x− dv ≤ 1, then the number of such points should be:

|Se| =
⌊
1− du − x+ dv

x

⌋
+ 1 =

⌊
1− du + dv

x

⌋
.
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If du+x−dv > 1, then e−Udu(u)∪Ux−dv(v) = ∅ and |Se| = 0. Since 0 ≤ du, dv ≤
x/2, we have 0 < 1 − x/2 ≤ 1 − du + dv < x and hence the above formula for |Se|
gives 0 as we expect in this case.

Case 3: Suppose that Se contains both ū and v̄. Then e−Udu(u)∪Udv(v) contains
all points in Se. Since x ≤ 1, we have 1− du − dv ≥ 1− x ≥ 0. Thus, the number of
such points should be:

|Se| =
⌊
1− du − dv

x

⌋
+ 1.

We call an edge “type i” if Case i happens for it. Let Ei be the set of edges of
type i. Then E2 ∪E3 covers all vertices of G while any two distinct edges belonging
to E3 have no common endpoints, that is, E3 forms a matching in G. Then |S| is
equal to the summation of these values |Se| for all edges according to their types. It
is clear that BG(x) is the maximized value of |S| by choosing du and ū suitably for
all vertices u ∈ V (G).

Using |E3|, we can express the others |E1| and |E2| as follows:

|E2| = |V (G)| − 2|E3|;
|E1| = |E(G)| − |E2| − |E3| = |E(G)| − |V (G)|+ |E3|.

First, substitute du = x/2 for all u ∈ V (G) although this may not maximize |S|.
In this case, we have |Se| = �1/x� for all edges and hence |S| = �1/x� · |E(G)|. This
gives a tentative lower bound for BG(x) in both Cases (i) and (ii) since we have never
discussed the value of ε yet. Set du = 0 for all u ∈ V (G) to consider its possible
improvement. Then we have |Se| = �1/x�−1, �1/x� and �1/x�+1 for edges of types
1, 2 and 3 in order. This implies that:

|S| = �1/x� · |E(G)| − |E1|+ |E3| = �1/x� · |E(G)| − |E(G)|+ |V (G)|.

If G is not a tree, then the above does not improve the previous lower bound since
|E(G)| ≥ |V (G)|. On the other hand, if G is a tree, then |E(G)| = |V (G)| − 1 and
we obtain the improved lower bound �1/x� · |E(G)|+ 1.

Finally, assume that ε ≥ x/2 and set du = x/4 for all u ∈ V (G). Then |Se| =
�1/x� for edges of types 1 and 2 while |Se| = �1/x� + 1 for edges of type 3. This
implies that:

|S| = �1/x� · |E(G)|+ |E3|.
Take a maximum matching of G as E3 and place two vertices ū and v̄ on each edge
uv in E3 at distance x/4 from its both endpoints. Choose one of edges incident to
each vertex v which E3 does not cover, as an edge in E2 and put v̄ on it at distance
x/4 from v. Set E1 = E(G) − E2 ∪ E3. Then {v̄ : v ∈ V (G)} extends to S, which
attains the maximum of |S| under the assumption here. This gives the lower bound
in (i) with |E3| = μ(G).
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Now evaluate |Se| to show the upper bounds for BG(x) in the theorem. In Case
1, we have

|Se| =
⌊
1 + du + dv

x

⌋
− 1 ≤

⌊
1 + x

x

⌋
− 1 =

⌊
1

x

⌋

since du ≤ x/2 and dv ≤ x/2. In Case 2, we have:

|Se| =
⌊
1− du + dv

x

⌋
≤

⌊
1 + x/2

x

⌋
.

The last value in this inequality is equal to �1/x� + 1 if ε ≥ x/2, and to �1/x� if
ε < x/2. In Case 3, we have simply:

|Se| =
⌊
1− du − dv

x

⌋
+ 1 ≤

⌊
1

x

⌋
+ 1.

Therefore, if ε < x/2, then we have:

|S| = ∑
e∈E(G)

|Se| ≤ �1/x� · |E(G)|+ |E3| ≤ �1/x� · |E(G)|+ μ(G).

This gives the upper bound for BG(x) in (ii). Also we have the following for (i):

|S| = ∑
e∈E(G)

|Se| ≤ �1/x� · |E(G)|+ |E2 ∪ E3|.

Since each edge in E2 ∪ E3 contains v̄ for at least one vertex v ∈ V (G), then
|E2 ∪ E3| ≤ |V (G)|. If E3 �= ∅, then |E2 ∪ E3| ≤ |V (G)| − 1 since at least one edge
contains two v̄’s. If there is no cycle consisting of some edges in E2∪E3, then E2∪E3

induces either a tree or a forest and hence |E2 ∪ E3| ≤ |V (G)| − 1, too.

We may assume that E3 = ∅ and that there is a cycle consisting of some edges
in E2. Let C = u0u1 · · ·uk−1 be such a cycle of length k with indices taken modulo
k. That is, ei = uiui+1 is an edge belonging to E2. We may assume that ūi lies on
ei and that di = d(ūi, ui) ≤ x/2. Put δ = min{x/2 − di : i = 0, 1, . . . , k − 1} and
suppose that d0 attains this minimum without loss of generality. Thus, d0+ δ = x/2.
Then we have di + δ ≤ x/2 and x− di − δ ≥ x/2 for i = 0, 1, . . . , k − 1.

Move all points in S ∩ C by distance δ in the same direction along C so that
d(ū0, u0) = x/2 afterward. It is clear that S is still an x-set since d(w, ui) ≥ x−di ≥
x/2 for any point w in S on any edge not belonging to C. In particular, we may
move the point in S on uk−1u0 nearest u0 to the point p at distance x/2 from u0

and re-choose p as ū0 since d(p, u0) = d(ū0, u0) = x/2. Thus, we have E3 �= ∅ after
re-choice of ū0 and hence |E2 ∪ E3| ≤ |V (G)| − 1 as we have discussed above.

To understand the behavior of BG(x) more clearly, we shall translate the theorem
into the following style:

COROLLARY 2. Let G be a connected graph and let n be any natural number. If
G is a tree, set α = 1; otherwise, set α = 0.
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(i) If 1
n+1

< x ≤ 2
2n+1

, then n|E(G)|+ μ(G) ≤ BG(x) ≤ n|E(G)|+ |V (G)| − 1.

(ii) If 2
2n+1

< x ≤ 1
n
, then n|E(G)|+ α ≤ BG(x) ≤ n|E(G)|+ μ(G).

(iii) BG(1/n) = n|E(G)|+ α.

Proof. Let x be a real number with 1
n+1

< x ≤ 1
n
. Then n = �1/x�. Solving

1 − �1/x�x ≥ x/2 for x, we obtain x ≤ 2
2n+1

. This implies that Cases (i) and (ii) in
the corollary correspond to (i) and (ii) in Theorem 1, respectively.

To evaluate the precise value of BG(1/n), we follow the notation in the proof of
Theorem 1 with x = 1/n and conclude the below:

Case 1:

|Se| =
⌊
n +

du + dv
x

⌋
− 1 =

{
n (du = dv = x/2)
n− 1 (otherwise).

Case 2:

|Se| =
⌊
n− du − dv

x

⌋
=

{
n− 1 (du > dv)
n (otherwise).

Case 3:

|Se| =
⌊
n− du + dv

x

⌋
+ 1 =

{
n+ 1 (du = dv = 0)
n (otherwise).

First suppose that V (G)− S �= ∅. That is, there is a vertex w of G with w̄ �= w.
Let E0

3 be the set of edges e = uv ∈ E3 with du = dv = 0. Since G is connected,
there is a path joining an edge in E0

3 and a vertex in V (G) − S if E0
3 �= ∅. Let

P = v0v1 · · · vk be such a path of the minimum length with w = vk ∈ V (G)− S and
let e = uv0 be the edge in E0

3 joined to w by P . Then each edge vivi+1 does not
belong to E0

3 for i = 0, 1, . . . , k − 1 by the minimality of |P |.
Since e ∈ E0

3 , its endpoint v0 belongs to Se with v̄0 = v0 and not to Sv0v1 , and
hence v0v1 does not belong to E3. Remove v0 from Se and add v0 to Sv0v1 . Then e
does not belong to E0

3 afterward. If v̄1 = v1 and if v̄1 ∈ Sv0v1 , then v0v1 belongs to
the new E0

3 and |E0
3 | does not change. Continue this argument, resetting e = v0v1

with the shorter path P = v1 · · · vk. On the other hand, either if v̄1 �= v1 or if
v̄1 /∈ Sv0v1 , then v0v1 does not belong to the new E0

3 and hence |E0
3 | decreased by 1.

In particular, the former condition happens when v1 = w. Therefore, we can reduce
|E0

3 | by 1 finally, modifying E0
3 along P .

We can repeat this modification as far as E0
3 �= ∅. If E0

3 becomes empty finally,
then we may assume that dv = x/2 for all vertices v ∈ V (G) and |Se| = n for all
edges e ∈ E(G) to maximize |S|; this assumption takes “otherwise” in Cases 2 and
3. In this case, we have |S| = n|E(G)|.
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If V (G) − S = ∅, then we have v̄ = v and dv = 0 for all vertices v ∈ V (G). In
this case, each edge of G should be divided evenly into intervals of length 1/n and
we have:

|S| = (n− 1)|E(G)|+ |V (G)| = n|E(G)|+ |V (G)| − |E(G)|.

This is greater than the previous if and only if |V (G)|− |E(G)| > 0, which is exactly
when G is a tree with |V (G)| − |E(G)| = 1. This implies the formula for (iii) in the
corollary.

3 Distinguishing with beans functions

As Corollary 2 shows, the value of BG(1/n) depends only on the number of edges
of G, but other values may not do. We shall show a class of graphs which have the
same number of edges but whose beans functions are all different as functions.

Let Cm·Cn denote the one-point join of two cycles Cm and Cn of lengthsm,n ≥ 3.
That is, Cm · Cn consists of two cycles which have only one common vertex. The
number of edges of Cm · Cn is equal to m+ n. We can determine its beans function
completely by similar arguments in the previous section.

THEOREM 3. If 3 ≤ m ≤ n, then:

BCm·Cn(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�m
x
� + �n

x
� (0 < x ≤ m);

�m+n
x

� (m < x ≤ m+n
2

);

1 (m+n
2

< x).

Proof. Let w be the unique vertex of degree 4 in Cm · Cn and let S be an x-set of
points on Cm · Cn which attains the value of BCm·Cn(x) for x > 0. If w ∈ S, then
we can rotate the points of S ∩ Cm slightly along Cm so that S does not contain w
and is still an x-set afterward. Thus, we may assume that w �∈ S. It is clear that
|S ∩ Cm| ≤ �m

x
� and |S ∩ Cn| ≤ �n

x
�.

First suppose that x ≤ m. Then Cm · Cn −Ux/2(w) consists of two arcs of length
m−x ≥ 0 and n− x ≥ 0. We can place �m

x
� points along the former and �n

x
� points

along the latter to make an x-set. Therefore, we have |S| = �m
x
�+ �n

x
�.

Now suppose that m < x. If S ∩ Cm = ∅, we would have |S| = �n
x
�. However,

we can improve this value, placing a point of S on Cm, as follows. Since m < x,
we cannot put two points of S on Cm. Let p denote the unique point of S placed
on Cm. Then we may assume that d(p, w) = m/2 and that S − {p} is contained in
Cn − Ux−m/2(w). Therefore,

|S| =
⌊
n− (2x−m)

x

⌋
+ 2 =

⌊
m+ n

x

⌋
≥

⌊
n

x

⌋
.
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This argument works only when n− (2x−m) ≥ 0, that is, when m < x ≤ m+n
2

.
Otherwise, we cannot place more than one point on Cm · Cn as points of an x-set,
and hence |S| = 1 if m+n

2
< x.

The beans functions BCm·Cn(x) can be expressed by a uniform formula. However,
they are all different functions as shown below:

THEOREM 4. Given two distinct pair (m1, n1) and (m2, n2) with mi ≤ ni, there
exists a positive real number x ≤ 1 such that BCm1 ·Cn1

(x) �= BCm2 ·Cn2
(x).

Proof. Put E = m+ n, which is equal to the number of edges on Cm · Cn, and let
x < 1 be a positive real number. Then we have E = Qx + ε for a natural number
Q = �E/x� ∈ N and a non-negative real number ε < x. Similarly, n = qx + δ for
q = �n/x� ∈ N and δ < x. Using these quantities, we can evaluate BCm·Cn(x) as
follows:

BCm·Cn(x) =
⌊
E − n

x

⌋
+

⌊
n

x

⌋

=
⌊
(Q− q)x+ (ε− δ)

x

⌋
+

⌊
qx+ δ

x

⌋

=
⌊
(Q− q)x+ (ε− δ)

x

⌋
+ q.

Clearly, |ε − δ| < x, and if ε − δ < 0 then the first term in the last formula is less
that Q− q. Therefore:

BCm·Cn(x) =

⎧⎨
⎩

�E/x� (ε ≥ δ);

�E/x� − 1 (ε < δ).

Now consider two pair of parameters (m1, n1) and (m2, n2). Since BCm·Cn(1) =
m+n = E, we may assume that m1 +n1 = m2+n2 = E and n1 > n2. Let x < 1 be
a positive real number and put n1 = q1x+ δ1 and n2 = q2x+ δ2 for natural numbers
q1, q2 ∈ N and a non-negative real numbers δ1, δ2 < x. In addition, assume that q1
is a prime number with n1 < q1 and δ1 = 0 after re-choosing x if necessary. Thus,
x = n1/q1 and this is less than 1. If δ2 = 0, we would conclude that q2 = q1n2/n1 and
this would not be a natural number since (q1, n1) = 1 and n1 > n2. Thus, δ2 > 0.
Furthermore, we can conclude that δ2 �= ε, as follows.

Suppose that δ2 = ε. Then we would have:

m2 = E − n2 = Qx+ ε− (q2x+ δ2) = (Q− q2)x.

Put q′2 = Q − q2. Since n1 > n2 ≥ m2, q
′
2 is a natural number less than q1. Since

(q1, q
′
2) = 1, there exist two integers λ and μ with λq1 + μq′2 = 1 and hence x =

λq1x+ μq′2x = λn1 + μm2 > 0 would be an integer, a contradiction; x was a positive
real number less than 1.
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Under this situation, there are two possibilities: (i) 0 = δ1 ≤ ε < δ2, or (ii)
0 = δ1 < δ2 < ε. In Case (i), we have BCm1 ·Cn1

(x) = Q and BCm2 ·Cn2
(x) = Q− 1 by

the previous argument, where Q = �E/x�. In Case (ii), we need to modify the value
of x. Increase x by a sufficiently small value. Then q1 decreases by 1 and δ1 becomes
very close to x. The other two values δ2 and ε will change slightly, preserving their
order. Thus, we have δ2 < ε < δ1 afterward and hence BCm1 ·Cn1

(x) = Q − 1 and
BCm2 ·Cn2

(x) = Q. In either case, we found a real number x so that BCm1 ·Cn1
(x) �=

BCm2 ·Cn2
(x).

4 Graphs with the same beans function

Let Tm,n be a tree obtained from two adjacent vertices u and v by adding m vertices
u1, . . . , um and n vertices v1, . . . , vn so that each ui is adjacent to u and each vj is
adjacent to v. Thus, we have deg u = m, deg v = n and deg ui = deg vj = 1.

THEOREM 5. Let x ≤ 1 be a positive real number and put ε = 1−�1/x�x. Then:

BTm,n(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(m+ n+ 1)�1/x� +m+ n+ 1 (2
3
x ≤ ε);

(m+ n+ 1)�1/x� +m+ n (1
2
x ≤ ε < 2

3
x);

(m+ n+ 1)�1/x� + 2 (1
3
x ≤ ε < 1

2
x);

(m+ n+ 1)�1/x� + 1 (0 ≤ ε < 1
3
x).

Proof. Let S be an x-set of the maximum size in Tm,n; that is, |S| = BTm,n(x).
Using the notation introduced in this section, we can arrange the points in S so that
all ui’s and all vj ’s belong to S and that the points on each edge uiu (or vjv) are
placed at equal intervals from ui (or vj). Let Suv, Suiu and Svjv be the set of points
in S lying along the edges uv, uiu and vjv, respectively. Let u

′
i be the one closest to

u in Suiu. and let v′j be the similar one for vj. Then we have either (i) d(u′
i, u) = ε

or (ii) d(u′
i, u) = x+ ε and hence |Suiu| = �1/x� + 1 or |Suiu| = �1/x� in each case.

First suppose that ε ≥ x/2. Assume that Case (i) happens for u1u. Then the
point u′ in Suv closest to u is located at distance x − ε or more from u and clearly
Case (i) happens for all uiu’s by the maximality of S. Call this situation “Type A”.
Thus, if Type A does not happen around u, then Case (ii) happens for all uiu’s. Call
it “Type B”. In this case, we may assume that u ∈ S, moving u′ to u. We can say
Types A or B around the vertex v, too. If Type X happens around u and Type Y
happens around v, we say that Type XY happens.

If Type AA happens, then the points in Suv must be contained in an interval of
length 1− 2(x− ε). Thus, we can evaluate |S| as follows:

|S| = (m+ n)(�1/x�+ 1) +
(⌊

1− 2x+ 2ε

x

⌋
+ 1

)
.
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The inside of the last blackets is equal to �1/x�+1 if ε ≥ 2
3
x, and to �1/x� otherwise.

Thus, the above formula for Type AA splits into two:

|S| = (m+ n)(�1/x� + 1) + �1/x�+ 1 (ε ≥ 2
3
x); (AA1)

|S| = (m+ n)(�1/x� + 1) + �1/x� (ε < 2
3
x). (AA2)

If Type AB happens, then we can calculate |S| as follows:

|S| = m(�1/x� + 1) + n�1/x� +
(⌊

1− x+ ε

x

⌋
+ 1

)
.

Since ε ≥ x/2, we have �(1 + ε)/x� = �1/x� + 1 and hence:

|S| = m(�1/x� + 1) + n�1/x� + (�1/x�+ 1). (AB)

If Type BB happens, then both endpoints of uv belong to S and we have:

|S| = (m+ n)�1/x� +
(⌊

1

x

⌋
+ 1

)
. (BB)

Comparing these formulas, we find that the formulas for Type AA attain the
maximum and hence they give the actual value of |S|.

Now suppose that ε < x/2. It is clear that Case (i) happens for at most one of
the m edges uiu’s. Call such a case “Type A” in turn. If Type A happens around u,
then we may assume that d(u′

1, u) = ε, d(u′
i, u) = x+ε for i �= 1 and d(u′, u) = x−ε.

On the other hand, Type B has the same situation as in the previous.

If Type AA happens, then:

|S| = (m+ n)�1/x� + 2 +
(⌊

1− 2x+ 2ε

x

⌋
+ 1

)
.

This splits into two, depending on the value of ε:

|S| = (m+ n)�1/x� + 2 + �1/x� (ε ≥ 1
3
x); (AA1)

|S| = (m+ n)�1/x� + 2 + �1/x� − 1 (ε < 1
3
x). (AA2)

If Type AB happens, then:

|S| = (m+ n)�1/x� + 1 +
(⌊

1− x+ ε

x

⌋
+ 1

)
.

Since ε < x/2, we have �(1 + ε)/x� = �1/x� and hence:

|S| = (m+ n)�1/x�+ 1 + �1/x�. (AB)

If Type BB happens, then:

|S| = (m+ n)�1/x�+ �1/x� + 1. (BB)
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Comparing these, we conclude that the formulas for Type AA give |S|.
By easy arguments, we can determine the values of BTm,n(x) for big beans x > 1

and conclude that the whole beans function BTm,n(x) is completely determined by
the values of m+ n:

BTm,n(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

m+ n+ 1 (1 < x ≤ 1.5);

m+ n (1.5 < x ≤ 2);

2 (2 < x ≤ 3);

1 (3 < x).

It is clear that Tm,n is isomorhpic to Tm′,n′ if and only if {m,n} = {m′, n′} and that
they have the same beans function if and only if m+ n = m′ + n′.

5 For further study

We could give lower and upper bounds for the beans function BG(x) within each
interval ( 1

n+1
, 1
n
] and some examples to show their sharpness. In fact, we have already

known that the values of BG(x) over one interval ( 1
n+1

, 1
n
] determine its all values

for x ≤ 1 and that the upper bound n · |E(G)| + |V (G)| − 1 given in Theorem 1
is attained for all connected graphs; the latter has been proved in [1]. We would
like to establish an algorithm to decide the value of BG(x) for a given x ≤ 1 in a
combinatorial way.
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