More classes of super cycle-antimagic graphs

P. Jeyanthi*
Research Centre, Department of Mathematics
Govindammal Aditanar College for Women
Tiruchendur, Tamilnadu
India
jeyajeyanthi@rediffmail.com
N.T. Muthuraja
Department of Mathematics, Cape Institute of Technology
Levengipuram, Tamilnadu
India
bareeshraja@yahoo.com
A. Semaničová-Feñovčíková
Department of Applied Mathematics and Informatics
Technical University, Letná 9, Košice
Slovakia
andrea.fenovcikova@tuke.sk

S. J. Dharshikha
Deloitte Consulting US India
Hyderabad India
sjdharshikha@gmail.com

Abstract

A simple graph $G=(V, E)$ admits an H-covering if every edge in E belongs to a subgraph of G isomorphic to a given graph H. Then the graph G admitting an H-covering is (a, d) - H-antimagic if there exists a bijection $f: V \cup E \rightarrow\{1,2, \ldots,|V|+|E|\}$ such that, for all subgraphs

[^0]H^{\prime} of G isomorphic to H, the H^{\prime}-weights, $w t_{f}\left(H^{\prime}\right)=\sum_{v \in V\left(H^{\prime}\right)} f(v)+$ $\sum_{e \in E\left(H^{\prime}\right)} f(e)$, form an arithmetic progression $a, a+d, a+2 d, \ldots, a+$ $(t-1) d$ where a is the first term, d is the common difference and t is the number of subgraphs of G isomorphic to H. Such a labeling is called super if $f(V)=\{1,2, \ldots,|V|\}$.

This paper deals with some results on anti-balanced sets and we show the existence of super (a, d)-cycle-antimagic labelings of fans and some square graphs.

1 Introduction

Let $G=(V, E)$ be a finite simple graph. A family of subgraphs $H_{1}, H_{2}, \ldots, H_{n}$ of G is called an edge-covering of G if each edge of E belongs to at least one of the subgraphs $H_{i}, i=1,2, \ldots, n$. Then the graph G admitting an H-covering is (a, d) -H-antimagic if there exists a bijection $f: V \cup E \rightarrow\{1,2, \ldots,|V|+|E|\}$ such that, for all subgraphs H^{\prime} of G isomorphic to H, the H^{\prime}-weights,

$$
w t_{f}\left(H^{\prime}\right)=\sum_{v \in V\left(H^{\prime}\right)} f(v)+\sum_{e \in E\left(H^{\prime}\right)} f(e),
$$

form an arithmetic progression $a, a+d, \ldots, a+(t-1) d$ where $a>0$ is the first term, $d \geq 0$ is the common difference and t is the number of subgraphs of G isomorphic to H. Such a labeling is called super if $f(V)=\{1,2, \ldots,|V|\}$. For $d=0$ it is called H-magic and H-supermagic, respectively.

The concept of H-magic graphs was introduced by Gutiérrez and Lladó [7] as an extension of the edge-magic and super edge-magic graphs. They proved that some classes of connected graphs such as the stars $K_{1, n}$ and the complete bipartite graphs $K_{n, m}$ are $K_{1, h}$-supermagic for some h. They also proved that the path P_{n} and the cycle C_{n} are P_{h}-supermagic for some h. Lladó and Moragas [13] proved that wheels, windmills, books and prisms are C_{h}-magic for some h. Maryati et al. [17] and Salman et al. [20] proved that certain families of trees are path-supermagic. Jeyanthi and Selvagopal [10] proved that one point union of n copies of a 2-connected graph, linear garland of a 2 -connected graph are H-supermagic. Interestingly, windmill is a particular case of one point union whereas ladder and triangular ladder are the particular cases of linear garland. Ngurah, Salman and Susilowati [19] proved that chains, wheels, triangles, ladders and grids are cycle-supermagic. Maryati, Salman and Baskoro [16] investigated the G-supermagicness of a disjoint union of c copies of a graph G and showed that the disjoint union of any paths is $c P_{h}$-supermagic for some c and h. Muthuraja, Selvagopal and Jeyanthi [18] showed that the square graphs of bistar, path and cycle are cycle-supermagic. They also proved that the middle graph of C_{n} is also C_{3}-supermagic. Jeyanthi and Muthuraja [12] proved that the graph $P_{m, n}$ for $m, n \geq 2$ is $C_{2 m}$-supermagic and the splitting graph of C_{n} is C_{4}-supermagic for $n \neq 4$.

The (a, d)- H-antimagic labeling was introduced by Inayah, Salman and Simanjuntak [8]. In [9] they investigated the super (a, d)- H-antimagic labelings for some shackles of a connected graph H. In [21] it is proved that wheels $W_{n}, n \geq 3$, are super (a, d) - C_{k}-antimagic for every $k=3,4, \ldots, n-1, n+1$ and $d=0,1,2$.

The (super) (a, d) - H-antimagic labeling is related to a super d-antimagic labeling of type $(1,1,0)$ of a plane graph that is the generalization of a face-magic labeling introduced by Lih [14]. Further information on super d-antimagic labelings can be found in $[2,5]$.

For $H \cong K_{2}$, (super) (a, d) - H-antimagic labelings are also called (super) (a, d) -edge-antimagic total labelings and have been introduced in [22]. More results on (a, d)-edge-antimagic total labelings, can be found in [4, 15]. The vertex version of these labelings for generalized pyramid graphs is given in [1].

The existence of super (a, d)-H-antimagic labelings for disconnected graphs is studied in [6] where it is proved that if a graph G admits a (super) (a, d) - H-antimagic labeling, where $d=|E(H)|-|V(H)|$, then the disjoint union of m copies of the graph G, denoted by $m G$, admits a (super) (b, d) - H-antimagic labeling as well. In [3] it is shown that the disjoint union of multiple copies of a (super) ($a, 1$)-tree-antimagic graph is also a (super) ($b, 1$)-tree-antimagic. A natural question is whether the similar result holds also for another differences and another H-antimagic graphs.

A fan $F_{n}, n \geq 2$, is a graph obtained by joining all the vertices of the path P_{n} on n vertices to a further vertex, called the centre. The vertices on the path we will call the path vertices. The edges adjacent to the central vertex are called the spokes and the remaining edges are called the path edges. The F_{n} contains $n+1$ vertices and $2 n-1$ edges.

For a simple connected graph G, the square of the graph G, denoted by G^{2}, is defined as the graph with the same vertex set as G and two vertices are adjacent in G^{2} if they are at a distance 1 or 2 apart in G.

In this paper we investigate the existence of super (a, d)-cycle-antimagic labelings of fans and some square graphs.

2 Known results on (k, δ)-anti-balanced sets

We use the following notation. For two integers $a, b, a<b$, let $[a, b]$ denote the set of all integers from a to b. For any subset \mathbb{S} of the set of integers \mathbb{Z} we write, $\sum \mathbb{S}=\sum_{x \in \mathbb{S}} x$ and for an integer k, let $k+\mathbb{S}=\{k+x: x \in \mathbb{S}\}$. Thus $k+[a, b]$ is the set $\{x \in \mathbb{Z}: k+a \leq x \leq k+b\}$. It can be easily verified that $\sum(k+\mathbb{S})=k|\mathbb{S}|+\sum \mathbb{S}$.

If $\mathbb{P}=\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$ is a partition of a set X of integers with the same cardinality then we say \mathbb{P} is an n-equipartition of X. Also we denote the set of subsets sums of the parts of \mathbb{P} by $\sum \mathbb{P}=\left\{\sum X_{1}, \sum X_{2}, \ldots, \sum X_{n}\right\}$.

A multiset is a generalization of the concept of a set that, unlike a set, allows multiple instances of the multisets elements. If X and Y are two multisets then their
union is also a multiset represented by $X \uplus Y$. If an element a appears m times in X and n times in Y, then a appears $m+n$ times in $X \uplus Y$. If X is a multiset of integers and k is an integer then $k \oplus X=\{k+x: x \in X\}$.

Let $k \in \mathbb{N}$ and let X be a multiset containing positive integers. Then X is said to be (k, δ)-anti-balanced if there exist k subsets of X, say $X_{1}, X_{2}, \ldots, X_{k}$ such that for every $i \in[1, k],\left|X_{i}\right|=\frac{|X|}{k}, \stackrel{\biguplus_{i=1}^{k} X_{i}=X \text { and for } i \in[1, k-1], \sum X_{i+1}-\sum X_{i}=\delta ~}{\text { in }}$ is satisfied.

We use the following results to prove our main results.
Lemma 2.1. [7] Let h and k be two positive integers and let $n=h k$. For each integer $0 \leq t \leq\left\lfloor\frac{h}{2}\right\rfloor$ there is a k-equipartition \mathbb{P} of $[1, n\rfloor$ such that $\sum \mathbb{P}$ is an arithmetic progression of difference $d=h-2 t$.

Lemma 2.2. [11] If h is even, then there exists a k-equipartition $\mathbb{P}=\left\{X_{1}, X_{2}, \ldots\right.$, $\left.X_{k}\right\}$ of $X=[1, h k]$ such that $\sum X_{r}=\frac{h(h k+1)}{2}$ for $1 \leq r \leq k$. Thus, the subset sums are equal and is equal to $\frac{h(h k+1)}{2}$.

Lemma 2.3. [11] Let h and k be two positive integers such that h is even and $k \geq 3$ is odd. Then there exists a k-equipartition $\mathbb{P}=\left\{X_{1}, X_{2}, \ldots, X_{k}\right\}$ of $X=[1, h k]$ such that $\sum X_{r}=\frac{(h-1)(h k+k+1)}{2}+r$ for $1 \leq r \leq k$. Thus, $\sum \mathbb{P}$ is a set of consecutive integers given by $\sum \mathbb{P}=\frac{(h-1)(h k+k+1)}{2}+[1, k]$.

The above lemma was proved using permutations on $[1, k]$ in [11]. We can deduce the result for $h=2$ which is that $\left\{Y_{1}, Y_{2}, \ldots, Y_{k}\right\}$ is a k-equipartition of $[1,2 k]$, where

$$
Y_{i}= \begin{cases}\left\{\frac{k-2 i+1}{2}, k+2 i\right\} & \text { for } 1 \leq r \leq \frac{k-1}{2} \\ \left\{\frac{3 k-2 i+1}{2}, 2 i\right\} & \text { for } \frac{k+1}{2} \leq r \leq k\end{cases}
$$

and $\sum Y_{i}=\frac{3 k+1}{2}+i$ for $1 \leq i \leq k$.
Lemma 2.4. [11] Let h and k be two even positive integers and $h \geq 4$. If $X=$ $[1, h k+1]-\left\{\frac{k}{2}+1\right\}$, there exists a k-equipartition $\mathbb{P}=\left\{X_{1}, X_{2}, \ldots, X_{k}\right\}$ of X such that $\sum X_{r}=\frac{h^{2} k+3 h-k-2}{2}+r$ for $1 \leq r \leq k$. Thus $\sum \mathbb{P}$ is a set of consecutive integers $\frac{h^{2} k+3 h-k-2}{2}+[1, k]$.

In the proof of this lemma, it is shown that $\left\{Z_{1}, Z_{2}, \ldots, Z_{k}\right\}$ is a k-equipartition of $[1,2 k+1]-\left\{\frac{k}{2}+1\right\}$, where

$$
Z_{i}= \begin{cases}\left\{\frac{k}{2}+1-i, k+1+2 i\right\} & \text { for } 1 \leq r \leq \frac{k}{2} \\ \left\{\frac{3 k}{2}+2-i, 2 i\right\} & \text { for } \frac{k}{2}+1 \leq r \leq k\end{cases}
$$

and $\sum Z_{i}=\frac{3 k}{2}+2+i$ for $1 \leq i \leq k$.

Lemma 2.5. [9] Let k be an integer such that $k \geq 2$. If

$$
X= \begin{cases}{[1, k+1] \uplus[2, k]} & \text { for } k \text { odd, } \\ {\left[1, \frac{k}{2}\right] \uplus\left[\frac{k}{2}+2, k+1\right] \uplus[2, k+1]} & \text { for } k \text { even },\end{cases}
$$

then X is $(k, 1)$-anti-balanced.
Lemma 2.6. [9] Let k be an integer such that $k \geq 2$. If $X=[1, k] \uplus[2, k+1]$ then X is ($k, 2$)-anti-balanced.

3 New results on (k, δ)-anti-balanced sets

We prove the following lemmas which are useful to prove our main results.
Lemma 3.1. Let n, r be positive integers, $n \geq 2,2 \leq r \leq n-1$ and let $m=$ $\min \{r, n-r+1\}$. If $X=\biguplus_{j=2}^{m}[j, n-j+1] \uplus[1, n]$, then X is $(n-r+1, r)$-antibalanced.

Proof. For $1 \leq i \leq n-r+1$, define $X_{i}=\{i, i+1, \ldots, i+r-1\}$. It can be easily verified that $\left|X_{i}\right|=r$ and $\underset{i=1}{\stackrel{n-r+1}{\biguplus}} X_{i}=X$. Also $\sum X_{i}=\frac{(r-1) r}{2}+r i$ and hence X is $(n-r+1, r)$-anti-balanced.

Illustration 3.1. For $n=9$ and $r=4$, let $X=\biguplus_{j=2}^{4}[j, 9-j+1] \uplus[1,9]=[2,8] \uplus[3,7] \uplus$ $[4,6] \uplus[1,9]$. We have (6, 4)-anti-balanced subsets $X_{1}=\{1,2,3,4\}, X_{2}=\{2,3,4,5\}$, $X_{3}=\{3,4,5,6\}, X_{4}=\{4,5,6,7\}, X_{5}=\{5,6,7,8\}$ and $X_{6}=\{6,7,8,9\}$. Then the subset sums are $10,14,18,22,26,30$.
Lemma 3.2. Let n, r be positive integers, $n \geq 2,2 \leq r \leq\left\lceil\frac{n+1}{2}\right\rceil$. If $X=[r, n-r+$ $1] \uplus[1, n]$, then X is $(n-r+1,2)$-anti-balanced, assuming that $[l, k]=\emptyset$ if $l>k$.

Proof. For $1 \leq i \leq n-r+1$, define $X_{i}=\{i, i+r-1\}$. It is easy to verify that $\left|X_{i}\right|=2$ and $\biguplus_{i=1}^{\biguplus} X_{i}=X$. Also $\sum X_{i}=r-1+2 i$ and hence X is $(n-r+1,2)$ -anti-balanced.

Illustration 3.2. For $n=10, r=6$ and $X=[6,5] \uplus[1,10]=[1,10]$, we have (5,2)-anti-balanced subsets $X_{1}=\{1,6\}, X_{2}=\{2,7\}, X_{3}=\{3,8\}, X_{4}=\{4,9\}$ and $X_{5}=\{5,10\}$.
For $n=10, r=5$ and $X=[5,6] \uplus[1,10]$, we have $(6,2)$-anti-balanced subsets $X_{1}=\{1,5\}, X_{2}=\{2,6\}, X_{3}=\{3,7\}, X_{4}=\{4,8\}, X_{5}=\{5,9\}$ and $X_{6}=\{6,10\}$.
Lemma 3.3. Let $n \geq 2$, be a positive integer and let $X=[1, n]$. If r divides n, then X is $\left(\frac{n}{r}, r^{2}\right)$-anti-balanced.

Proof. For $1 \leq i \leq \frac{n}{r}$, define $X_{i}=\{(i-1) r+1,(i-1) r+2, \ldots i r\}$. Obviously $\left|X_{i}\right|=r$ and $\bigcup_{i=1}^{\frac{n}{r}} X_{i}=X$. Also $\sum X_{i}=\frac{r(r+1)}{2}+(i-1) r^{2}$ and hence X is $\left(\frac{n}{r}, r^{2}\right)$-antibalanced.

Illustration 3.3. Let $n=14, r=2$ and $X=[1,14]$. We have (7,4)-anti-balanced subsets $X_{1}=\{1,2\}, X_{2}=\{3,4\}, X_{3}=\{5,6\}, X_{4}=\{7,8\}, X_{5}=\{9,10\}, X_{6}=$ $\{11,12\}$ and $X_{7}=\{13,14\}$.
Lemma 3.4. Let $n, r, r<n$, be two relatively prime integers. Then the multiset $X=\underset{1}{\biguplus}[1, n]$ is $(n, 1)$-anti-balanced.

Proof. Since $\operatorname{gcd}(n, r)=1$, the linear congruence $r x \equiv 1(\bmod n)$ has solutions. Let k be the solution such that $k<n$. Actually k is called an inverse of r modulo n and r is called an inverse of k modulo n. Also we have $\operatorname{gcd}(n, k)=1$.

Consider the set $A=\{j k(\bmod n), n: 1 \leq j \leq n-1\}$. Then $A \subseteq[1, n]$. We prove that $A=[1, n]$. If $1 \leq i, j \leq n-1$ then $i k(\bmod n)=j k(\bmod n)$ and thus $n \mid(i-j) k$. Since $\operatorname{gcd}(n, k)=1$, we have n divides $i-j$. Now $i-j<n$ implies that $i-j=0$. Hence all the elements in A are distinct and $|A|=n$ thus we have $A=[1, n]$.

Let $X=\underset{1}{\biguplus_{1}^{r}}[1, n]$. We define the anti-balanced subsets of X as follows:

$$
X_{i}=\left\{\begin{array}{lcc}
\{j k & (\bmod n): i \leq j \leq i+r-1\} & \text { for } 1 \leq i \leq n-r+1 \\
\{j k & (\bmod n): i \leq j \leq n\} \cup\{j k & (\bmod n): 1 \leq j \leq i+r-n-1\} \\
& \text { for } n-r+2 \leq i \leq n
\end{array}\right.
$$

It can be easily verified that, $\left|X_{i}\right|=r, \stackrel{r}{\biguplus} X_{i}=X$ and $\left|X_{i} \cap X_{i+1}\right|=r-1$. Next we prove that $\sum X_{i+1}-\sum X_{i}=1$.
Case (i): $1 \leq i \leq n-r$.

$$
\sum X_{i+1}-\sum X_{i}=((i+r) k \quad(\bmod n))-(i k \quad(\bmod n))=r k \quad(\bmod n)=1
$$

Case (ii): $i=n-r+1$.

$$
\begin{aligned}
\sum X_{n-r+2}-\sum X_{n-r+1} & =(k(\bmod n))-((n-r+1) k(\bmod n)) \\
& =(r-n) k(\bmod n) \\
& =r k(\bmod n)=1 .
\end{aligned}
$$

Case (iii): $n-r+2 \leq i \leq n$.

$$
\begin{aligned}
\sum X_{i+1}-\sum X_{i} & =((r-n+i) k(\bmod n))-(i k(\bmod n)) \\
& =(r-n) k(\bmod n)=r k \quad(\bmod n)=1
\end{aligned}
$$

Thus we have $\sum X_{i+1}-\sum X_{i}=1$ for $1 \leq i \leq n-1$. Hence X is $(n, 1)$-antibalanced.

Illustration 3.4. Let $n=9, r=4$. Then $X=\underset{1}{4}[1,9]$. Since $4 \cdot 7 \equiv 1(\bmod 9)$, the inverse of 4 modulo 9 is 7 and we have $k=7$. By Lemma 3.4 we have $A=\{7(\bmod 9), 14(\bmod 9), 21(\bmod 9), 28(\bmod 9), 35(\bmod 9), 42(\bmod 9)$, $49(\bmod 9), 56(\bmod 9), 9\}$. That is, $A=\{7,5,3,1,8,6,4,2,9\}$. By definition, $X_{1}=\{7,5,3,1\}, X_{2}=\{5,3,1,8\}, X_{3}=\{3,1,8,6\}, X_{4}=\{1,8,6,4\}, X_{5}=$ $\{8,6,4,2\}, X_{6}=\{6,4,2,9\}, X_{7}=\{4,2,9,7\}, X_{8}=\{2,9,7,5\}$ and $X_{9}=\{9,7,5,3\}$. Then, the subset sums form an arithmetic sequence 16, 17, 18, 19, 20, 21, 22, 23, 24. Hence X is $(9,1)$-anti-balanced.

Lemma 3.5. Let n, r be positive integers, $n \geq 2,2 \leq r \leq n-1$. The elements of $[1, n]$ can be arranged as a sequence $\left(a_{i}\right)_{i=1}^{n}$ such that $\sum X_{i+1}-\sum X_{i}=1$ for $1 \leq i \leq n-r+1$, where $X_{i}=\left\{a_{i}, a_{i+1}, a_{i+2}, \ldots, a_{i+r-1}\right\}$.

Proof. Let n be an integer such that $n \geq 2$ and r be an integer such that $2 \leq r \leq n-1$. Let $t=\left\lceil\frac{n}{r}\right\rceil$ and $s=n(\bmod r)$. Then we have $n=(t-1) r+s$. We rearrange the numbers $[1, n]$ as follows:

$$
\left(\begin{array}{llll|llll}
1 & t+1 & \ldots & (s-1) t+1 & s t+1 & (s+1) t & \ldots & (r-1) t-r+s+2 \\
2 & t+2 & \ldots & (s-1) t+2 & s t+2 & (s+1) t+1 & \ldots & (r-1) t-r+s+3 \\
3 & t+3 & \ldots & (s-1) t+3 & s t+3 & (s+1) t+2 & \ldots & (r-1) t-r+s+4 \\
\vdots & \vdots & \ldots & \vdots & \vdots & \vdots & \vdots & \vdots \\
t-1 & 2 t-1 & \ldots & s t-1 & (s+1) t-1 & (s+2) t-2 & \ldots & n \\
t & 2 t & \ldots & s t & & & &
\end{array}\right)
$$

The arrangement of the numbers is given by the function

$$
f(i, j)= \begin{cases}(j-1) t+i & \text { for } 1 \leq i \leq t, 1 \leq j \leq s \\ (j-1)(t-1)+s+i & \text { for } 1 \leq i \leq t-1, s+1 \leq j \leq r\end{cases}
$$

We arrange the elements of $[1, n]$ as a finite sequence $a_{1}, a_{2}, \ldots, a_{n}$ as follows:
For $1 \leq m \leq n$, let $m=i r+j$, where $0 \leq i \leq t-1$ and $1 \leq j \leq r$. Define $a_{m}=f(i+1, j)$. Note that if $a_{m}=f(i+1, j)$ then $a_{m+r}=f(i+2, j)$ as $m+r=$ $(i+1) r+j$. Hence, $a_{m+r}-a_{m}=1$.

Now, for $1 \leq i \leq n-r+1$, let $X_{i}=\left\{a_{i}, a_{i+1}, a_{i+2}, \ldots, a_{i+r-1}\right\}$. Then $\sum X_{i+1}-$ $\sum X_{i}=a_{i+r}-a_{i}=1$.

It can be easily verified that $\sum X_{i}=\frac{\operatorname{tr}(r-1)-(r-s)^{2}+3 r-s-2}{2}+\ddot{u}$ for $1 \leq i \leq n-r+1$.
Illustration 3.5. Let $n=17, r=5 ; X=\biguplus_{j=1}^{5}[j, 17-j+1] ; t=\left\lceil\frac{17}{5}\right\rceil=4$ and $s=n$ $(\bmod r)=2$. Let us arrange the numbers $[1,17]$ as follows:

$$
\left[\begin{array}{ccccc}
1 & 5 & 9 & 12 & 15 \\
2 & 6 & 10 & 13 & 16 \\
3 & 7 & 11 & 14 & 17 \\
4 & 8 & & &
\end{array}\right]
$$

Then by definition, $X_{1}=\{1,5,9,12,15\}, X_{2}=\{5,9,12,15,2\}, X_{3}=\{9,12,15,2,6\}$, $X_{4}=\{12,15,2,6,10\}, X_{5}=\{15,2,6,10,13\}, X_{6}=\{2,6,10,13,16\}, X_{7}=\{6,10,13$, $16,3\}, X_{8}=\{10,13,16,3,7\}, X_{9}=\{13,16,3,7,11\}, X_{10}=\{16,3,7,11,14\}, X_{11}=$ $\{3,7,11,14,17\}, X_{12}=\{7,11,14,17,4\}$ and $X_{13}=\{11,14,17,4,8\}$. Hence X is $(13,1)$-anti-balanced as $\sum X_{i}=\frac{\operatorname{tr}(r-1)-(r-s)^{2}+3 r-s-2}{2}+i=41+i$ for $1 \leq i \leq 13$.

4 Some super (a, d)-cycle-antimagic graphs

Now we prove that fans admit super $(a, d)-C_{k}$-antimagic labelings for a wide variety of k and d.

Theorem 4.1. The fan $F_{n}, n \geq 3$, admits a super (a,d)-C C_{k}-antimagic labeling for $k=3,4, \ldots,\left\lfloor\frac{n}{2}\right\rfloor+2$ and $d \in\{1,2, k-5, k-4, \ldots, k+2,2 k-5,2 k-1\}$.

Proof. Let $V\left(F_{n}\right)=\left\{v, v_{1}, v_{2}, \ldots, v_{n}\right\}$ be the vertex set and let $E\left(F_{n}\right)=\left\{v v_{i}: 1 \leq\right.$ $i \leq n\} \cup\left\{v_{i} v_{i+1}: 1 \leq i \leq n-1\right\}$ be the edge set of the fan F_{n}.

Let k be an integer such that $3 \leq k \leq\left\lfloor\frac{n}{2}\right\rfloor+2$. For $1 \leq i \leq n-k+2$, let C_{k}^{i} be the k-cycle $v v_{i} v_{i+1} \ldots v_{i+k-2}$. Let V_{i} and E_{i} be respectively the vertex and edge set of C_{k}^{i}. Thus $V_{i}=\left\{v, v_{i}, v_{i+1}, \ldots, v_{i+k-2}\right\}$ and $E_{i}=E_{i}^{\prime} \cup E_{i}^{\prime \prime}$ where $E_{i}^{\prime}=\left\{v_{i+j} v_{i+j+1}\right.$: $0 \leq j \leq k-3\}$ and $E_{i}^{\prime \prime}=\left\{v v_{i}, v v_{i+k-2}\right\}$. Evidently $\left\{C_{k}^{i}: 1 \leq i \leq n-k+2\right\}$ is a C_{k}-covering of F_{n}.

Note that the weight of the cycle C_{k}^{i} under a total labeling f is $w t_{f}\left(C_{k}^{i}\right)=$ $f\left(V_{i}\right)+f\left(E_{i}^{\prime}\right)+f\left(E_{i}^{\prime \prime}\right)=\sum_{v \in V_{i}} f(v)+\sum_{e \in E_{i}^{\prime}} f(e)+\sum_{e \in E_{i}^{\prime \prime}} f(e)$.

We use the following results.
(R1) By Lemma 3.1, the multiset $X=\biguplus_{j=2}^{m}[j, n-j+1] \uplus[1, n]$ is $(n-k+2, k-1)$ -anti-balanced with anti-balanced subsets $X_{1}, X_{2}, \ldots, X_{n-k+2}$ such that $\sum X_{i}=$ $\Delta_{1}+(k-1) i$, where $m=\min \{k-1, n-k+2\}$ and $\Delta_{1}=\frac{(k-2)(k-1)}{2}$.
(R2) By Lemma 3.1, the multiset $X^{\prime}=(n+1) \oplus(\underset{j=2}{\biguplus}[j, n-j] \uplus[1, n-1])$ is ($n-k+2, k-2$)-anti-balanced with anti-balanced subsets $P_{1}, P_{2}, \ldots, P_{n-k+2}$ such that $\sum P_{i}=\Delta_{2}+(k-2) i$, where $\Delta_{2}=(k-2)(n+1)+\frac{(k-3)(k-2)}{2}$.
(R3) By Lemma 3.5, $Y=[1, n]$ can be arranged as a sequence $\left(a_{i}\right)_{i=1}^{n}$ such that $\sum R_{i+1}-\sum R_{i}=1$ for $1 \leq i \leq n-k+2$, where $R_{i}=\left\{a_{i}, a_{i+1}, a_{i+2}, \ldots, a_{i+k-2}\right\}$ such that $\sum R_{i}=\Delta_{3}+i$, where $\Delta_{3}=\frac{t(k-1)(k-2)-(k-s-1)^{2}+3(k-1)-s-2}{2}$ and $t=$ $\left\lceil\frac{n}{k-1}\right\rceil, s=n(\bmod (k-1))$.
(R4) By Lemma 3.5, $Y^{\prime}=(n+1)+[1, n-1]$ can be arranged as a sequence $\left(b_{i}\right)_{i=1}^{n-1}$ such that $\sum S_{i+1}-\sum S_{i}=1$ for $1 \leq i \leq n-k+2$, where $S_{i}=$

$$
\left.\begin{array}{l}
\left\{b_{i}, b_{i+1}, b_{i+2}, \ldots, b_{i+k-3}\right\} \text { such that } \sum S_{i}=\Delta_{4}+i, \text { where } \Delta_{4}=(k-2)(n+1)+ \\
\frac{t^{\prime}(k-2)(k-3)-\left(k-s^{\prime}-2\right)^{2}+3(k-1)-s^{\prime}-5}{2}
\end{array}\right) \text { and } t^{\prime}=\left\lceil\frac{n-1}{k-2}\right\rceil, s^{\prime}=(n-1)(\bmod (k-2)) . ~ \$
$$

(R5) By Lemma 3.2, the multiset $Z=2 n \oplus([k-1, n-k+2] \uplus[1, n])$ is $(n-k+2,2)$ -anti-balanced with anti-balanced subsets $Q_{1}, Q_{2}, \ldots, Q_{n-k+2}$ with $\sum Q_{i}=\Delta_{5}+$ $2 i$, where $\Delta_{5}=4 n+k-2$.

In order to prove the theorem, we use the results (R1) - (R5).
Case (i): F_{n} is super $(a, 1)-C_{k}$-antimagic
Define a total labeling f_{1} on F_{n} as follows: For $1 \leq i \leq n-k+2$, label the vertices in $V_{i}-\{v\}$ with $X_{n-k+3-i}, v$ with $n+1$, the edges in E_{i}^{\prime} with P_{i} and the edges in $E_{i}^{\prime \prime}$ with Q_{i}.

$$
\begin{aligned}
w t_{f_{1}}\left(C_{k}^{i}\right) & =f_{1}\left(V_{i}\right)+f_{1}\left(E_{i}^{\prime}\right)+f_{1}\left(E_{i}^{\prime \prime}\right) \\
& =\sum X_{n-k+3-i}+n+1+\sum P_{i}+\sum Q_{i} \\
& =\Delta_{1}+(k-1)(n-k+3-i)+n+1+\Delta_{2}+(k-2) i+\Delta_{5}+2 i \\
& =\Delta_{1}+\Delta_{2}+\Delta_{5}+(k-1)(n-k+3-i)+n+1+(k-2) i+2 i \\
& =\Delta_{1}+\Delta_{2}+\Delta_{5}+(k-1)(n-k+3)+n+1+i
\end{aligned}
$$

Then f_{1} is a super $(a, 1)$ - C_{k}-antimagic labeling, where $a=\Delta_{1}+\Delta_{2}+\Delta_{5}+(k-$ 1) $(n-k+3)+n+2$.

Case (ii): F_{n} is super $(a, 2)-C_{k}$-antimagic
Define a total labeling f_{2} on F_{n} as follows: For $1 \leq i \leq n-k+2$, label the vertices in $V_{i}-\{v\}$ with R_{i}, v with $n+1$, the edges in E_{i}^{\prime} with $S_{n-k+3-i}$ and the edges in $E_{i}^{\prime \prime}$ with Q_{i}.

$$
\begin{aligned}
w t_{f_{2}}\left(C_{k}^{i}\right) & =f_{2}\left(V_{i}\right)+f_{2}\left(E_{i}^{\prime}\right)+f_{2}\left(E_{i}^{\prime \prime}\right) \\
& =\sum R_{i}+n+1+\sum S_{n-k+3-i}+\sum Q_{i} \\
& =\Delta_{3}+i+n+1+\Delta_{4}+n-k+3-i+\Delta_{5}+2 i \\
& =\Delta_{3}+\Delta_{4}+\Delta_{5}+2 n-k+4+2 i
\end{aligned}
$$

Therefore, f_{2} is a super $(a, 2)-C_{k}$-antimagic labeling, where $a=\Delta_{3}+\Delta_{4}+\Delta_{5}+2 n-$ $k+6$.
Case (iii): F_{n} is super $(a, k-5)-C_{k}$-antimagic
Define a total labeling f_{3} on F_{n} as follows: For $1 \leq i \leq n-k+2$, label the vertices in $V_{i}-\{v\}$ with $R_{n-k+3-i}, v$ with $n+1$, the edges in E_{i}^{\prime} with P_{i} and the edges in $E_{i}^{\prime \prime}$ with $Q_{n-k+3-i}$.

$$
\begin{aligned}
w t_{f_{3}}\left(C_{k}^{i}\right) & =f_{3}\left(V_{i}\right)+f_{3}\left(E_{i}^{\prime}\right)+f_{3}\left(E_{i}^{\prime \prime}\right) \\
& =\sum R_{n-k+3-i}+n+1+\sum P_{i}+\sum Q_{n-k+3-i} \\
& =\Delta_{3}+n-k+3-i+n+1+\Delta_{2}+(k-2) i+\Delta_{5}+2(n-k+3-i) \\
& =\Delta_{3}+\Delta_{2}+\Delta_{5}+n-k+3-i+n+1+(k-2) i+2(n-k+3-i) \\
& =\Delta_{2}+\Delta_{3}+\Delta_{5}+4 n-3 k+10+(k-5) i
\end{aligned}
$$

Then f_{3} is a super $(a, k-5)-C_{k}$-antimagic labeling, where $a=\Delta_{2}+\Delta_{3}+\Delta_{5}+4 n-$ $2 k+5$.
Case (iv): F_{n} is super $(a, k-4)$ - C_{k}-antimagic
Define a total labeling f_{4} on F_{n} as follows: For $1 \leq i \leq n-k+2$, label the vertices in $V_{i}-\{v\}$ with X_{i}, v with $n+1$, the edges in E_{i}^{\prime} with $S_{n-k+3-i}$ and the edges in $E_{i}^{\prime \prime}$ with $Q_{n-k+3-i}$.

$$
\begin{aligned}
w t_{f_{4}}\left(C_{k}^{i}\right) & =f_{4}\left(V_{i}\right)+f_{4}\left(E_{i}^{\prime}\right)+f_{4}\left(E_{i}^{\prime \prime}\right) \\
& =\sum X_{i}+n+1+\sum S_{n-k+3-i}+\sum Q_{n-k+3-i} \\
& =\Delta_{1}+(k-1) i+n+1+\Delta_{4}+n-k+3-i+\Delta_{5}+2(n-k+3-i) \\
& =\Delta_{1}+\Delta_{4}+\Delta_{5}+4 n-3 k+10+(k-4) i .
\end{aligned}
$$

Then f_{4} is a super $(a, k-4)$ - C_{k}-antimagic labeling, where $a=\Delta_{1}+\Delta_{4}+\Delta_{5}+4 n-$ $2 k+6$.
Case (v): F_{n} is super $(a, k-3)-C_{k}$-antimagic
Define a total labeling f_{5} on F_{n} as follows: For $1 \leq i \leq n-k+2$, label the vertices in $V_{i}-\{v\}$ with R_{i}, v with $n+1$, the edges in E_{i}^{\prime} with P_{i} and the edges in $E_{i}^{\prime \prime}$ with $Q_{n-k+3-i}$.

$$
\begin{aligned}
w t_{f_{5}}\left(C_{k}^{i}\right) & =f_{5}\left(V_{i}\right)+f_{5}\left(E_{i}^{\prime}\right)+f_{5}\left(E_{i}^{\prime \prime}\right) \\
& =\sum R_{i}+n+1+\sum P_{i}+\sum Q_{n-k+3-i} \\
& =\Delta_{3}+i+n+1+\Delta_{2}+(k-2) i+\Delta_{5}+2(n-k+3-i) \\
& =\Delta_{2}+\Delta_{3}+\Delta_{5}+3 n-2 k+7+(k-3) i .
\end{aligned}
$$

Then f_{5} is a super ($a, k-3$)- C_{k}-antimagic labeling, where $a=\Delta_{2}+\Delta_{3}+\Delta_{5}+3 n-k+4$.
Case (vi): F_{n} is super $(a, k-2)$ - C_{k}-antimagic
Define a total labeling f_{6} on F_{n} as follows: For $1 \leq i \leq n-k+2$, label the vertices in $V_{i}-\{v\}$ with X_{i}, v with $n+1$, the edges in E_{i}^{\prime} with S_{i} and the edges in $E_{i}^{\prime \prime}$ with $Q_{n-k+3-i}$.

$$
\begin{aligned}
w t_{f_{6}}\left(C_{k}^{i}\right) & =f_{6}\left(V_{i}\right)+f_{6}\left(E_{i}^{\prime}\right)+f_{6}\left(E_{i}^{\prime \prime}\right) \\
& =\sum X_{i}+n+1+\sum S_{i}+\sum Q_{n-k+3-i} \\
& =\Delta_{1}+(k-1) i+n+1+\Delta_{4}+i+\Delta_{5}+2(n-k+3-i) \\
& =\Delta_{1}+\Delta_{4}+\Delta_{5}+3 n-2 k+7+(k-2) i .
\end{aligned}
$$

Then f_{6} is a super ($a, k-2$)-C C_{k}-antimagic labeling, where $a=\Delta_{1}+\Delta_{4}+\Delta_{5}+3 n-k+5$.
Case (vii): F_{n} is super $(a, k-1)-C_{k}$-antimagic
Define a total labeling f_{7} on F_{n} as follows: For $1 \leq i \leq n-k+2$, label the vertices in $V_{i}-\{v\}$ with $R_{n-k+3-i}, v$ with $n+1$, the edges in E_{i}^{\prime} with P_{i} and the edges in $E_{i}^{\prime \prime}$
with Q_{i}. Then

$$
\begin{aligned}
w t_{f_{7}}\left(C_{k}^{i}\right) & =f_{7}\left(V_{i}\right)+f_{7}\left(E_{i}^{\prime}\right)+f_{7}\left(E_{i}^{\prime \prime}\right) \\
& =\sum R_{n-k+3-i}+n+1+\sum P_{i}+\sum Q_{i} \\
& =\Delta_{3}+n-k+3-i+n+1+\Delta_{2}+(k-2) i+\Delta_{5}+2 i \\
& =\Delta_{3}+\Delta_{2}+\Delta_{5}+2 n-k+4+(k-1) i .
\end{aligned}
$$

Then f_{7} is a super ($a, k-1$)- C_{k}-antimagic labeling, where $a=\Delta_{2}+\Delta_{3}+\Delta_{5}+2 n+3$.
Case (viii): F_{n} is super (a, k) - C_{k}-antimagic
Define a total labeling f_{8} on F_{n} as follows: For $1 \leq i \leq n-k+2$, label the vertices in $V_{i}-\{v\}$ with X_{i}, v with $n+1$, the edges in E_{i}^{\prime} with $S_{n-k+3-i}$ and the edges in $E_{i}^{\prime \prime}$ with Q_{i}.

$$
\begin{aligned}
w t_{f_{8}}\left(C_{k}^{i}\right) & =f_{8}\left(V_{i}\right)+f_{8}\left(E_{i}^{\prime}\right)+f_{8}\left(E_{i}^{\prime \prime}\right) \\
& =\sum X_{i}+n+1+\sum S_{n-k+3-i}+\sum Q_{i} \\
& =\Delta_{1}+(k-1) i+n+1+\Delta_{4}+n-k+3-i+\Delta_{5}+2 i \\
& =\Delta_{1}+\Delta_{4}+\Delta_{5}+2 n-k+4+k i .
\end{aligned}
$$

Then f_{8} is a super (a, k)-C C_{k}-antimagic labeling, where $a=\Delta_{1}+\Delta_{4}+\Delta_{5}+2 n+4$.
Case (ix): F_{n} is super $(a, k+1)-C_{k}$-antimagic
Define a total labeling f_{9} on F_{n} as follows: For $1 \leq i \leq n-k+2$, label the vertices in $V_{i}-\{v\}$ with R_{i}, v with $n+1$, the edges in E_{i}^{\prime} with P_{i} and the edges in $E_{i}^{\prime \prime}$ with Q_{i}.

$$
\begin{aligned}
w t_{f_{9}}\left(C_{k}^{i}\right) & =f_{9}\left(V_{i}\right)+f_{9}\left(E_{i}^{\prime}\right)+f_{9}\left(E_{i}^{\prime \prime}\right) \\
& =\sum R_{i}+n+1+\sum P_{i}+\sum Q_{i} \\
& =\Delta_{3}+i+n+1+\Delta_{2}+(k-2) i+\Delta_{5}+2 i \\
& =\Delta_{3}+\Delta_{2}+\Delta_{5}+n+1+(k+1) i .
\end{aligned}
$$

Then f_{9} is a super ($a, k+1-C_{k}$-antimagic labeling, where $a=\Delta_{2}+\Delta_{3}+\Delta_{5}+n+k+2$.
Case (x): F_{n} is super $(a, k+2)-C_{k}$-antimagic
Define a total labeling f_{10} on F_{n} as follows: For $1 \leq i \leq n-k+2$, label the vertices in $V_{i}-\{v\}$ with X_{i}, v with $n+1$, the edges in E_{i}^{\prime} with S_{i} and the edges in $E_{i}^{\prime \prime}$ with Q_{i}.

$$
\begin{aligned}
w t_{f_{10}}\left(C_{k}^{i}\right) & =f_{10}\left(V_{i}\right)+f_{10}\left(E_{i}^{\prime}\right)+f_{10}\left(E_{i}^{\prime \prime}\right) \\
& =\sum X_{i}+n+1+\sum S_{i}+\sum Q_{i} \\
& =\Delta_{1}+(k-1) i+n+1+\Delta_{4}+i+\Delta_{5}+2 i \\
& =\Delta_{1}+\Delta_{4}+\Delta_{5}+n+1+(k+2) i .
\end{aligned}
$$

Then f_{10} is a super ($a, k+2$)- C_{k}-antimagic labeling, where $a=\Delta_{1}+\Delta_{4}+\Delta_{5}+n+k+3$.

Case (xi): F_{n} is super $(a, 2 k-5)$ - C_{k}-antimagic
Define a total labeling f_{11} on F_{n} as follows: For $1 \leq i \leq n-k+2$, label the vertices in $V_{i}-\{v\}$ with X_{i}, v with $n+1$, the edges in E_{i}^{\prime} with P_{i} and the edges in $E_{i}^{\prime \prime}$ with $Q_{n-k+3-i}$.

$$
\begin{aligned}
w t_{f_{11}}\left(C_{k}^{i}\right) & =f_{11}\left(V_{i}\right)+f_{11}\left(E_{i}^{\prime}\right)+f_{11}\left(E_{i}^{\prime \prime}\right) \\
& =\sum X_{i}+n+1+\sum P_{i}+\sum Q_{n-k+3-i} \\
& =\Delta_{1}+(k-1) i+n+1+\Delta_{2}+(k-2) i+\Delta_{5}+2(n-k+3-i) \\
& =\Delta_{1}+\Delta_{2}+\Delta_{5}+3 n-2 k+7+(2 k-5) i .
\end{aligned}
$$

Then f_{11} is a super ($a, 2 k-5$)- C_{k}-antimagic labeling, where $a=\Delta_{1}+\Delta_{2}+\Delta_{5}+3 n+2$.
Case (xii): F_{n} is super $(a, 2 k-1)-C_{k}$-antimagic
Define a total labeling f_{12} on F_{n} as follows: For $1 \leq i \leq n-k+2$, label the vertices in $V_{i}-\{v\}$ with X_{i}, v with $n+1$, the edges in E_{i}^{\prime} with P_{i} and the edges in $E_{i}^{\prime \prime}$ with Q_{i}.

$$
\begin{aligned}
w t_{f_{12}}\left(C_{k}^{i}\right) & =f_{12}\left(V_{i}\right)+f_{12}\left(E_{i}^{\prime}\right)+f_{12}\left(E_{i}^{\prime \prime}\right) \\
& =\sum X_{i}+n+1+\sum P_{i}+\sum Q_{i} \\
& =\Delta_{1}+(k-1) i+n+1+\Delta_{2}+(k-2) i+\Delta_{5}+2 i \\
& =\Delta_{1}+\Delta_{2}+\Delta_{5}+n+1+(2 k-1) i .
\end{aligned}
$$

Then f_{12} is a super ($a, 2 k-1$)-C C_{k}-antimagic labeling, where $a=\Delta_{1}+\Delta_{2}+\Delta_{5}+n+2 k$.
Hence the fan $F_{n}, n \geq 3$ admits a super $(a, d)-C_{k}$-antimagic labeling for $k=$ $3,4, \ldots,\left\lfloor\frac{n}{2}\right\rfloor+2$ and $d \in\{1,2, k-5, k-4, \ldots, k+2,2 k-5,2 k-1\}$.

The bistar graph $B_{n, m}$ is the graph obtained from K_{2} by joining n pendent edges to one end and m pendent edges to the other end of K_{2}. In the next theorem we will prove that the square of bistar graph $B_{n, m}$, denoted by $B_{n, m}^{2}$ admits cycle antimagic labeling. Note that the graph $B_{n, m}^{2}$ can be alternatively obtained from the complete bipartite graph $K_{2, r}$, where $r=n+m$, by adding an edge between the vertices of degree r.

Theorem 4.2. The graph $B_{m, n}^{2}$ admits a super (a, d)-C C_{3}-antimagic labeling for $m, n \geq 1$ and $d \in\{0,1,2,3,5\}$.

Proof. We denote the vertices and edges of $B_{m, n}^{2}$ in the following way $V\left(B_{m, n}^{2}\right)=$ $\left\{u, v, w_{i}: 1 \leq i \leq m+n\right\}$ and $E\left(B_{m, n}^{2}\right)=\left\{u v, u w_{i}, v w_{i}: 1 \leq i \leq m+n\right\}$. Let C_{3}^{i} be the 3-cycle $u w_{i} v u$ for $1 \leq i \leq m+n$. Then $\left\{C_{3}^{i}: 1 \leq i \leq m+n\right\}$ is a C_{3}-covering for $B_{m, n}^{2}$. The vertex set and edge set of C_{3}^{i} are $V_{i}=V\left(C_{3}^{i}\right)=\left\{u, v, w_{i}\right\}$ and $E_{i}=E\left(C_{3}^{i}\right)=\left\{u v, u w_{i}, v w_{i}\right\}$, respectively.

Note that the weight of the cycle C_{k}^{i} under a total labeling f is $w t_{f}\left(C_{3}^{i}\right)=$ $f\left(V_{i}\right)+f\left(E_{i}\right)$, where $f\left(V_{i}\right)=f(u)+f(v)+f\left(w_{i}\right)$ and $f\left(E_{i}\right)=f(u v)+f\left(u w_{i}\right)+f\left(v w_{i}\right)$.

We use the following results.
(R1) By Lemma 2.2, there exists an $(m+n)$-equipartition $\left\{X_{1}^{\prime}, X_{2}^{\prime}, \ldots, X_{m+n}^{\prime}\right\}$ of $[1,2(m+n)]$ such that $\sum X_{i}^{\prime}=2(m+n)+1$ for $1 \leq i \leq m+n$. Hence we can find an equipartition $\left\{X_{1}, X_{2}, \ldots, X_{m+n}\right\}$ of $(m+n+3)+[1,2(m+n)]$ such that $\sum X_{i}=\delta_{1}$ for $1 \leq i \leq m+n$, where $\delta_{1}=2(m+n+3)+2(m+n)+1=$ $4(m+n)+7$.
(R2) If $m+n$ is odd and $h=2$, by Lemma 2.3 there exists an $(m+n)$-equipartition $\left\{Y_{1}^{\prime}, Y_{2}^{\prime}, \ldots, Y_{m+n}^{\prime}\right\}$ of $[1,2(m+n)]$ such that $\sum Y_{i}^{\prime}=\frac{3(m+n)+1}{2}+i$ for $1 \leq$ $i \leq m+n$. Hence we can find an equipartition $\left\{Y_{1}, Y_{2}, \ldots, Y_{m+n}\right\}$ of $(m+$ $n+3)+[1,2(m+n)]$ such that $\sum Y_{i}=\delta_{2}+i$ for $1 \leq i \leq m+n$, where $\delta_{2}=2(m+n+3)+\frac{3(m+n)+1}{2}$.
(R3) If $m+n$ is even and $h=2$, by Lemma 2.4, for $h=2$ there exists an $(m+n)$ equipartition $\left\{Z_{1}^{\prime}, Z_{2}^{\prime}, \ldots, Z_{m+n}^{\prime}\right\}$ of $[1,2(m+n)+1]-\left\{\frac{m+n}{2}+1\right\}$ such that $\sum Z_{i}^{\prime}=\frac{3(m+n)}{2}+2+i$ for $1 \leq i \leq m+n$. Hence we can find an equipartition $\left\{Z_{1}, Z_{2}, \ldots, Z_{m+n}\right\}$ of $(m+n+2)+[1,2(m+n)+1]-\left\{\frac{m+n}{2}+1\right\}$ such that $\sum Z_{i}=\delta_{3}+i$ for $1 \leq i \leq m+n$, where $\delta_{3}=2(m+n+2)+\frac{3(m+n)}{2}+2+i$.
(R4) By Lemma 2.1, there exists an $(m+n)$-equipartition $\left\{P_{1}^{\prime}, P_{2}^{\prime}, \ldots, P_{m+n}^{\prime}\right\}$ of $[1,2(m+n)]$ such that $\sum P_{i}^{\prime}=m+n+2 i$ for $1 \leq i \leq m+n$. Hence we can find an equipartition $\left\{P_{1}, P_{2}, \ldots, P_{m+n}\right\}$ of $(m+n+3)+[1,2(m+n)]$ such that $\sum P_{i}=\delta_{4}+2 i$ for $1 \leq i \leq m+n$, where $\delta_{4}=2(m+n+3)+m+n+2 i=$ $3(m+n)+6+2 i$.
(R5) By Lemma 3.3, there exists an $(m+n)$-equipartition $\left\{Q_{1}^{\prime}, Q_{2}^{\prime}, \ldots, Q_{m+n}^{\prime}\right\}$ of $[1,2(m+n)]$ such that $\sum Q_{i}^{\prime}=4 i-1$ for $1 \leq i \leq m+n$. Hence we can find an equipartition $\left\{Q_{1}, Q_{2}, \ldots, Q_{m+n}\right\}$ of $(m+n+3)+[1,2(m+n)]$ such that $\sum Q_{i}=\delta_{5}+4 i$ for $1 \leq i \leq m+n$, where $\delta_{5}=2(m+n+3)-1+4 i=2(m+n)+5$.

In order to prove the theorem, we use the results (R1) - (R5).
Case (i): $B_{m, n}^{2}$ is super ($a, 0$)- C_{3}-antimagic
We distinguish two subcases.
Subcase (a): $m+n$ is odd.
Define a total labeling f_{0} on $B_{m, n}^{2}$ as follows: For $1 \leq i \leq m+n$, label the vertices $f_{0}(u)=1, f_{0}(v)=2$ and $f_{0}\left(w_{i}\right)=m+n+3-i$ and label the edge $u v$ with $m+n+3$ and the edges in $E_{i}-\{u v\}$ with Y_{i}. Then

$$
\begin{aligned}
w t_{f_{0}}\left(C_{3}^{i}\right) & =f_{0}\left(V_{i}\right)+f_{0}\left(E_{i}\right) \\
& =1+2+m+n+3-i+m+n+3+\sum Y_{i} \\
& =2(m+n)+9-i+\delta_{2}+i \\
& =\delta_{2}+2(m+n)+9 .
\end{aligned}
$$

Hence $B_{m, n}^{2}$ admits a super $(a, 0)-C_{3}$-antimagic labeling with $a=\delta_{2}+2(m+n)+9$.
Subcase (b): $m+n$ is even.

Define a total labeling f_{0} on $B_{m, n}^{2}$ as follows: For $1 \leq i \leq m+n$, label the vertices $f_{0}(u)=1, f_{0}(v)=2$ and $f_{0}\left(w_{i}\right)=m+n+3-i$ and label the edge $u v$ with $m+n+$ $2+\frac{m+n}{2}+1$ and the edges in $E_{i}-\{u v\}$ with Z_{i}. Then

$$
\begin{aligned}
w t_{f_{0}}\left(C_{3}^{i}\right) & =f_{0}\left(V_{i}\right)+f_{0}\left(E_{i}\right) \\
& =1+2+m+n+3-i+m+n+2+\frac{m+n}{2}+1+\sum Z_{i} \\
& =2(m+n)+9-i+\frac{m+n}{2}+\delta_{3}+i \\
& =\delta_{3}+2(m+n)+\frac{m+n}{2}+9 .
\end{aligned}
$$

Hence $B_{m, n}^{2}$ admits a super ($a, 0$)- C_{3}-antimagic labeling with $a=\delta_{3}+2(m+n)+$ $\frac{m+n}{2}+9$.
Case (ii): $B_{m, n}^{2}$ is super $(a, 1)-C_{3}$-antimagic
Define a total labeling f_{1} on $B_{m, n}^{2}$ as follows: For $1 \leq i \leq m+n$, label the vertices $f_{1}(u)=1, f_{1}(v)=2$ and $f_{1}\left(w_{i}\right)=2+i$ and label the edge $u v$ with $m+n+3$ and the edges in $E_{i}-\{u v\}$ with X_{i}.

$$
\begin{aligned}
w t_{f_{1}}\left(C_{3}^{i}\right) & =f_{1}\left(V_{i}\right)+f_{1}\left(E_{i}\right) \\
& =1+2+2+i+m+n+3+\sum X_{i} \\
& =m+n+8+i+\delta_{1}=\delta_{1}+m+n+8+i .
\end{aligned}
$$

Hence $B_{m, n}^{2}$ admits a super ($a, 1$)- C_{3}-antimagic labeling with $a=\delta_{1}+m+n+9$.
Case (iii): $B_{m, n}^{2}$ is super ($a, 2$)- C_{3}-antimagic
Again we distinguish two subcases according to the parity of $n+m$.
Subcase (a): $m+n$ is odd.
Define a total labeling f_{2} on $B_{m, n}^{2}$ as follows: For $1 \leq i \leq m+n$, label the vertices $f_{2}(u)=1, f_{2}(v)=2$ and $f_{2}\left(w_{i}\right)=2+i$ and label the edge $u v$ with $m+n+3$ and the edges in $E_{i}-\{u v\}$ with Y_{i}.

$$
\begin{aligned}
w t_{f_{2}}\left(C_{3}^{i}\right) & =f_{2}\left(V_{i}\right)+f_{2}\left(E_{i}\right) \\
& =1+2+2+i+m+n+3+\sum Y_{i} \\
& =m+n+8+i+\delta_{2}+i \\
& =\delta_{2}+m+n+8+2 i .
\end{aligned}
$$

Hence $B_{m, n}^{2}$ admits a super ($a, 2$)- C_{3}-antimagic labeling with $a=\delta_{2}+m+n+10$.
Subcase (b): $m+n$ is even.
Define a total labeling f_{2} on $B_{m, n}^{2}$ as follows: For $1 \leq i \leq m+n$, label the vertices $f_{2}(u)=2, f_{2}(v)=2$ and $f_{2}\left(w_{i}\right)=2+i$ and label the edge $u v$ with $m+n+2+\frac{m+n}{2}+1$
and the edges in $E_{i}-\{u v\}$ with Z_{i}.

$$
\begin{aligned}
w t_{f_{2}}\left(C_{3}^{i}\right) & =f_{2}\left(V_{i}\right)+f_{2}\left(E_{i}\right) \\
& =1+2+2+i+m+n+2+\frac{m+n}{2}+1+\sum Z_{i} \\
& =m+n+8+\frac{m+n}{2}+i+\delta_{3}+i \\
& =m+n+\frac{m+n}{2}+8+\delta_{3}+2 i .
\end{aligned}
$$

Thus $B_{m, n}^{2}$ admits a super ($a, 2$)- C_{3}-antimagic labeling with $a=\delta_{3}+m+n+\frac{m+n}{2}+10$.
Case (iv): $B_{m, n}^{2}$ is super ($a, 3$)- C_{3}-antimagic
Define a total labeling f_{3} on $B_{m, n}^{2}$ as follows: For $1 \leq i \leq m+n$, label the vertices $f_{3}(u)=1, f_{3}(v)=2$ and $f_{3}\left(w_{i}\right)=2+i$ and label the edge $u v$ with $m+n+3$ and the edges in $E_{i}-\{u v\}$ with P_{i}.

$$
\begin{aligned}
w t_{f_{3}}\left(C_{3}^{i}\right) & =f_{3}\left(V_{i}\right)+f_{3}\left(E_{i}\right) \\
& =1+2+2+i+m+n+3+\sum P_{i} \\
& =m+n+8+i+\delta_{4}+2 i=\delta_{4}+m+n+8+3 i .
\end{aligned}
$$

Hence $B_{m, n}^{2}$ admits a super ($a, 3$)- C_{3}-antimagic labeling with $a=\delta_{4}+m+n+11$.
Case (v): $B_{m, n}^{2}$ is super $(a, 5)-C_{3}$-antimagic
Define a total labeling f_{4} on $B_{m, n}^{2}$ as follows: For $1 \leq i \leq m+n$, label the vertices $f_{4}(u)=1, f_{4}(v)=2$ and $f_{4}\left(w_{i}\right)=2+i$ and label the edge $u v$ with $m+n+3$ and the edges in $E_{i}-\{u v\}$ with Q_{i}.

$$
\begin{aligned}
w t_{f_{4}}\left(C_{3}^{i}\right) & =f_{4}\left(V_{i}\right)+f_{4}\left(E_{i}\right) \\
& =1+2+2+i+m+n+3+\sum Q_{i} \\
& =m+n+8+i+\delta_{5}+4 i=\delta_{5}+m+n+8+5 i .
\end{aligned}
$$

Hence $B_{m, n}^{2}$ admits a super ($a, 5$)-C C_{3}-antimagic labeling with $a=\delta_{5}+m+n+13$, which means that the graph $B_{m, n}^{2}$ admits a super (a, d) - C_{3}-antimagic labeling for $m, n \geq 1$ and $d \in\{0,1,2,3,5\}$.

In the following theorem we prove that the square of a path is super $(a, d)-C_{3^{-}}$ antimagic for $1 \leq d \leq 6$.
Theorem 4.3. The graph P_{n}^{2} admits a super (a, d)-C C_{3}-antimagic labeling for $n \geq 3$ and $d \in\{1,2,3,4,5,6\}$.

Proof. We denote the vertices and edges of P_{n}^{2} such that $V\left(P_{n}^{2}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and $E\left(P_{n}^{2}\right)=\left\{v_{i} v_{i+1}: 1 \leq i \leq n-1\right\} \cup\left\{v_{i} v_{i+2}: 1 \leq i \leq n-2\right\}$. Let C_{3}^{i} be the 3 -cycle $v_{i} v_{i+1} v_{i+2}$ for $1 \leq i \leq n-2$. Then $\left\{C_{3}^{i}: 1 \leq i \leq n-2\right\}$ is a C_{3}-covering for P_{n}^{2}. The vertex set and edge set of C_{3}^{i} are $V_{i}=V\left(C_{3}^{i}\right)=\left\{v_{i}, v_{i+1}, v_{i+2}\right\}$ and $E_{i}=E\left(C_{3}^{i}\right)=E_{i}^{\prime} \cup\left\{v_{i} v_{i+2}\right\}$, where $E_{i}^{\prime}=\left\{v_{i} v_{i+1}, v_{i+1} v_{i+2}\right\}$.

Note that the weight of the cycle C_{k}^{i} under a total labeling f is $w t_{f}\left(C_{3}^{i}\right)=$ $f\left(V_{i}\right)+f\left(E_{i}^{\prime}\right)+f\left(v_{i} v_{i+2}\right)$, where $f\left(V_{i}\right)=f\left(v_{i}\right)+f\left(v_{i+1}\right)+f\left(v_{i+2}\right)$ and $f\left(E_{i}^{\prime}\right)=$ $f\left(v_{i} v_{i+1}\right)+f\left(v_{i+1} v_{i+2}\right)$.

First we introduce the following rules.
(R1) By Lemma 3.5, $[1, n]$ can be arranged as a sequence $\left(a_{i}\right)_{i=1}^{n}$ such that $\sum X_{i+1}-$ $\sum X_{i}=1$ for $1 \leq i \leq n-2$, where $X_{i}=\left\{a_{i}, a_{i+1}, a_{i+2}\right\}$ with $\sum X_{i}=\delta_{1}+i$ for $1 \leq i \leq n-2$ where $\delta_{1}=\frac{6 t-(3-s)^{2}-s+7}{2}, t=\left\lceil\frac{n}{3}\right\rceil$ and $s=n(\bmod 3)$.
(R2) By Lemma 3.1, the multiset $X=\biguplus_{j=2}^{m}[j, n-j+1] \uplus[1, n]$ is $(n-2,3)$-antibalanced with anti-balanced subsets $Y_{1}, Y_{2}, \ldots, Y_{n-2}$ with $\sum Y_{i}=3+3 i$, where $m=\min \{3, n-2\}$.
(R3) Let $X= \begin{cases}{[1, n-1] \uplus[2, n-2]} & \text { if } n-1 \text { is even, } \\ {\left[1, \frac{n-2}{2}\right] \uplus\left[\frac{n-2}{2}+2, n-1\right] \uplus[2, n-1]} & \text { if } n-1 \text { is odd, }\end{cases}$
By Lemma 2.5, the multiset $X=[1, n-1]$ is ($n-2,1$)-anti-balanced with antibalanced subsets $Y_{1}, Y_{2}, \ldots, Y_{n-2}$ defined by $Y_{i}=\left\{\left\lceil\frac{i+1}{2}\right\rceil,\left\lfloor\frac{n-2}{2}\right\rfloor+\left\lceil\frac{i}{2}\right\rceil+1\right\}$. Correspondingly, the multiset $n \oplus X$ is also $(n-2,1)$-anti-balanced with antibalanced subsets $P_{1}, P_{2}, \ldots, P_{n-2}$ defined by $P_{i}=\left\{n+\left\lceil\frac{i+1}{2}\right\rceil, n+\left\lfloor\frac{n-2}{2}\right\rfloor+\right.$ $\left.\left\lceil\frac{i}{2}\right\rceil+1\right\}$ and $\sum P_{i}=\delta_{2}+i$, where $\delta_{2}=2 n+\left\lfloor\frac{n-2}{2}\right\rfloor+2$.
(R4) By Lemma 2.6, the multiset $Y=[1, n-2] \uplus[2, n-1]$ is $(n-2,2)$-anti-balanced with anti-balanced subsets $Y_{1}, Y_{2}, \ldots, Y_{n-2}$ defined by $Y_{i}=\{i, i+1\}$. Correspondingly, the multiset $n \oplus Y$ is also ($n-2,2$)-anti-balanced with anti-balanced subsets $Q_{1}, Q_{2}, \ldots, Q_{n-2}$ defined by $Q_{i}=\{n+i, n+i+1\}$ and $\sum Q_{i}=2 n+$ $1+2 i$.

Now we prove that P_{n}^{2} is super $(a, d)-C_{3}$-antimagic for $1 \leq d \leq 6$.
Case (i): $d=1$
Define a total labeling f_{1} on P_{n}^{2} as follows: For $1 \leq i \leq n-2$, label the vertices in V_{i} with X_{i}, the edges in E_{i}^{\prime} with P_{n-1-i} and the edge $v_{i} v_{i+2}$ with $2 n-1+i$. Then

$$
\begin{aligned}
w t_{f_{1}}\left(C_{3}^{i}\right) & =f_{1}\left(V_{i}\right)+f_{1}\left(E_{i}\right) \\
& =\sum X_{i}+\sum P_{n-1-i}+2 n-1+i \\
& =\delta_{1}+i+\delta_{2}+n-1-i+2 n-1+i \\
& =\delta_{1}+\delta_{2}+3 n-2+i
\end{aligned}
$$

Hence P_{n}^{2} admits a super $(a, 1)$ - C_{3}-antimagic labeling with $a=\delta_{1}+\delta_{2}+3 n-1$.
Case (ii): $d=2$
Define a total labeling f_{2} on P_{n}^{2} as follows: For $1 \leq i \leq n-2$, label the vertices in
V_{i} with X_{i}, the edges in E_{i}^{\prime} with Q_{i} and the edge $v_{i} v_{i+2}$ with $3 n-2-i$. Then

$$
\begin{aligned}
w t_{f_{2}}\left(C_{3}^{i}\right) & =f_{2}\left(V_{i}\right)+f_{2}\left(E_{i}\right) \\
& =\sum X_{i}+\sum Q_{i}+3 n-2-i \\
& =\delta_{1}+i+2 n+1+2 i+3 n-2-i \\
& =\delta_{1}+5 n-1+2 i .
\end{aligned}
$$

Hence P_{n}^{2} admits a super ($a, 2$)- C_{3}-antimagic labeling with $a=\delta_{1}+5 n+1$.
Case (iii): $d=3$
Define a total labeling f_{3} on P_{n}^{2} as follows: For $1 \leq i \leq n-2$, label the vertices in V_{i} with Y_{i}, the edges in E_{i}^{\prime} with P_{i} and the edge $v_{i} v_{i+2}$ with $3 n-2-i$.

$$
\begin{aligned}
w t_{f_{3}}\left(C_{3}^{i}\right) & =f_{3}\left(V_{i}\right)+f_{3}\left(E_{i}\right) \\
& =\sum Y_{i}+\sum P_{i}+3 n-2-i \\
& =3+3 i+\delta_{2}+i+3 n-2-i \\
& =\delta_{2}+3 n+1+3 i
\end{aligned}
$$

Hence P_{n}^{2} admits a super ($a, 3$)- C_{3}-antimagic labeling with $a=\delta_{2}+3 n+4$.
Case (iv): $d=4$
Define a total labeling f_{4} on P_{n}^{2} as follows: For $1 \leq i \leq n-2$, label the vertices in V_{i} with Y_{i}, the edges in E_{i}^{\prime} with Q_{i} and the edge $v_{i} v_{i+2}$ with $3 n-2-i$.

$$
\begin{aligned}
w t_{f_{4}}\left(C_{3}^{i}\right) & =f_{4}\left(V_{i}\right)+f_{4}\left(E_{i}\right) \\
& =\sum Y_{i}+\sum Q_{i}+3 n-2-i \\
& =3+3 i+2 n+1+2 i+3 n-2-i \\
& =5 n+2+4 i .
\end{aligned}
$$

Hence P_{n}^{2} admits a super ($a, 4$)- C_{3}-antimagic labeling with $a=5 n+6$.
Case (v): $d=5$
Define a total labeling f_{5} on P_{n}^{2} as follows: For $1 \leq i \leq n-2$, label the vertices in V_{i} with Y_{i}, the edges in E_{i}^{\prime} with P_{i} and the edge $v_{i} v_{i+2}$ with $2 n-1+i$.

$$
\begin{aligned}
w t_{f_{5}}\left(C_{3}^{i}\right) & =f_{5}\left(V_{i}\right)+f_{5}\left(E_{i}\right) \\
& =\sum Y_{i}+\sum P_{i}+2 n-1+i \\
& =3+3 i+\delta_{2}+i+2 n-1+i \\
& =\delta_{2}+2 n+2+5 i .
\end{aligned}
$$

Hence P_{n}^{2} admits a super ($a, 5$)- C_{3}-antimagic labeling with $a=\delta_{2}+2 n+7$.

Case (vi): $d=6$
Define a total labeling f_{6} on P_{n}^{2} as follows: For $1 \leq i \leq n-2$, label the vertices in V_{i} with Y_{i}, the edges in E_{i}^{\prime} with Q_{i} and the edge $v_{i} v_{i+2}$ with $2 n-1+i$. Then

$$
\begin{aligned}
w t_{f_{6}}\left(C_{3}^{i}\right) & =f_{6}\left(V_{i}\right)+f_{6}\left(E_{i}\right) \\
& =\sum Y_{i}+\sum Q_{i}+2 n-1+i \\
& =3+3 i+2 n+1+2 i+2 n-1+i \\
& =4 n+3+6 i .
\end{aligned}
$$

Hence P_{n}^{2} admits a super ($a, 6$)- C_{3}-antimagic labeling with $a=4 n+9$.
This concludes the proof.
Note that Muthuraja, Selvagopal and Jeyanthi [18] showed that the square graph of a path is cycle-supermagic. Thus combining these results we find that P_{n}^{2} is super (a, d) - C_{3}-antimagic for $0 \leq d \leq 6$.

Acknowledgements

The research for this article was supported by APVV-15-0116.

References

[1] S. Arumugam, M. Miller, O. Phanalasy and J. Ryan, Antimagic labeling of generalized pyramid graphs, Acta Math. Sinica - English Series 30 (2014), 283290.
[2] M. Bača, L. Brankovic and A. Semaničová-Feňovčíková, Labelings of plane graphs containing Hamilton path, Acta Math. Sinica - English Series 27 (4) (2011), 701-714.
[3] M. Bača, Z. Kimáková, A. Semaničová-Feňovčíková and M. A. Umar, Treeantimagicness of disconnected graphs, Mathematical Problems in Engineering 2015 (2015), Article ID 504251, 4 pp.
[4] M. Bača and M. Miller, Super edge-antimagic graphs: A wealth of problems and some solutions, Brown Walker Press, Boca Raton, Florida, 2008.
[5] M. Bača, M. Miller, O. Phanalasy and A. Semaničová-Feňovčíková, Super d antimagic labelings of disconnected plane graphs, Acta Math. Sinica - English Series 26 (12) (2010), 2283-2294.
[6] M. Bača, M. Miller, J. Ryan and A. Semaničová-Feňovčíková, On H-antimagicness of disconnected graphs, Bull. Austral. Math. Soc. 94 (2016), 201-207.
[7] A. Gutiérrez and A. Lladó, Magic coverings, J. Combin. Math. Combin. Comput. 55 (2005), 43-56.
[8] N. Inayah, A. N. M. Salman and R. Simanjuntak, On (a, d) - H-antimagic coverings of graphs, J. Combin. Math. Combin. Comput. 71 (2009), 273-281.
[9] N. Inayah, R. Simanjuntak, A. N. M. Salman and K. I. A. Syuhada, On (a, d)-H-antimagic total labelings for shackles of a connected graph H, Australas. J. Combin. 57 (2013), 127-138.
[10] P. Jeyanthi and P. Selvagopal, More classes of H-supermagic graphs, Int. J. Alg. Comp. Math. 3 (1) (2010), 93-108.
[11] P. Jeyanthi and P. Selvagopal, Supermagic coverings of some simple graphs, Int. J. Math. Combin. 1 (2011), 33-48.
[12] P. Jeyanthi and N. T. Muthuraja, Some cycle-supermagic graphs, Int. J. Math. Soft Comp. 4 (2) (2014), 137-144.
[13] A. Lladó and J. Moragas, Cycle-magic graphs, Discrete Math. 307 (2007), 29252933.
[14] K. W. Lih, On magic and consecutive labelings of plane graphs, Utilitas Math. 24 (1983), 165-197.
[15] A. M. Marr and W. D. Wallis, Magic Graphs, Birkhäuser, New York, 2013.
[16] T. K. Maryati, A. N. M. Salman and E. T. Baskoro, Supermagic coverings of the disjoint union of graphs and amalgamations, Discrete Math. 313 (2013), 397-405.
[17] T. K. Maryati, A. N. M. Salman, E. T. Baskoro, J. Ryan and M. Miller, On H-supermagic labelings for certain shackles and amalgamations of a connected graph, Utilitas Math. 83 (2010), 333-342.
[18] N. T. Muthuraja, P. Selvagopal and P. Jeyanthi, Cycle-supermagic coverings and decomposition of some graphs, Amer. J. Math. Sci. Appl. 2 (1) (2014), 83-92.
[19] A. A. G. Ngurah, A. N. M. Salman and L. Susilowati, H-supermagic labelings of graphs, Discrete Math. 310 (2010), 1293-1300.
[20] A. N. M. Salman, A. A. G. Ngurah, and N. Izzati, On (super)-edge-magic total labelings of subdivision of stars S_{n}, Utilitas Math. 81 (2010), 275-284.
[21] A. Semaničová-Feňovčíková, M. Bača, M. Lascsáková, M. Miller and J. Ryan, Wheels are cycle-antimagic, Electron. Notes Discrete Math. 48 (2015), 11-18.
[22] R. Simanjuntak, M. Miller and F. Bertault, Two new (a, d)-antimagic graph labelings, Proc. Eleventh Australas. Workshop Combin. Alg. (AWOCA) (2010), 179-189.

[^0]: * Corresponding author.

