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Abstract

We complete the proof of the Friedlander, Gordon and Miller Conjecture
that every finite abelian group whose Sylow 2-subgroup either is trivial or
both non-trivial and non-cyclic is R-sequenceable. This settles a question
of Ringel for abelian groups.

1 Introduction

In 1961 Gordon [2] defined a group G to be sequenceable when there exists a permu-
tation

g0, g1, g2, . . . , gn−1

of its elements so that the sequence of partial products

g0, g0g1, g0g1g2, . . . , g0g1g2 · · · gn−1

are distinct. In that same paper he proved the following theorem.

1.1 Theorem. A finite abelian group G is sequenceable if and only its Sylow 2-
subgroup is non-trivial and cyclic.
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In 1974 Ringel [9] asked when there exists a permutation

g1, g2, . . . , gn−1

of the non-identity elements of a group such that the sequence

g2g
−1
1 , g3g

−1
2 , . . . , gn−1g

−1
n−2, g1g

−1
n−1

also is a permutation of the non-identity elements. A group G that admits such a
permutation is called R-sequenceable. As a matter of fact, Paige [8] used this concept
in 1951, but it was Ringel’s problem that motivated the most important paper on
this topic (discussed below).

We now provide a context which establishes the close connection between the two
concepts. Given a group G and a subset S of G such that S does not contain the

identity element of G, we define the Cayley digraph
−−→
Cay(G;S) by letting its vertices

be the elements of G and having an arc (g1, g2) if and only if g2 = g1s for some
s ∈ S. One special such Cayley digraph in which we are particularly interested is
when S = G − {1}, that is, the set S has everything in it other than the identity

element. We use the special notation
−→
K (G) for this Cayley digraph.

It is easy to see that a fixed element s ∈ S generates a subdigraph consisting
of directed cycles whose lengths are all |s|, where |s| denotes the order of s. Thus,

we obtain a factorization of
−−→
Cay(G;S) into |S| directed 2-factors. We call this

factorization the Cayley factorization of
−−→
Cay(G;S) and denote it by

−→F (G;S).

If
−→
D is a subdigraph of

−−→
Cay(G;S) with |S| arcs, and −→

D has exactly one arc from

each directed 2-factor in
−→F (G;S), then we say that

−→
D is orthogonal to

−→F (G;S).

In this language, the group G is sequenceable when
−→
K (G) admits an orthogonal

Hamilton directed path, and G is R-sequenceable when
−→
K(G) admits an orthogonal

directed cycle of length |G| − 1.

In spite of the similarity between these two concepts, they arose from quite differ-
ent settings. Gordon was interested in row-complete Latin squares, whereas, Ringel
was considering embeddings of complete graphs into orientable surfaces of positive
genus.

We now say a few words about some notational conventions in this paper. We use
(x, y) to denote an arc from x to y in a digraph, and xy to denote an edge joining x
and y in a graph. Continuing in this vein, (x1, x2, x3, . . . , xn) denotes a directed path
of length n − 1, (x1, x2, . . . , xn, x1) denotes a directed cycle of length n, x1x2 . . . xn

denotes a path of length n− 1 in a graph and x1x2 . . . xnx1 denotes a cycle of length
n in a graph. We use cyclic notation for permutations and in order to distinguish
permutations from directed paths, we are careful with the exposition. Thus, as a
permutation, (1, 2, 3, 4) is the cyclic permutation mapping 4 to 1, and i to i+ 1 for
i = 1, 2, 3.

For the rest of this paper, we consider only finite abelian groups and use additive
notation with one exception. For the direct sum of a copies of the cyclic group Zn,
we write Za

n rather than aZn.
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As mentioned above, Friedlander, Gordon and Miller [1] wrote the most significant
paper on Ringel’s problem. They conjectured that if G is a finite abelian group whose
Sylow 2-subgroup is either trivial or both non-trivial and non-cyclic, then G is R-
sequenceable. (In other words, the conjecture is saying that if G is not covered
by Theorem 1.1, then it is R-sequenceable.) They established that the conjecture
holds in many cases and introduced the following important strengthening of R-

sequenceability. If
−→
C = (g1, g2, . . . , gn−1, g1) is a directed cycle of length n − 1 that

is orthogonal to
−→
K (G), where G is an abelian group of order n, with the additional

properties that 0 is the vertex missed by
−→
C , and there exist three successive elements

gi, gi+1, gi+2 on
−→
C such that gi + gi+2 = gi+1, then we say that G is R∗-sequenceable.

We sometimes say that g1, g2, . . . , gn−1 is an R∗-sequence.

Friedlander, Gordon and Miller made considerable progress on the conjecture in
[1], but did not solve it completely. Nevertheless, several of their results are important
tools for the general conjecture. Some of the missing cases were settled in [4, 5, 11].
The proof of the conjecture is completed in this paper. We express the completion
in the form of the following theorem that includes all finite abelian groups.

1.2 Theorem. If G is a finite abelian group, then the following hold:
(1) G is sequenceable if the Sylow 2-subgroup is cyclic and non-trivial; and
(2) G is R-sequenceable if the Sylow 2-subgroup either is trivial, or the Sylow

2-subgroup is non-trivial and non-cyclic.

2 First Stage of Proof

Part (1) of Theorem 1.2 is covered by Theorem 1.1. So we move to part (2) which
has a natural partition into two subcases. The first subcase is that G has even order
with its Sylow 2-subgroup non-trivial and non-cyclic. The second subcase is that G
has odd order, that is, the Sylow 2-subgroup is trivial. We consider the first subcase
next beginning with some useful results from [1].

2.1 Lemma. The cyclic group Zn is R∗-sequenceable for all odd n > 5.

2.2 Lemma. Let G be an R∗-sequenceable abelian group and Zn, n > 1, an odd
order cyclic group. Then the following hold:

(1) If G has even order, then G⊕ Zn is R∗-sequenceable; and
(2) If G has odd order, then G ⊕ Zn is R∗-sequenceable whenever 3 does not

divide n.

2.3 Lemma. Elementary abelian groups are R-sequenceable.

The next two results are from [4, 7], respectively.

2.4 Lemma. If G is an even order abelian group and its Sylow 2-subgroup is neither
Z3

2 nor Z2 ⊕ Z4, then G is R-sequenceable.
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2.5 Lemma. If G is R∗-sequenceable, then Z3
2 ⊕G is R∗-sequenceable.

We now establish a method for handling the missing even order abelian groups.
This is inspired by Häggkvist’s Lemma in [3]. Consider the cycle u0u1u2 . . . uru0.
The edge uiuj divides the cycle into two subpaths with common end vertices ui and
uj. The length of the edge uiuj is the length of the shorter of the two paths unless
both subpaths have the same length in which case the length of the edge is (r+1)/2.

The following lemma follows from Corollary 2 of [6] but the proof we give here is
more straightforward. The proof for m odd may be found in [10].

2.6 Lemma. If we label the vertices of Kn cyclically as u0, u1, u2, . . . , un−1, where
n = 2m > 4, then there is a Hamilton path whose first edge has length m and every
other edge length is used twice.

Proof. When m is odd, start a path with the edge u0um which has length m.
Continue with the edge umu1 and then zig zag back and forth decreasing the length
by one with each edge until finishing with the edge u(m−1)/2u(m+1)/2. We refer to this
kind of path as a zig-zag path. At this point we have used one edge of each of the
lengths 1, 2, 3, . . . , m.

Next we add the edge u(m+1)/2u(3m−1)/2 which has length m − 1. The unused
vertices are um+1, um+2 through u(3m−3)/2, of which there are (m−3)/2 such vertices,
and u(3m+1)/2, u(3m+3)/2 through u2m−1, of which there are (m−1)/2 such vertices. We
now continue with an increasing zig-zag path starting with the edge u(3m−1)/2u(3m+1)/2

and finishing with the edge um+1u2m−1 of length m− 2. The resulting path satisfies
the conclusions of the lemma. Figure 1 shows the path for m = 5.

The solution when m is even is different in that we describe an iterative procedure
for which we show that it results in a path with the desired properties. We require
some notation. We denote the current path by P and say the terminal vertex of P
is the end vertex distinct from u0. The interval I[ui, uj], i ≤ j, denotes the set of
vertices {ui, ui+1, . . . , uj}.

Suppose P misses the α vertices I[u2m−α, u2m−1]. If, in addition, the remaining
vertices missed by P are I[u1, uα−1] and uα+1, the terminal vertex of P is uα, and the
edge lengths not used twice by P are 2, 3, . . . , 2α + 1, then we say the P is R-sided.
Note that the interval notation makes no sense when α = 1. In this case, we treat
the interval [u1, u0] as empty so that P terminates at u1 and the vertex u2 is not
on P .

The other possibility is that the remaining vertices missed by P are I[u1, uα+2]
and u2m−α−2, the terminal vertex of P is u2m−α−1, and the edge lengths not used
twice by P are 2, 3, . . . , 2α + 4. In this case we say the P is L-sided. The interval
notation makes no sense here for α = 0. So we treat the interval [u2m, u2m−1] as
empty and maintain the remaining conditions.

If P is R-sided with α ≥ 3, then extend P by adding the 3-path uαu2m−αuα+1

u2m−α+2. These new edges have lengths 2α − 1, 2α, 2α + 1 and the terminal vertex
of the updated P is now u2m−α+1. Thus, P is now L-sided and α has decreased by 3.
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On the other hand, if P is L-sided with α ≥ 1, then extend P by adding the
3-path u2m−α−1uα+2u2m−α−2uα. These new edges have lengths 2α+1, 2α+2, 2α+3
and the terminal vertex of the updated P is now uα. Thus, P is now R-sided and α
has not changed.

Construct the initial path P by starting with the edge u0um. Then add an
increasing zig-zag path starting with the 2-path umum−1um+1 and continue until
finishing with the edge from u(3m−2)/2 to um/2 of length m− 1. Then add the 3-path
um/2u(3m+2)/2u3m/2u(m−4)/2 to complete the initial P . Note that P is an R-sided path
with α = (m− 4)/2.
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We now begin iterations of the procedure described above and may continue until
we reach a path P that is L-sided with α = 0, or R-sided with α ∈ {1, 2}. If P is
L-sided with α = 0, then P terminates at u2m−1, is missing the vertices u1, u2, u2m−2

and requires edges of lengths 2, 3, and 4. The completion u2m−1u1u2m−2u2 does the
job.

If P is R-sided with α = 1, then the terminal vertex is u1, the missing vertices
are u2m−1, u2, and the unused lengths are 2 and 3. The completion u1u2m−1u2 works.

If P is R-sided with α = 2, then the terminal vertex is u2, the missing vertices are
u2m−2, u2m−1, u1, u3, and the unused lengths are 2, 3, 4 and 5. There is no completion
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for this case. If this is the initial P , then m = 8 and Figure 2 gives a solution for
m = 8. If this is not the initial P , then before the last iteration P was L-sided with
α = 2. So the vertices missed by P are u2m−4, u2m−2, u2m−1, I[u1, u4], the terminal
vertex is u2m−3, and the missing lengths are 2 through 8. The completion that works
is

u2m−3u3u2m−4u4u2m−1u1u2m−2u2.

This completes the proof.

Lemma 2.6 allows us to complete the even order case. Suppose the Sylow 2-
subgroup of G is Z2 ⊕ Z4. If this is the entire group G, then

(0, 2), (1, 3), (0, 3), (1, 1), (1, 0), (1, 2), (0, 1)

is an R-sequence.

Write G as the direct sum of its Sylow subgroups. From the preceding paragraph
we may assume that there is a summand of the form Zq, where q is an odd prime
power. So G is a direct sum of Z2 ⊕ Z4 ⊕ Zq

∼= Z2 ⊕ Z4q and an odd order abelian
group.

Lemma 2.6 tells us that there is a path P (undirected) of length 4q − 1 in K4q,
where we are thinking of this as a Cayley graph on Z4q, such that an initial edge of
P has length 2q (that is, joins 0 and 2q) and all remaining edge lengths occur twice
in P . Display the vertices of Z4q ⊕ Z2 as a 2× 4q array with the obvious coordinate
system from Z2 and Z4q.

Build an undirected cycle C of length 8q−1 as follows. Join (0, 1) to both (2q, 0)
and (2q, 1). Given two edges g1g2 and g3g4 of the same length in P , join (g1, 0) to
(g2, 0) and (g1, 1) to (g2, 1), and join (g3, 0) to (g4, 1) and (g3, 1) to (g4, 0). Finally, if
g is the terminal vertex of P distinct from 0, join (g, 0) to (g, 1).

The preceding construction yields a cycle C (undirected) of length 8q − 1. Note
that the vertex (0, 0) is not included in C. Also note that three successive vertices
are (2q, 0), (0, 1), (2q, 1) and (2q, 1) + (2q, 0) = (0, 1). Hence, if we direct C in either
direction to obtain a directed cycle, both directed cycles provide an R∗-sequence for
Z2 ⊕ Z4q. As the remaining summands in the direct sum of G have odd order, we
may apply part (1) of Lemma 2.2 as many times as required to obtain that G is
R∗-sequenceble.

If the Sylow 2-subgroup of G is Z3
2 , then Lemma 2.3 takes care of the case that

G ∼= Z3
2 , and Lemmas 2.1 and 2.5 take care of the case that there is a cyclic group

of odd order bigger than 5 in the direct sum of Sylow p-subgroups. Also, if both
Z3 and Z5 appear in the Sylow subgroups of G, then Lemma 2.1 tells us that Z15 is
R∗-sequenceable. Lemma 2.5 then takes care of this situation.

So we are left with groups of the form Z3
2 ⊕ Za

3 and Z3
2 ⊕ Zb

5, where a, b > 0.
Following are R∗-sequences for Z3

2 ⊕ Z3
∼= Z2

2 ⊕ Z6 and Z2
2 ⊕ Z10, respectively:

(0, 0, 1), (0, 1, 1), (0, 1, 0), (0, 0, 5), (1, 0, 0), (1, 0, 1), (0, 0, 4), (1, 1, 0),

(1, 1, 4), (1, 0, 5), (1, 1, 2), (1, 1, 5), (0, 1, 5), (1, 0, 2), (0, 1, 3), (1, 1, 1),

(1, 0, 3), (0, 1, 2), (0, 1, 4), (0, 0, 2), (1, 0, 4), (0, 0, 3), (1, 1, 3)
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and

(0, 0, 1), (1, 1, 6), (1, 1, 5), (0, 1, 9), (0, 1, 5), (0, 0, 3), (1, 1, 3), (0, 1, 2),

(1, 1, 4), (0, 1, 0), (1, 0, 3), (0, 1, 7), (0, 0, 6), (0, 0, 9), (1, 0, 9), (1, 0, 1),

(0, 1, 3), (1, 1, 8), (1, 0, 4), (1, 0, 8), (0, 1, 6), (1, 1, 9), (1, 1, 7), (1, 0, 2),

(0, 1, 1), (0, 0, 2), (0, 1, 4), (1, 1, 1), (0, 0, 7), (0, 0, 8), (0, 1, 8), (0, 0, 5),

(1, 1, 2), (1, 0, 6), (0, 0, 4), (1, 0, 5), (1, 0, 0), (1, 0, 7), (1, 1, 0).

We then use part (1) of Lemma 2.2 to obtain that G is R∗-sequenceable for both
forms. This completes the proof of Theorem 1.2 when G has even order.

3 The Gadget

To complete the proof of Theorem 1.2 for groups of odd order, we first state the
following corollary which is an easy consequence of Lemma 2.1 and Lemma 2.2.

3.1 Corollary. If G is an odd order abelian group whose Sylow 3-subgroup either is
trivial, or non-trivial and cyclic, or R∗-sequenceable, then G itself is R∗-sequenceable
unless G ∼= Z3 or G ∼= Z5 both of which are R-sequenceable.

The preceding corollary means that we need only show that abelian groups whose
Sylow 3-subgroups are non-trivial and non-cyclic are R-sequenceable. The method
we employ works, in fact, for all odd order groups and there is no gain in efficiency by
restricting ourelves to those groups satisfying the preceding condition on the Sylow
3-subgroups. Thus, we present the general method.

We work with direct sums. Given the direct sum G ⊕ H , we shall display the
vertices as an |H| × |G| array, where the columns correspond to the elements of G
and the rows correspond to elements of H . We develop some lemmas which prove to
be very useful, but we need a definition first.

3.2 Definition. Let f be a permutation ofH and let g1, g2 ∈ G. We define the f -lift

of the arc (g1, g2) onto
−→
K (G⊕H) to be the set of arcs {((g1, h), (g2, f(h))) : h ∈ H}.

We denote this set of arcs by πf (g1, g2).

In spite of the fact we use functional notation for permutations, we compose
permutations from left to right because we move through the arrays from left to
right. This gives us the composition rule (fg)(x) = g(f(x)).

3.3 Lemma. Let G and H be abelian groups. If (g1, g2, . . . , gr+1) is a directed path

in
−→
K (G) of length r, and f1, f2, . . . , fr are permutations of H, then the set of arcs

πf1(g1, g2) ∪ πf2(g2, g3) ∪ · · · ∪ πfr(gr, gr+1)
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forms n = |H| vertex-disjoint directed paths of length r in
−→
K (G⊕H), where the last

vertex of the directed path with initial vertex (g1, h) is (gr+1, f1f2 · · · fr(h)).
If (g1, g2, . . . , gr, g1) is a directed cycle in

−→
K (G) of length r, and f1, f2, . . . , fr are

permutations of H, then the set of arcs

πf1(g1, g2) ∪ πf2(g2, g3) ∪ · · · ∪ πfr(gr, g1)

forms vertex-disjoint directed cycles. The number of directed cycles equals the number
of cycles in the disjoint cycle decomposition of f1f2 · · · fr.

Proof. It is easy to see that πf (g1, g2) for any permutation f of H generates an
orientation of a perfect matching between vertices whose first coordinate is g1 and
vertices whose first coordinate is g2 so that every arc is oriented from g1 to g2. It
then follows directly that we obtain n vertex-disjoint directed paths as claimed.

If we consider the directed path starting at (g1, h), it is straightforward to see
that its terminal vertex is (gr+1, f1f2f3 · · · fr(h)).

The argument for a directed cycle in
−→
K(G) is essentially the same except that

πfr generates an arc from vertices in G ⊕ H whose first coordinate is gr to vertices
whose first coordinate is g1. It is then easy to see that a cycle of length t in the
disjoint cycle decomposition of f1f2f3 · · · fr generates a directed cycle of length rt in
G⊕H . The rest of the lemma now follows.

Lemma 3.3 gives us a way of controlling arcs in
−→
K (G⊕H). But we really would

like the arcs in the projection of an arc of
−→
K (G) to be generated by distinct elements

of G ⊕ H . This leads naturally to a known type of permutation. A permutation
f : H → H is an orthomorphism if the function g(x) = f(x)−x also is a permutation.
The next lemma tells us that orthomorphisms are precisely what we need.

3.4 Lemma. Let G and H be abelian groups. If f is an orthomorphism of H, then

the arcs of πf(gi, gj) in
−→
K(G ⊕ H) are generated by the group elements (gj − gi, h)

as h runs through H.

Proof. This follows immediately from the definition of an orthomorphism.

There are some special orthomorphisms we use. Let |H| be odd and define the
permutation T0 on H by T0(h) = −h for h ∈ H . It is easy to see that T0 is
an orthomorphism because H contains no involutions. We extend this particular
orthomorphism to Ta, a ∈ H , by defining Ta(h) = 2a − h. It is straightforward to
check that Ta also is an orthomorphism. An important feature of these particular
orthomorphisms is the following. When H ∼= Zn, n odd, then the composition

T0T1 = h+ 2 = (0, 2, . . . , n− 1, 1, 3, . . . , n− 2), (1)

that is, the product is an n-cycle.
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If G is an R∗-sequenceable abelian group of order m, then we have a directed
cycle of length m − 1 that misses the vertex 0 and has three successive vertices
a, b, c for which a + c = b. Label the vertices of the directed cycle in succession as
g1, g2, . . . , gm−1 so that a = g1, b = g2, c = g3. The canonical labelling of the group
G⊕H has the columns labelled so that the leftmost column is labelled g1, the next
column is labelled 0, and the remaining columns are labelled g2 through gm−1 from
left to right in that order.

We want to prove that G⊕H is R∗-sequenceable whenever possible. It is natural
to work with lifts of arcs of the directed cycle in

−→
K (G), but this directed cycle misses

the vertex 0 so that we need to get the vertices of the column labelled 0 involved.
We now describe how to do so.

3.5 Definition. Suppose that G is an abelian group with non-zero elements g1, g2, g3
satisfying g1+g3 = g2. Consider G⊕H with H abelian of odd order n ≥ 3. The lifts
πT0(g1, g2) ∪ πT0(g2, g3) consist of n vertex-disjoint directed paths of length 2 using
all the vertices of columns g1, g2, g3, and whose arcs are generated by (g2−g1, h) and
(g3 − g2, h) as h runs through H .

Now for each pair h,−h of additive inverses, replace the pair of directed 2-paths

((g1, h), (g2,−h), (g3, h))and ((g1,−h), (g2, h), (g3,−h)), h 	= 0,

by the directed 3-paths

((g1, h), (0,−h), (0, h), (g3,−h)) and ((g1,−h), (g2, h), (g2,−h), (g3, h).

The directed 2-path ((g1, 0), (g2, 0), (g3, 0)) is left unaltered. The new collection of
directed paths is called the gadget on columns g1, 0, g2, g3.

3.6 Lemma. The arcs of the gadget on columns g1, 0, g2, g3 are generated by the
elements (g2−g1, h), (g3−g2, h), (0, h

′) for all h ∈ H and all h′ 	= 0 in H. Moreover,
the terminal vertex of the directed path whose initial vertex is (g1, h) is (g3,−h).

Proof. The new arc ((g1, h), (0,−h)) of the gadget is generated by the group ele-
ment (g3−g2,−2h) because g1+g3 = g2. Similarly, the arc ((0, h), (g3,−h)) is gener-
ated by the group element (g2 − g1,−2h). The two vertical arcs ((0,−h), (0, h)) and
((g2, h), (g2,−h)) are generated by the group elements (0, 2h) and (0,−2h). Finally,
the arc ((g1,−h), (g2, h)) is generated by (g2 − g1, 2h), and the arc ((g2,−h), (g3, h))
is generated by (g3−g2, 2h). Hence, the claims about which group elements generate
the arcs of the gadget follow.

It is easy to see that the directed path beginning at (g1, h) terminates at (g3,−h)
for all h ∈ Zn.

The next lemma is the basis for establishing Theorem 1.2 when G has odd order.

3.7 Lemma. Let G be an R∗-sequenceable abelian group of order m. If H is an odd
order abelian group for which there are orthomorphisms f1, f2, . . . , ft of H such that
T0f1f2 · · · ft is an |H|-cycle and m−t−3 ≥ 0 is even, then G⊕H is R∗-sequenceable.
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Proof. We use the canonical labelling of G ⊕ H . The first four columns of the
array correspond to the group elements g1, 0, g2, g3 in that order, where g1+ g3 = g2.
Employ the gadget on these first four columns. Because of Lemma 3.6, it follows
that if for each remaining (gi, gi+1) and (gr−1, g1), we employ a lift arising from an
orthomorphism ofH , the arcs will have been generated by all elements of G⊕H other
than (0, 0). Moreover, the vertex (0, 0) is isolated and the vertices(g1, 0), (g2, 0), (g3, 0)
occur in succession. Because (g1, 0)+(g3, 0) = (g2, 0), if the arcs form a single directed
cycle, then G⊕H is R∗-sequenceable.

From Lemma 3.6, the permutation from column g1 to column g3 is T0. We
then successively employ the orthomorphisms f1, f2, . . . , ft for the following lifts. By
hypothesis, the product T0f1f2 · · · ft is a cycle of length |H|.

There are m− (t+3) further lifts to be employed. If m− (t+3) = 0, we already
have an |H|-cycle and we are done. If m − (t + 3) > 0, then it is even and we use
T0 for each subsequent lift. The product of an even number of T0 permutations is
the identity as T0 is an involution. Thus, the final product is a cycle of length |H|
completing the proof.

This method of lifts brings to the fore why the prime 3 is a nagging problem.
For a ∈ Zn satisfying gcd(n, a) = 1, let Ma denote the permutation of Zn defined
by Ma(x) = ax. When 3 does not divide n, it is straightforward to check that
both M2 and M(n−1)/2 are orthomorphisms. Note that M2M(n−1)/2 = T0. Then
T0M2M(n−1)/2T0T1 = T0T1 is an n-cycle and Lemma 2.2 applies for m ≥ 7. When 3
divides n, unfortunately, M(n−1)/2 is not an orthomorphism forcing us to find special
arguments for the prime 3. This is what we now examine.

3.8 Corollary. If G is an R∗-sequenceable abelian group of odd order, then G⊕Z3e

is R∗-sequenceable for e ≥ 2.

Proof. It is easy to verify that the permutations f0 = T0, f1 = M2, and f2 =
(0, 1)(2, 6, 3, 5, 8, 4)(7) satisfy f0f1f2 = (0, 1, 7, 2, 8, 6, 3, 5, 4) for e = 2. This means
that G⊕Z9 is R

∗-sequenceable when G is R∗- sequenceable according to Lemma 3.7.

For e = 3, let f0 = T0. Let

f1=(0, 26, 3, 8, 19, 7, 10, 16, 5, 24, 17, 12, 20, 14, 4, 22, 23, 25, 11,18,1,13, 9, 6, 15, 2)(21)

and f2 =

(0, 22, 21, 13, 11)(1, 6, 7)(2, 8, 15, 5, 23, 10, 19, 4, 24, 20, 3, 16, 18, 26, 14, 25)(9, 12)(17).

Again it is easy to verify that the permutation f0f1f2 is a 27-cycle as required.
Lemma 3.7 then implies that G⊕Z27 is R

∗-sequenceable when G is R∗-sequenceable.

We now want to show thatG⊕Z3e is R
∗-sequenceable, when G is R∗-sequenceable,

for all e ≥ 2 and we proceed by induction on e having established the result for
e = 2, 3. Consider e ≥ 4. Let N be the subgroup of Z3e of order 3e−2 so that Z3e/N
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is isomorphic to Z9. Use 0, 1, . . . , 8 as the coset representatives and let x correspond
to the element N + x in the quotient group of order 9.

From above we know there are three orthomorphisms f0, f1, f2 of Z3e/N so that
f0f1f2 = (0, 1, 7, 2, 8, 6, 3, 5, 4), and f0(0) = f1(0) = 0 and f2(0) = 1. Suppose that
fi(x) = y. Then let α be any orthomorphism of N . Define the α-lift action of fi on
N + x by letting fi(n+ x) = α(n) + y, n ∈ N . It is easy to see that fi acting on the
coset N + x picks up all elements of the form N + (y − x) via fi(n + x) − (n + x).
Thus, fi is an orthomorphism of Z3e if the action on each coset is defined via the lift
of an orthomorphism of N as just described.

We now define f0, f1, f2 to ensure that f0f1f2 is a cycle of length 3e. Let α0, α1, α2

be orthomorphisms ofN such that α0α1α2 is a cycle of length 3e−2 on N by induction.
We have that f0 maps 0 to itself. We use the lift of the orthomorphism α0 on N to
define f0 on N . Continuing, we know that f1 also maps 0 to 0. We use the lift of α1

to define f1 acting on N . Finally, to get the action of f2 on N , use the lift of α2 to
define the action of f2 mapping N to N + 1. For all other lifts, use T0 on N .

We claim that f0f1f2 is a cycle of length 3e. To see this, first note that f0f1f2 acts
as [0, 1, 7, 2, 8, 6, 3, 5, 4] on the cosets. Because α0α1α2 is a cycle of length 3e−2 on
N and we use the lifts of these three orthomorphisms to give the action of f0, f1, f2
on N , we see that if α0α1α2(n1) = n2, then f0f1f2(n1) = n2 + 1. All remaining lifts
use T0 and there are an even number of them so that f0f1f2 is a full cycle of length
9 · 3e−2 = 3e as required.

If every summand in the Sylow 3-subgroup has order at least 9, then any summand
is R∗-sequenceable by Lemma 2.1. Repeated applications of Corollary 3.8 yield that
the Sylow 3-subgroup is R∗-sequenceable. Corollary 3.1 then implies that G is R∗-
sequenceable.

When exactly one summand in the Sylow 3-subgroup is Z3, we require a lemma.
Two useful items for the proof are given first.

The following are R∗-sequences for Z3 ⊕ Z9 and Z3 ⊕ Z27, respectively:

(2, 0), (2, 3), (0, 3), (0, 5), (1, 2), (2, 4), (1, 1), (1, 8), (0, 1), (1, 4), (1, 0), (2, 1), (2, 2),

(2, 8), (1, 6), (0, 2), (1, 7), (0, 8), (1, 3), (0, 7), (1, 5), (0, 4), (2, 7), (0, 6), (2, 6), (2, 5)

and

(0, 1), (0, 26), (0, 25), (1, 24), (2, 10), (1, 11), (1, 25), (0, 11), (2, 16), (0, 8),

(2, 26), (1, 15), (0, 14), (2, 4), (1, 23), (0, 23), (2, 20), (1, 8), (2, 15), (1, 0),

(0, 10), (0, 17), (1, 19), (2, 14), (0, 19), (1, 20), (1, 13), (1, 7), (1, 18), (1, 3),

(2, 13), (2, 17), (2, 7), (0, 22), (2, 25), (1, 6), (0, 20), (2, 0), (2, 8), (2, 5),

(0, 2), (1, 10), (2, 1), (2, 3), (0, 7), (2, 18), (2, 9), (0, 18), (1, 14), (0, 12),

(1, 26), (1, 2), (0, 6), (2, 12), (2, 22), (1, 4), (2, 2), (2, 21), (0, 21), (2, 23),

(0, 16), (1, 22), (2, 11), (2, 24), (2, 6), (1, 1), (0, 24), (1, 9), (0, 3), (0, 4),

(0, 9), (0, 15), (1, 5), (1, 21), (1, 17), (1, 12), (0, 5), (1, 16), (2, 19), (0, 13).
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3.9 Lemma. The group G = Z3 ⊕ Z3e, e ≥ 2, is R∗-sequenceable.

Proof. The statement is true for e = 2, 3 because R∗-sequences are given above.
We proceed by induction on e and let e > 3. Let N be the cyclic subgroup of order
3e−2. The quotient group G/N is isomorphic to Z3⊕Z9. Let the coset representatives
be {(i, j) : 0 ≤ i ≤ 2, 0 ≤ j ≤ 8} and let (i, j) denote the element N + (i, j) of the
quotient group.

Display the elements of G as a 3e−2×9 array where the columns are cosets of the
cyclic subgroup of order 3e−2 and they are written left to right in the order of the
R∗-sequence for Z3 ⊕ Z9 given above, where column (0, 0) is inserted between (2, 0)
and (2, 3).

Even though the columns now correspond to cosets of Z3e−2 rather than the group
itself—as they did earlier when we defined the lift of an arc onto the array for a direct
sum—it should be clear how we define a lift now. Namely, if there is an arc from (i, j)

to (i′, j′) in
−→
K (G/N) and f is a permutation of N , then for each (i, j) + n ∈ (i, j),

we have an arc to (i′, j′) + f(n). We then use the same notation πf for the lift.

We then use πT0 as the lift for the arcs from (2, 0) to (2, 3), and from (2, 3) to
(0, 3). Note that one of the directed paths is (2, 0), (2, 3)(0, 3) and this sequence of
three vertices satisfies (2, 0) + (0, 3) = (2, 3). So if we end up with a directed cycle
of length 3e+1 − 1, we have that Z3 ⊕ Z3e is R∗-sequenceable.

It is now clear that if we carry out the obvious gadget operation, we end up with
directed paths of length 3, except for the unaltered directed path, whose initial and
terminal vertices behave like πT0 from column (2, 0) to column (0, 3). In the proof of
Corollary 3.8, we show that for all e > 1 there are two orthomorphisms f1, f2 such
that T0f1f2 is a cycle of length of length 3e. So we use these two orthomorphisms for
the next two lifts of arcs along the R∗-sequence for Z3 ⊕ Z9. We then use T0 for all
subsequent lifts and this leads to a directed cycle of length 3e+1 − 1 as required.

We continue now with the subcase that the Sylow 3-subgroup has exactly one
Z3 term in the direct sum. The Sylow 3-subgroup is not cyclic so that Lemma
3.9 and repeated applications of Corollary 3.8 imply that the Sylow 3-subgroup is
R∗-sequenceable. Lemma 3.1 then implies that G is R∗-sequenceable.

If there are two or more Z3 terms in the direct sum for the Sylow 3-subgroup,
there is a useful fact we exploit. Let

f1 =
(
(0, 0), (2, 0), (0, 2), (1, 2), (1, 0), (0, 1)

)(
(1, 1), (2, 2)

)(
(2, 1)

)

and
f2 =

(
(0, 0), (1, 0), (1, 1), (0, 2), (2, 2), (0, 1)

)(
(1, 2), (2, 0)

)(
(2, 1)

)

be two permutations of Z3 ⊕ Z3. It is easy to check that both are orthomorphisms
and that T0f1f2 is a 9-cycle.

We then conclude that Z3⊕Z3⊕G is R∗-sequenceable when G is R∗-sequenceable
and has odd order from Lemma 3.7. So consider the Sylow 3-subgroup H itself. If
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H has a summand Z whose order is at least 9, then both Z and Z3 ⊕ Z are R∗-
sequenceable by Lemma 2.1 or Lemma 3.9. Then H is R∗-sequenceable by starting
with Z if there are an even number of Z3 terms in the direct sum, or starting with
Z3 ⊕ Z if there are an odd number, and using the preceding fact. Therefore, H is
R∗-sequenceable and Lemma 3.1 implies that G is R∗-sequenceable.

The preceding paragraph means we are left with the subcase that the Sylow 3-
subgroup is Za

3 for some a ≥ 2. If this is all of G, then G is R-sequenceable by
Lemma 2.3. So we may assume that there is a non-trivial Sylow p-subgroup for some
prime p > 3. If p > 5, then we may repeatedly apply Lemmas 2.1, 2.2, and the above
fact to obtain that G is R∗-sequenceable.

The same process works for p = 5 except Z3⊕Z3⊕Z5. Following is an R∗-sequence
for this group which completes the proof of Theorem 1.2.

(0, 0, 1), (0, 2, 2), (0, 2, 1), (1, 1, 0), (0, 2, 3), (0, 1, 1), (0, 1, 2), (1, 2, 3), (0, 0, 2),

(2, 1, 2), (0, 0, 4), (0, 1, 0), (1, 0, 3), (2, 0, 0), (2, 1, 3), (2, 0, 3), (0, 1, 3), (1, 2, 1),

(2, 2, 1), (1, 1, 2), (2, 1, 0), (1, 0, 2), (1, 0, 0), (2, 0, 4), (1, 1, 1), (2, 2, 0), (2, 2, 2),

(2, 0, 1), (2, 2, 3), (0, 1, 4), (2, 1, 1), (1, 2, 2), (0, 2, 0), (2, 1, 4), (1, 1, 4), (1, 2, 4),

(1, 1, 3), (0, 0, 3), (1, 0, 4), (2, 2, 4), (1, 2, 0), (2, 0, 2), (1, 0, 1), (0, 2, 4).
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