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Abstract

Hadamard conjugation can be used in the reconstruction of evolutionary
trees and analysis of molecular sequence evolution. Despite the number of
advantages Hadamard conjugation provides the number of evolutionary
substitution models that can be used with this technique is limited. In
this paper, we consider the question of whether Hadamard conjugation is
limited to group-based evolutionary models, both for nucleotide substitu-
tion models and for codon substitution models. We expand the number
of nucleotide substitution models that can be used with Hadamard conju-
gation and suggest new connections between phylogenetics and algebraic
combinatorics especially with (commutative) association schemes.

1 Introduction

Phylogenetics is the study of evolutionary relatedness among various groups of or-
ganisms. Initially, techniques such as examining the morphological characteristics
of species were used to determine historical relationships, however the explosion of
data over the past 40 years resulting from advances in technology, the availability of
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DNA sequences, and the completion of the human genome project have led to statis-
tical, computational, and algorithmic work on determining evolutionary relatedness
between organisms. The increase in data has also allowed for a majority of statisti-
cians to reach a consensus of the statistical foundations in the area. As a result of
this consensus, mathematical analysis of the statistical models is now appropriate.

An important topic of interest in combinatorial phylogenetics is the reconstruction of
evolutionary trees. All statistical models used to reconstruct evolutionary trees, also
known as phylogenetic trees, use either quantitative character data or genetic data
available for presently extant species to determine historical relationships between
groups of organisms or taxa.

Many techniques exist for inferring phylogenetic relationships from molecular data.
One such technique involves making assumptions about the evolutionary process and
incorporating these assumptions into a Markov model. The Markov model relates
the rates at which substitutions in the genetic data take place to the probabilities of
different substitutions taking place using the equation P = exp(Qt) where P and Q
are probability and rate matrices, respectively. Including the conjugation of each side
of this equation by a Hadamard matrix allows the derivation of invertible analytic
formulas relating relative frequencies of observed patterns from the genetic data to
an estimation of the phylogenetic tree that corresponds to the data.

This conjugation of rates and probabilities by a Hadamard matrix is often referred
to as Hadamard conjugation. It is also referred to as the Hadamard transform,
spectral analysis and various combinations of the names Hadamard, Rademacher,
Walsh and Sylvester reflecting the work done by J. Sylvester in 1867, Hadamard in
1893, Rademacher in 1922 and Walsh in 1923. Hadamard conjugation can also be
thought of as a Fourier transform over a finite abelian group.1 A current disadvantage
of Hadamard conjugation is its limitation to group-based substitution models.

While association schemes are a thriving area of algebraic combinatorics, they are
not known to many biologists. The gentlest introduction to the topic is the text by
Rosemary Bailey [2]. The history of the subject and its relationship with experimen-
tal design in statistics is covered in Bailey’s last chapter. In this book, you learn
that when Bose and Shimamoto introduced association schemes in R. C. Bose et al.
[4] they made a very sound judgement that enabled a relationship between concur-
rence and variance to be deduced. (See especially Section 5.3 of Bailey.) Association
schemes were independently reintroduced (and generalized) by Weisfeiler and Leman
in 1968 (as cellular algebras) by Nair in 1964 (what are now called homogeneous co-
herent configurations) and by D.G.Higman in 1971 (as coherent configuarations),
building on work of Frobenius, Schur and Wielandt concerning centralizer rings of
finite permutation groups.

The other standard reference is the text by Bannai and Ito [3], which takes the
perspective of Higman, but is also strongly influenced by Delsarte’s 1973 Ph. D.
thesis. As Bannai and Ito put things, in their preface (page i): It is possible to

1See [14] for details of this approach.
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describe Algebraic Combinatorics as “a character theoretical study of combinatorial
objects”, or “a group theory without groups”!

Since the central concern of this paper is whether or not the beautiful techniques of
Hadamard conjugation require the existence of an underlying group in the model,
this remark of Bannai and Ito’s shows what our lodestar will be: we will attempt to
replace the necessity for a group by combinatorial regularity conditions.

The details of the idea of generalizing group theory using coherent configurations are
less informally presented in the introduction to Higman [9]. The substitute for the
group is really a substitute for the centralizer ring, namely the Bose-Mesner algebra.

Other work suggests that Lie algebras may be of importance in this context. The
paper by Sumner et al. [17] shows that group based models form Lie Markov models
and says that the success of Hadamard conjugation on the Kimura three-substitution
type model results from the fact that the Lie algebras of these models are abelian.

We too see that, for the results to have the impact we desire, an algebra should
be abelian, namely the Bose-Mesner algebra. But we don’t seem to need the Lie
structure. The mathematical details of all of this are suppressed in the paper that
follows this introduction, as we feel that they would get in the way of understanding
for those interested in the biological aspects. Instead, we use the most elementary
arguments we are able to discover. But behind the scenes there is a vast literature
on algebraic combinatorics.

The beginning of this paper will discuss the use of Hadamard conjugation with
group-based evolutionary models. Specifically we will examine the use of the Kimura
three-substitution type model commonly written as the K3ST model. Following the
discussion we will look at the possibility of using Hadamard conjugation with models
other than the K3ST model and submodels. Finally we will consider the use of
association schemes with evolutionary models.

2 Preliminaries

A phylogenetic tree is a connected graph with no cycles such that each leaf, or vertex
of degree one, is labeled with a different taxon. Given genetic data the objective
is to produce a phylogenetic tree that best represents the historical relationships
between different taxa. Trees can either be rooted or unrooted. In an unrooted tree
the earliest ancestor is not identified whereas a rooted tree is a directed tree that
illustrates ancestry of the given taxa. Since the models we are considering in this
paper are time-reversible models the likelihood of a specific tree does not depend on
the choice of the root vertex [18].

The evolutionary models we will examine use character sequences, which are se-
quences of fixed size that provide information about a specific taxon. Although
evolutionary processes consist of mutations other than substitutions the models con-
sidered here make the simplifying assumption that there are no insertions or deletions,
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and the sequences being compared are properly aligned. For the majority of this pa-
per we will let each character come from the set of nucleotides that make up DNA.
These nucleotides are the purine bases A (adenine) and G (guanine), and the pyrim-
idine bases T (thymine) and C (cytosine) and therefore each taxon is represented by
a sequence of A, C, G, and Ts.2

Assumptions regarding the processes by which nucleotide substitutions are made
define a substitution model. In this paper, the types of models considered are re-
stricted to Markov models. Markov models have the property that the probability
a site changes from base i to base j is independent from a site’s earlier values. This
implies the evolution of a nucleotide at a given site only depends on its immediate
ancestral state.

Markov models can be defined by specifying an instantaneous rate matrix Q, such
that the entries of Q, qij , give the rate at which state i will change to state j. For
nucleotide substitution models Q is a 4× 4 matrix that is indexed by {A, C, G, T}.
We will use the order A C G T for our indices, but warn the reader that some papers
use a different ordering. For amino acid or codon models the dimensions and indices
would be adjusted accordingly.

There are a few constraints on the Q matrix to ensure that the probabilities of
starting in a given state and either ending in a different state or ending in the same
state add up to one. All entries qij such that i �= j must be nonnegative and diagonal
entries qii = −∑j �=i qij so that row sums of Q are equal to zero.

For processes where the state space is finite the transition probabilities can also be
represented by a matrix. The transition probability matrix P(t) is a matrix whose
rows and columns are indexed by the states and whose (i, j)th entry is equal to
pij = Pr(Yn+1 = j|Yn = i). 3

By using Kolmogorov’s backward equation d
dt
P(t) = QP(t) with initial condition

P(0) = I, where I is the identity matrix it is possible to relate P(t) to Q in a single
equation. The unique solution to this differential equation, subject to this initial
condition, is P(t) = exp(Qt).

Most nucleotide substitution models used are time-reversible, which implies the prob-
ability of sampling nucleotide i from the stationary distribution and going to nu-
cleotide j is the same as the probability of sampling nucleotide j from the stationary
distribution and going to nucleotide i. It is important to observe that the rate ma-
trices of time-reversible nucleotide substitution models are real symmetric matrices
and real symmetric matrices are diagonalizable.

A well known nucleotide substitution model is the K3ST model. The K3ST model
was introduced in 1981 by Motoo Kimura [12]. The K3ST model assumes there are
three independent substitution rates; α is the rate of transitions and β and γ are
the rates of the two types of tranversions. We will use α, β and γ to represent the

2For more information on character data see [18].
3For additional information on Markov models on trees see [16].



C.D. MCBEE AND T. PENTTILA /AUSTRALAS. J. COMBIN. 66 (2) (2016), 177–191 181

substitution rates and trα, trβ and trγ to represent the substitution types. The K3ST
model is typically given by the rate matrix Q indexed by the set {A,C,G, T}

Q =

⎡
⎢⎢⎣

−K γ α β
γ −K β α
α β −K γ
β α γ −K

⎤
⎥⎥⎦

where K = α+ β + γ.

The Kimura two-parameter model, K2ST, is a submodel of the K3ST model and was
introduced in 1980 [13]. The K2ST model can be obtained from the K3ST model by
setting β = γ.

Another submodel of the K3ST model is the Jukes and Cantor model which was
published in 1969 by T.H. Jukes and C.R. Cantor [11]. The Jukes and Cantor
model is the most basic nucleotide substitution model. It can be obtained by letting
α = β = γ. A good reference summarizing the relationships between special cases of
the general time-reversible model is figure 11 in [18].

In hopes of obtaining more biologically realistic models some researchers have looked
at using models that require a larger number of states than the four state nucleotide
substitution models. For instance, in 1994 two papers, one by Nick Goldman and
Ziheng Yang [7] and another by Spencer Muse and Brandon Gaut [15], started discus-
sion on the use of codon models of evolution. Using codon models of evolution would
lead to evolutionary models containing between sixty-one and sixty-four states. Sup-
port for these models is provided in the 2007 paper [1]. In addition to considering
codon substitution models it may also be of interest to consider amino acid substitu-
tion models. Disagreements in the number of amino acids that should be considered
imply it may be of interest to develop amino acid substitution models with twenty,
twenty-one or twenty-two states.

3 Hadamard conjugation: group-based models

One of the major limitations of Hadamard conjugation is its restriction to group-
based substitution models [5]. David Bryant states that if the substitution model is
assumed to be time-reversible then the only three-parameter group-based nucleotide
substitution model is the K3ST model and the only nucleotide substitution models
that are available to use with Hadamard conjugation are special cases of the K3ST
model [5]. Therefore although there are 203 different time-reversible nucleotide sub-
stitution models only a handful are currently used with Hadamard conjugation [10].

The relationship between the Klein four group and the K3ST model was first pub-
lished in the early 1990s. One of the first papers recognizing the group structure of
the K3ST model was a 1993 paper by Steven Evans and T.P. Speed [6]. The paper
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describes the relationship between the evolutionary model and the group by creat-
ing a correspondence between the bases {A,C,G, T} and the elements of an abelian
group with the group operation defined by the following addition table:

+ A C G T
A A C G T
C C A T G
G G T A C
T T G C A

.

This group is isomorphic to the Klein four group, Z2×Z2, with one possible isomor-
phism given by A ↔ (0, 0), C ↔ (0, 1), G ↔ (1, 0) and T ↔ (1, 1). Each substitution
type can also be associated to a group element by assigning to each substitution type
the difference between the group element associated to the starting nucleotide and
the group element associated to the ending nucleotide. For example if trγ is the sub-
stitution which takes A to C, C to A, G to T and T to G, then using the isomorphism
above, trγ corresponds to the group element (0, 0)− (0, 1) = (1, 0)− (1, 1) = (0, 1).
The substitution types trα, trβ and trγ along with the identity substitution, trε, pro-
duce a group under composition which acts on the nucleotide set {A,C,G, T}. From
this perspective the fact that the K3ST model is abelian group-based means there
exists a permutation group acting regularly on the four bases.

Given a group-based substitution model it is possible to apply Hadamard conju-
gation. Although there have been several different derivations all leading to the
invertible formulas known as Hadamard conjugation, the utility of all of these for-
mulas comes from the fact that they provide an analytic formula relating observed
pattern frequencies from DNA data to a vector containing information about the
structure of the phylogenetic tree [8], [5]. In general, analytic formulas which relate
this information do not exist. The remainder of this paper examines the necessity of
using group-based models with Hadamard conjugation.

4 Moving beyond group-based models

An existing theme of algebraic combinatorics has been the removal of hypotheses
about having groups acting, with their successful replacement by regularity condi-
tions that still guarantee the presence of an algebra. Instances of this include the
move from distance-transitive graphs to distance-regular graphs and Don Higman’s
program of replacing permutation groups by coherent configurations, with the cen-
tralizer algebra being replaced by the Bose-Mesner algebra. It appears that a similar
move may also be beneficial in the analysis of nucleotide substitution models. This
is suggested by the fact that the set of possible instantaneous rate matrices, when
expanded to allow the addition of linear combinations of the identity matrix, is
isomorphic to the real group algebra of the Klein four group, V , that seems to be
necessary for the application of Hadamard conjugation. This implies it may be useful
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to move attention away from the group V and shift it to the group algebra RV .

We may interpret a probability distribution on a group G as an element of the group
algebra RG, with coefficients of group elements between 0 and 1 and with the sum
of all the coefficients being 1. Moreover, the distribution on a leaf is the product (in
the group algebra RG) of the distributions on each edge of the unique path from the
root to the leaf. Thus, we may re-interpret these models in terms of algebras rather
than groups, which, we will see, expands the number of models to which Hadamard
conjugation applies.

We will refer to the set of possible instantaneous rate matrices expanded to allow the
addition of linear combinations of the identity matrix of a given nucleotide substitu-
tion model as a Q space. For example, given the K3ST model whose rate matrix is
given below

Q(K3ST ) =

⎡
⎢⎢⎣

−K γ α β
γ −K β α
α β −K γ
β α γ −K

⎤
⎥⎥⎦

where K = α+β+γ, we have a Q(K3ST ) space equal to {Q(K3ST )+δI|α, β, γ, δ ∈ R}.
Theorem 4.1. If there exists a real invertible four by four matrix X that simulta-
neously diagonalizes A, a three parameter Q algebra, then A ∼= RV where V is the
Klein four group.

Proof. Let D be the set of all four by four diagonal matrices and A be a three
parameter Q algebra. XAX−1 ⊂ D, and by comparing dimensions, equality occurs so
that XAX−1 = D. Let Q′ and Q′′ belong to A. Then Q′Q′′ ∈ A since XQ′X−1 ∈ D
and XQ′′X−1 ∈ D which implies XQ′X−1XQ′′X−1 = XQ′Q′′X−1 ∈ D. Therefore
Q′Q′′ ∈ X−1DX = A. Therefore A is an algebra.

A is isomorphic to D via X and since RV is a four dimensional algebra which is
diagonalizable by H, a Hadamard matrix, RV ∼= D. Therefore A ∼= RV . Notice that
an algebra F is isomorphic to the group algebra FG if and only if there is a basis
that under the algebra multiplication forms a group isomorphic to G.

Given this result it is interesting to consider the M37 nucleotide substitution model
which was published in [10]. The M37 model has rate matrix

Q(M37) =

⎡
⎢⎢⎣

− α β β
α − β β
β β − η
β β η −

⎤
⎥⎥⎦
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with diagonal entries chosen so that the row sums are equal to zero. The three
parameter Q(M37) space is isomorphic to RV where V is the Klein four group. Notice
also that the M37 model is not a submodel of the K3ST model.

Just as K2ST is a submodel of the K3ST model and can be used with Hadamard
conjugation, submodels of M37 can also be used with Hadamard conjugation.

Corollary 4.2. Every subspace of a nucleotide substitution model in which all Q
matrices are simultaneously diagonalizable is a submodel of a group algebra where
the group is the Klein four group.

Proof. This follows from theorem 4.1. To see this consider a three parameter Q
algebra so that theorem 4.1 holds. Set parameters equal to each other. A is still
simultaneously diagonalizable.

Since the Q algebra must be simultaneously diagonalizable in order to produce the
useful analytic formula Hadamard conjugation provides, the above result shows it
is not possible to completely move away from using the abelian group. On the
other hand the result only proves isomorphism, not equality, so it does not show
that Hadamard conjugation is restricted to the K3ST model and submodels. As the
following example will show, it allows the use of additional models with Hadamard
conjugation.

5 A worked example

The following example illustrates the isomorphism between the K3ST model and
the M37 model. To keep the size of the example manageable the tree assumed will
be the 3-claw tree, which is isomorphic to K1,3. This tree has three leaves and one
internal vertex. We will assume the tree is rooted at one of the leaves. Recall that
because the models we are considering are time reversible the placement of the root
is independent of the likelihood of the tree.

To begin, consider theM37 substitution model whose rate matrix was given above and
that has trα type substitutions occurring with probability 0.01, trβ type substitutions
occurring with probability 0.02, and trη type substitutions occurring with probability
0.03.

Given a transition probability matrix of the form

P =

⎡
⎢⎢⎣

p0 p1 p2 p2
p1 p0 p2 p2
p2 p2 p3 p4
p2 p2 p4 p3

⎤
⎥⎥⎦

it is possible to use P = exp(Qt) to generate equations for pi, i ∈ {0, 1, 2, 3, 4, 5}.
From here it can be determined that α t ≈ 0.0100922996, β t ≈ 0.0208454022 and
η t ≈ 0.0318348556.
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It is generally not possible to estimate t; therefore, in order to separate t from
the substitution rate an assumption is made. The average rate of substitution at
equilibrium is set equal to 1. By doing this the length of a branch corresponds
to the expected number of substitutions per site along that branch, rather than
corresponding to the evolutionary time it represents [19]. Consequently, to solve for
α, β, and γ the average of the off diagonal row sums of Q are set equal to 1. This
implies that (α + 2β + η + 2β)/2 = 1 and so t ≈ 0.06265438 and α ≈ 0.161078911,
β ≈ 0.332704617, and η ≈ 0.508102619.

Next the M37 model must be converted into the form of the K3ST model. To do
this consider the M37 Q algebra, M = {Q(M37) + δI|α, β, η, δ ∈ R}, and Y which
simultaneously diagonalizes the M37 algebra.

Y =

⎡
⎢⎢⎢⎣

1
2

1√
2

1
2

0
1
2

− 1√
2

1
2

0
1
2

0 −1
2

1√
2

1
2

0 −1
2

− 1√
2

⎤
⎥⎥⎥⎦

V = {I, A,B, C} is the Klein four group, where

I =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ , A =

⎡
⎢⎢⎣

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎤
⎥⎥⎦ ,

B =

⎡
⎢⎢⎣

−1
2

1
2

1
2

1
2

1
2

−1
2

1
2

1
2

1
2

1
2

1
2

−1
2

1
2

1
2

−1
2

1
2

⎤
⎥⎥⎦ , C =

⎡
⎢⎢⎣

1
2

−1
2

1
2

1
2−1

2
1
2

1
2

1
2

1
2

1
2

−1
2

1
2

1
2

1
2

1
2

−1
2

⎤
⎥⎥⎦

and V spans the M algebra4. Therefore there is an isomorphism between the M
algebra and the group algebra RV . Notice that

Y−1(M)Y = {set of diagonal matrices} = D

H−1(D)H = K3ST Q algebra = {Q(K3ST ) + δI|α, β, γ, δ ∈ R}.
Conjugating by the matrix YH yields a matrix with the form of the K3ST model
rate matrix,

H−1Y−1Q(M37)YH =

⎡
⎣ − 1

2
α− 1

2
η − 2β 1

2
η + 1

2
α − 1

2
α+ β + 1

2
η 1

2
α+ β − 1

2
η

1
2
η + 1

2
α − 1

2
α− 1

2
η − 2β 1

2
α+ β − 1

2
η − 1

2
α+ β + 1

2
η

− 1
2
α+ β + 1

2
η 1

2
α+ β − 1

2
η − 1

2
α− 1

2
η − 2β 1

2
η + 1

2
α

1
2
α+ β − 1

2
η − 1

2
α+ β + 1

2
η 1

2
η + 1

2
α − 1

2
α− 1

2
η − 2β

⎤
⎦

4The presence of negative entries in the matrices in the Klein four group look troubling, how-
ever the isomorphism ensures that after the transformation back the results will be biologically
meaningful.
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with
1
2
η + 1

2
α ≈ 0.020963

−1
2
α+ β + 1

2
η ≈ 0.017391

1
2
α + β − 1

2
η ≈ 0.009974.

Thus YH is an isomorphism between the M37 Q algebra and the K3ST Q algebra.
Also since P(K3ST ) = exp(Qt),

P(K3ST ) =

⎡
⎢⎢⎣

0.94 0.02 0.03 0.01
0.02 0.94 0.01 0.03
0.03 0.01 0.94 0.02
0.01 0.03 0.02 0.94

⎤
⎥⎥⎦ .

At this point it is possible to determine the leaf coloration probabilities for the K3ST
model with the above probabilities. The probabilities are contained in the following
vector.

AA
AC
AG
AT
CA
CC
CG
CT
GA
GC
GG
GT
TA
TC
TG
TT

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.83062
0.01806
0.02736
0.00896
0.01806
0.01806
0.00104
0.00104
0.02736
0.00104
0.02736
0.00104
0.00896
0.00104
0.00104
0.00896

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

In the Kimura three-substitution type setting the group elements are:

g1 =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ , g2 =

⎡
⎢⎢⎣

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎤
⎥⎥⎦ ,

g3 =

⎡
⎢⎢⎣

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎤
⎥⎥⎦ , g4 =

⎡
⎢⎢⎣

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎤
⎥⎥⎦ .

while in the M37 setting the group elements are:
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ĝ1 =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ , ĝ2 =

⎡
⎢⎢⎣

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎤
⎥⎥⎦ ,

ĝ3 =

⎡
⎢⎢⎣

1
2

−1
2

1
2

1
2−1

2
1
2

1
2

1
2

1
2

1
2

−1
2

1
2

1
2

1
2

1
2

−1
2

⎤
⎥⎥⎦ , ĝ4 =

⎡
⎢⎢⎣

−1
2

1
2

1
2

1
2

1
2

−1
2

1
2

1
2

1
2

1
2

1
2

−1
2

1
2

1
2

−1
2

1
2

⎤
⎥⎥⎦ .

Calculating
∑

i,j pi,j(ĝi, ĝj) = p11(ĝ1, ĝ1) + p12(ĝ1, ĝ2) + . . .+ p44(ĝ4, ĝ4) yields

(⎡⎢⎣
0.9034 0.0198 0.0384 0.0384
0.0198 0.9034 0.0384 0.0384
0.0384 0.0384 0.8666 0.0566
0.0384 0.0384 0.0566 0.8666

⎤
⎥⎦ ,

⎡
⎢⎣

0.9034 0.0198 0.0384 0.0384
0.0198 0.9034 0.0384 0.0384
0.0384 0.0384 0.8666 0.0566
0.0384 0.0384 0.0566 0.8666

⎤
⎥⎦
)
.

Notice that the (ij)th entry of these matrices give the probability of starting at state
i going through an intermediate state and ending at state j assuming the M37 model.
For example the probability of the root of a path of length two being in state T and
the leaf in state C is equal to (0.02)(0.01)+(0.02)(0.95)+(0.03)(0.02)+(0.93)(0.02) =
0.0384 given the M37 probabilities assumed at the beginning of this example. This
value is equal to the T, C entry in the matrices above.

Theorem 4.1 and corollary 4.2 along with the previous example show that a Klein
four group must be present in order for a nucleotide substitution model to allow
simultaneous diagonalization of the Q-matrices and therefore allow the full force of
Hadamard conjugation to apply. The necessary distinction that needs to be made
is that although the Klein four group must be present, it need not be present as a
group of automorphisms of the model. The automorphism group is the centralizer
in the symmetric group on the states of the set of Q-matrices. The Klein four group
for the M37 model is found instead in the centralizer in the general linear group of
degree 4 of the set of Q-matrices, and this is sufficient to be able to use Hadamard
conjugation. This results in an expansion of the number of time-reversible nucleotide
substitution models that can be used with Hadamard conjugation.

6 Prospects

Recall that the rate matrices for general time-reversible models are real symmetric
matrices and therefore are diagonalizable. Recall also that a set of square diago-
nalizable matrices commute if and only if they are simultaneously diagonalizable
and consequently, if the set of rate matrices of an evolutionary model correspond
to a commutative algebra they must be simultaneously diagonalizable. The ability
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to simultaneously diagonalize a set of matrices makes it possible to apply Hada-
mard conjugation. The question remaining however, is how to find an appropriate
commutative algebra. One way is to use an association scheme.

If A is the linear span over the reals of the adjacency matrices A0, . . . , As of an
association scheme then A forms an algebra known as the Bose-Mesner algebra of
the scheme. This implies that if the set of rate matrices form an association scheme
there exists a commutative algebra.

It is possible to look at the form of Q and determine if the model corresponds to an
association scheme. The following result shows the correspondence between certain
nucleotide substitution models and association schemes on four points

Theorem 6.1. A time-reversible s-parameter nucleotide substitution model with rate
matrix Q such that all entries Qii are equal for 1 � i � 4 and Qii �= Qij for
i �= j, corresponds to an association scheme with s associate classes on a set X =
{A,C,G, T}.
The above result implies that the K2ST and K3ST models must correspond to asso-
ciation schemes on four points.

Other types of time-reversible evolutionary models with a larger number of states also
exist. Due to the larger number of states in amino acid and codon models the theory
of when Hadamard conjugation applies becomes slightly different. For example,
complex numbers are required if the number of states is not a power of two. The
increased number of states also raises the question of how many parameters should
be included in a model in order to accurately model the biological process without
including extraneous parameters. Attempting to use a group-based codon model
could result in a model with as many as sixty-three parameters, if a group of order
64 is used. In general the number of parameters is equal to one less than the order
of the group. Using other techniques to construct the evolutionary models, such
as obtaining models from association schemes with few associate classes, provides a
method of obtaining models with the number of parameters equal to the number of
associate classes. Such models currently lack biological realism, but provide a source
of potential models. The desire is to find balance between biologically motivated
models and models that are mathematically tractable.

Theorem 6.2. If there exists an invertible n × n matrix X that simultaneously
diagonalizes Ā = A ⊗ C, an n − 1 parameter Q space, then Ā ∼= CV , where V is a
cyclic group of order n.

Proof. Let D be the set of all n by n diagonal matrices and Ā be an n−1 parameter
Q algebra. XĀX−1 ⊂ D, and by comparing dimensions, equality occurs so that
XĀX−1 = D. Let Q′ and Q′′ belong to Ā. Then Q′Q′′ ∈ Ā since XQ′X−1 ∈ D
and XQ′′X−1 ∈ D which implies XQ′X−1XQ′′X−1 = XQ′Q′′X−1 ∈ D. Therefore
Q′Q′′ ∈ X−1DX = Ā. Therefore Ā is an algebra.

Ā is isomorphic to D via X and since CV is a n dimensional algebra which is
diagonalizable, CV ∼= D. Therefore Ā ∼= CV .
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Corollary 6.3. Every n state evolutionary model in which all Q matrices are simul-
taneously diagonalizable is a submodel of a group algebra where the group is cyclic of
order n.

Proof. The set of matrices XĀX−1 is contained in D the set of n by n diagonal
matrices. D ∼= CV , where V is a cyclic group of order n. Since XĀX−1 ⊆ D,
Ā ⊆ X−1DX ∼= CV . Therefore Ā is a submodel of CV .

The above theorems show that even for larger evolutionary models there is still an
abelian group present. That does not mean however, that there is an abelian per-
mutation group acting regularly on the bases. Currently Hadamard conjugation is
only applied to evolutionary models in which an abelian permutation group acting
regularly on the bases exists. It appears however, that it is possible to use the struc-
ture provided by an association scheme, or more generally a commutative algebra in
order to apply Hadamard conjugation.

Association schemes can be used with other types of evolutionary models to produce
models that do not rely on an abelian permutation group acting regularly. For in-
stance, finding an association scheme on twenty points can lead to an amino acid
substitution model that does not rely on a group, yet has simultaneously diagonal-
izable rate matrices for which Hadamard conjugation would apply.

Each association scheme on a given number of points corresponds to a class of evolu-
tionary models. Association schemes on twenty to twenty-two points will correspond
to amino acid models while association schemes on sixty-one to sixty-four points
correspond to codon models of evolution. To see the correspondence between an
association scheme and an evolutionary model consider an association scheme on n
points. Each of the n vertices of the graph corresponding to the association scheme
can be labeled with an amino acid or codon. Different labelings will produce biolog-
ically distinct models, which is why given one association scheme we end up with a
class of models.

The instantaneous rate matrix is produced from an association scheme by introduc-
ing parameters αk for each associate class Rk and setting Qij = αk if and only if
(i, j) ∈ Rk. The entries Qii are chosen so that row sums of Q are zero. Given this
construction it is clear that choosing an association scheme with a small number of
associate classes will lead to a model with a small number of parameters.

In conclusion, there is a rich source of codon-based models of evolution arising from
algebraic combinatorics and these should be examined to see if one or more can be
found that are biologically reasonable.

7 Future Work

The work presented above seeks to expand the number of nucleotide substitution
models that can be used with Hadamard conjugation. To demonstrate how this can
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be done we presented an example that illustrates the isomorphism between K3ST
and the M37 model. At this point it would be of interest to expand the example
and examine the mapping from the expected sequence spectrum to the edge length
spectrum. The biological realism of this model and other models isomorphic to K3ST
should also be considered.

Additionally, given the connection between association schemes and evolutionary
models it would be interesting to consider the question of whether codon models
corresponding to a association scheme could be developed so that they are biologically
meaningful.

It would also be of interest to determine whether the approach of Sumner et al. can
be usefully generalised in the light of the work in this paper. They suggest complex
models similar to the General Markov Model using their approach, and their main
issue is multiplicative closure of the matrix group that is a model of evolution, and
the association scheme approach addresses this issue from a different angle.
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