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Abstract

The concepts of k-pairable graphs and the pair length of a graph were
introduced by Chen [Discrete Math. 287 (2004), 11–15] to generalize an
elegant result of Graham et al. [Amer. Math. Monthly 101 (1994), 664–
667] from hypercubes and graphs with antipodal isomorphisms to a much
larger class of graphs. A graph G is k-pairable if there is a positive integer
k such that the automorphism group of G contains an involution φ with
the property that the distance between x and φ(x) is at least k for any
vertex x of G. The pair length of a graph G, denoted by p(G), is the
maximum positive integer k such that G is k-pairable; and p(G) = 0 if
G is not k-pairable for any positive integer k.

The aim of this paper is to answer an open question posted in our
previous paper [Discrete Math. 310 (2010), 3334–3350]; that is, the ques-
tion of determining the minimum order of a graph in the set of r-regular
bipartite graphs of pair length k. We solve the problem for all positive
integers k and r except for the case when both k ≥ 5 and r ≥ 3 are odd.
For the case that is still open, we provide bounds on the minimum order
concerned. Also we post a conjecture on the minimum order of a cubic
bipartite graph of pair length k for any odd number k > 1.
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1 Introduction

In 1994, Graham et al. [15] proved that for any spanning tree T of a hypercube Qn,
there is an edge of Qn outside T whose addition to T forms a cycle of length at
least 2n. They also generalized this result from hypercubes to the connected graphs
with antipodal isomorphisms. Ten years later, Chen [6] further generalized the above
elegant result to a much larger class of connected graphs called k-pairable graphs.
These graphs have a special kind of symmetry which is different from the well-studied
types of symmetry such as vertex-transitive, edge-transitive or distance-transitive.
The set of k-pairable graphs contains many graphs of theoretical and practical impor-
tance, such as hypercubes, Hamming graphs, antipodal graphs, diametrical graphs
and S-graphs, etc. (cf. [1], [2], [4], [12], [13], [16], [18] and [20]).

Interesting results on k-pairable graphs have been obtained since they were in-
troduced in [6]. Christofides [11] showed that the pair length of a Cartesian product
graph is the sum of pair lengths of its factors, which answered an open question
raised by Chen [6]. Though the problem on characterizing graphs of pair length k
raised in [6] is still open, it has motivated many results in literature. For example, a
characterization of trees of pair length k was given in [7], and a characterization of
uniquely k-pairable graphs in terms of the prime factor decomposition with respect
to the Cartesian product was given in [8]. We also provided a necessary and sufficient
condition for graphs of pair length k in [9].

When we study a class of connected graphs with specific property and related
parameters, it is natural to ask: What are the bounds on the orders of those graphs
with the given specific parameters? What are the bounds on the sizes of those graphs
with the given order and specific parameters? In [10], we provided sharp bounds on
the size of a connected graph G of even order n and pair length k for both cases
when G is bipartite and when G is not restricted to be bipartite. In [9], we gave the
minimum order of an r-regular connected graph of pair length k and raised an open
question: What is the minimum order of an r-regular connected bipartite graph of
pair length k? In this paper, we first give some properties of k-pairable bipartite
graphs, and then answer the above question for all positive integers k and r except
the case when both k ≥ 5 and r ≥ 3 are odd. For the case that is still open,
we provide bounds on the concerned minimum order and post a conjecture on the
minimum order of a cubic bipartite graph of pair length k for any odd number k > 1.

2 Preliminaries

All graphs considered in this paper are finite simple graphs. We use [5] and [21] as
reference books for basic terminologies. The set of all vertices of a graph G is denoted
by V (G), and its cardinality |V (G)| is called the order of G. The set of all edges
of a graph G is denoted by E(G), and its cardinality |E(G)| is called the size of G.
An involution φ of the vertex set of a graph G is a permutation on V (G) such that
φ2(x) = x for any vertex x of G. An automorphism of a graph G is a permutation
on V (G) such that two vertices of G are adjacent if and only if their images under
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the permutation are adjacent. The set of all automorphisms of G forms a group and
is called the automorphism group of G. The concepts of a k-pairable graph and a
pair partition of a graph introduced in [6] can be easily extended from the set of
connected graphs to the set including both connected and disconnected graphs.

Definition 2.1 Let k be a positive integer. A graph G is called k-pairable if its
automorphism group contains an involution φ with the property that the distance
between x and φ(x) is at least k for any vertex x of G. If such an involution φ exists,
then it is called a k-pair partition of G, and φ(x) is the mate of x (respectively, x is
the mate of φ(x)) under φ.

By definition, any k-pair partition of G is a fixed-point-free involution of V (G),
and so any k-pairable graph has even order. If there is no need to specify the positive
integer k, then a k-pairable graph is called a pairable graph and a k-pair partition is
called a pair partition briefly. Note also that, by definition, any k-pair partition may
be considered a 1-pair partition.

Let C2n be an even cycle with the vertex set {vi|1 ≤ i ≤ 2n} and the edge set
{ei|1 ≤ i ≤ 2n} where ei = vivi+1 for 1 ≤ i ≤ 2n − 1 and e2n = v2nv1. For each
1 ≤ i ≤ n, recall that vi+n is the antipodal vertex of vi, and vice versa; ei+n is
the antipodal edge of ei, and vice versa. The antipodal automorphism of C2n is an
involution on the vertex set of C2n that sends each vertex to its antipodal vertex. To
describe a k-pair partition of C2n easily, we assume that vertices vi (1 ≤ i ≤ 2n) of
C2n are ordered evenly clockwise around a circle. Then C2n has exactly two types
of k-pair partitions φ: either φ is the antipodal automorphism of C2n and k = n, or
φ is a reflection about an axis through midpoints of two antipodal edges of C2n and
k = 1.

Definition 2.2 [6] The pair length of a connected graph G, denoted by p(G), is the
maximum positive integer k such that G is k-pairable, and p(G) = 0 if G is not
pairable.

If we drop the requirement that the automorphism be an involution, then the
above definition for the pair length of a connected graph becomes the same as the
absolute mobility of a connected graph, a concept defined in [19] by Potočnik, Šajna
and Verret.

In the studies of k-pairable graphs, the concept of a strongly induced cycle plays a
very important role. An induced cycle C of a graphG is called a strongly induced cycle
if dC(x, y) = dG(x, y) for any two vertices x, y of C. It is clear that if n = 3, 4, 5, then
an induced n-cycle of G is a strongly induced n-cycle of G, but it is not necessarily
true when n > 5. A necessary and sufficient condition for a connected graph to have
its pair length equal to a positive integer k is given in the following theorem.

Theorem 2.3 [9] Let G be a connected graph of pair length p(G) > 0. Then

(i) p(G) = 1 if and only if G is 1-pairable and for any 1-pair partition φ of G there
is an edge eφ of G such that φ maps eφ onto itself.
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(ii) p(G) = k(> 1) if and only if G is k-pairable and for any k-pair partition φ of
G there is a strongly induced 2k-cycle Cφ of G such that φ maps Cφ onto itself.

A graph G is bipartite if its vertex set can be partitioned into two independent
sets (called the two color classes of G). The partition is unique when the bipartite
graph is connected. We use B and W to represent the two color classes of G, and
say a vertex is in color black (respectively, in color white) if it is contained in B
(respectively, in W ). The pair length of a complete bipartite graph Km,n is given in
[10] as follows:

p(Km,n) =

⎧⎨
⎩

2, if both m and n are even;
1, if m = n is odd;
0, otherwise.

Due to the uniqueness of the 2-color vertex partition of a connected bipartite
graph G, the two color classes are preserved setwise by any automorphism of G.
Thus, Theorem 2.2 in [10] can be somewhat generalized as follows.

Theorem 2.4 [10] Let G be a connected bipartite graph with a k-pair partition φ.
Assume that dG(v, φ(v)) = k for some vertex v of G. Then

(i) If k is even, x and φ(x) must be in the same color class of G for any x ∈ V (G).
(ii) If k is odd, x and φ(x) must be in distinct color classes of G for any x ∈ V (G).

When bipartite graphs are regular, they have regularity not only in vertex degrees
but also in the vertex numbers of two color classes. It is well known that the regular
bipartite graphs have nice properties involving perfect matchings and edge colorings.
Naturally, one may ask: Is every connected regular bipartite graph pairable? The
answer is ”No”, which can be seen from the following counterexample given in Fig.
1. Note that the vertex v is the unique vertex which is not on any induced cycle of
length greater than 4, and so the graph is not pairable. In fact, using Lemma 2.7
and Lemma 2.8 below, one can further show that this is a counterexample with the
smallest number of vertices. See Proposition 2.10 at the end of this section.

v

Figure 1: A 3-regular bipartite graph that is not pairable.

The main object of study in this paper is a special type of pairable bipartite
graphs, that is, regular bipartite graphs of pair length k > 0, which are called
pairable regular bipartite graphs. It is well known [3] that any connected r-regular
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bipartite graph H is a spanning subgraph of Kn,n for an integer n ≥ r, and H is
1-factorable. The following corollary can be derived from Theorem 2.4 immediately.

Corollary 2.5 Let G be a connected r-regular bipartite graph of pair length k > 0.
Then |V (G)| = 2n for an integer n ≥ r, and G is a spanning subgraph of Kn,n.
Moreover,

(i) If n is odd, then k must be odd; if n is even, then k may be either even or odd.
(ii) If k is even, then n must be even; if k is odd, then n may be either even or

odd.

Let G be a connected regular bipartite graph of order 2n and color classes B and
W . The graph with the same vertex set as G and the edge set E(Kn,n) \ E(G) is
called the relative complement of G in Kn,n. Note that the relative complement of
G in Kn,n may be disconnected, and so its two color classes are not necessary to be
uniquely determined.

Now we give the following concept which will be used frequently in the paper.

Definition 2.6 Let G be a connected r-regular bipartite graph of order 2n with
color classes B and W . The relative complement of G in Kn,n is called the bipartite

complement of G, and denoted as G
bc
, if it carries the same two color classes as G.

Lemma 2.7 Let G be a connected regular bipartite graph, and G
bc

be the bipartite

complement of G. Then any pair partition of G is a pair partition of G
bc
. On the

other hand, if φ is a pair partition of G
bc
such that x and φ(x) are in the same color

class (respectively, from distinct color classes) for all x ∈ V (G
bc
), then φ is a k-pair

partition of G where k > 0 is even (respectively, odd) such that dG(v, φ(v)) = k for
some vertex v of G.

Proof. Let φ be a pair partition of G. Then φ is also a fixed-point-free involution of

V (G
bc
). It remains to show that φ is an automorphism of G

bc
. Assume that B and

W are two color classes of G
bc
. Then they are also two color classes of G. Since G

is connected, dG(v, φ(v)) = minu∈V (G){dG(u, φ(u))} = k for some vertex v of G and
a positive integer k. We distinguish two cases based on the parity of k.

Case 1. k is even. By the definition of bipartite complement, two vertices x ∈ B

and y ∈ W are adjacent in G
bc

if and only if x ∈ B and y ∈ W are not adjacent
in G. Since φ is an automorphism of G, x and y are not adjacent in G if and only
if φ(x) and φ(y) are not adjacent in G. By Theorem 2.4, φ(x) ∈ B and φ(y) ∈ W
since x ∈ B and y ∈ W and k is even. By the definition of bipartite complement,
φ(x) ∈ B and φ(y) ∈ W are not adjacent in G if and only if φ(x) ∈ B and φ(y) ∈ W

are adjacent in G
bc
.

Case 2. k is odd. Similarly, we can show that two vertices x ∈ B and y ∈ W are

adjacent in G
bc
if and only if φ(x) ∈ W and φ(y) ∈ B are adjacent in G

bc
.

Hence, we show that two vertices are adjacent in G
bc

if and only if their images

under φ are adjacent in G
bc
, and so φ is an automorphism of G

bc
. It follows that φ

is a pair partition of G
bc
.
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On the other hand, if φ is a pair partition of G
bc
such that either x and φ(x) are

in the same color class for all x of G
bc
, or x and φ(x) are from distinct color classes

for all x of G
bc
, then similarly we can show that φ is a k-pair partition of G such

that dG(v, φ(v)) = k for some vertex v of G, and the parity of k is based on whether
x and φ(x) are in same color class of G or not. �

Lemma 2.8 Assume that G is a connected regular bipartite graph and G
bc

is the

bipartite complement of G. If G
bc
has a perfect matching M such that the involution

switching end vertices of each edge in M is a 1-pair partition of G
bc
, then p(G) ≥ 3.

The converse is true if the pair length p(G) ≥ 3 is an odd number.

Proof. Assume that G
bc

has a perfect matching M = {biwi|1 ≤ i ≤ n} such that

the involution φ satisfying wi = φ(bi) for 1 ≤ i ≤ n is 1-pair partition of G
bc
.

Then without loss of generality, we may assume that B = {bi|1 ≤ i ≤ n} and
W = {wi|1 ≤ i ≤ n} are two color classes of G. By Lemma 2.7, φ is a pair partition
of G. Moreover, for each 1 ≤ i ≤ n, dG(bi, φ(bi)) = dG(bi, wi) is some odd number at
least 3 since bi ∈ B and wi ∈ W are not adjacent in G. It follows that p(G) ≥ 3.

On the other hand, if p(G) = k ≥ 3 is an odd number, then by Theorem 2.4, we
may assume that B = {bi|1 ≤ i ≤ n} and W = {wi|1 ≤ i ≤ n} are two color classes
of G and φ is a k-pair partition of G satisfying φ(bi) = wi for 1 ≤ i ≤ n. Then
dG(bi, wi) = dG(bi, φ(bi)) ≥ k ≥ 3 for all 1 ≤ i ≤ n. Hence, bi and wi are adjacent in

G
bc
for all 1 ≤ i ≤ n. By Lemma 2.7, φ is a 1-pair partition of G

bc
. �

Note that the converse is not necessarily true if p(G) ≥ 3 is an even integer.
For example, if G = C8, then p(G) = 4 > 2 and the bipartite complement of G is

G
bc
= C8. But C8 has exactly two perfect matchings and each of them is a maximum

set of nonadjacent edges of C8. So any involution switching the end vertices of each
edge in a perfect matching of C8 cannot be a 1-pair partition of C8.

Corollary 2.9 Assume that G is a pairable connected regular bipartite graph of order

2n and G
bc

is the bipartite complement of G. If n is odd, then p(G) = 1 if and only

if G
bc

has no perfect matching M such that the involution switching end vertices of

each edge in M is a 1-pair partition of G
bc
.

Proof. By Corollary 2.5, the pair length p(G) must be odd since n is odd. By Lemma

2.8, p(G) ≥ 3 is an odd number if and only if G
bc

has a perfect matching M such
that the involution switching end vertices of each edge in M is a 1-pair partition of

G
bc
. Hence, the corollary follows. �

The next proposition shows that the graph of order 12 in Figure 1 is a smallest
regular bipartite graph that is not pairable. For convenience, in the proof we will
call a graph non-pairable if it is not pairable.

Proposition 2.10 Let G be a regular bipartite graph that is not pairable. Then
|V (G)| ≥ 12, and the bound is sharp.
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Proof. First, we point out that a smallest non-pairable regular bipartite graph must
be connected, since any non-pairable disconnected regular bipartite graph must have
a non-pairable regular bipartite component. Next, note that the complete graph K2

is the unique connected 1-regular bipartite graph and K2 is pairable. Also note that
any connected 2-regular bipartite graph is an even cycle and so is pairable. Then we
only need to show that any connected r-regular bipartite graph H (where r ≥ 3) of
order less than 12 is pairable. Since |V (H)| < 12, we have r < 6, and so we may
distinguish three cases according to the possible values of the degree r of H . Before
discussing each case separately, recall the well-known fact [3] that any connected
r-regular bipartite graph of order 2n (where n ≥ r) is a spanning subgraph of Kn,n.

Case 1. r = 3. Then |V (H)| = 2n ≥ 6. If |V (H)| = 6, then H = K3,3 and
so H has pair length 1 by [10]. If |V (H)| = 8, then H is the subgraph of K4,4

obtained by removing a perfect matching, and so H has pair length 3 by Lemma 2.8.

If |V (H)| = 10, then the bipartite complement H
bc
is a union of disjoint even cycles,

and so H
bc
is pairable. Then by Lemma 2.7, H is also pairable.

Case 2. r = 4. Then |V (H)| = 2n ≥ 8. If |V (H)| = 8, then H = K4,4 and so H
has pair length 2 by [10]. If |V (H)| = 10, then H is the subgraph of K5,5 obtained
by removing a perfect matching, and so H has pair length 3 by Lemma 2.8.

Case 3. r = 5. Then |V (H)| = 2n ≥ 10. If |V (H)| = 10, then H = K5,5 and so
H has pair length 1 by [10].

Thus, we have shown that any connected r-regular bipartite graph (where r ≥ 3)
of order less than 12 is pairable. It follows that for any regular bipartite graph G
that is not pairable, we must have |V (G)| ≥ 12. The bound 12 is sharp, since the
graph given in Figure 1 is a non-pairable connected regular bipartite graph of order
12. �

3 Main Results

Theorem 3.1 Let B(r, k) be the set of connected r-regular bipartite graphs of pair
length k where both k and r are positive integers. Then B(r, 1) is nonempty if and
only if r �= 2; and B(r, k) where k > 1 is nonempty if and only if r > 1.

(i) If k = 1 and r ≥ 1, then

min
G∈B(r,1)

{|V (G)|} =

⎧⎨
⎩

2r, if r ≡ 1(mod 2),
2(r + 3) = 14, if r = 4,

2(r + 2), if r > 4 and r ≡ 0(mod 2).

(ii) If k = 2 and r > 1, then

min
G∈B(r,2)

{|V (G)|} =

{
2r, if r ≡ 0(mod 2),

2(r + 3), if r ≡ 1(mod 2).

(iii) If k = 3 and r > 1, then

min
G∈B(r,3)

{|V (G)|} = 2(r + 1).
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(iv) If k > 3 and r > 1, and at least one of them is even, then

min
G∈B(r,k)

{|V (G)|} =

⎧⎨
⎩

kr, if r ≡ 0(mod 2),
kr, if r ≡ 1(mod 2) and k ≡ 0(mod 4),

kr + 2, if r ≡ 1(mod 2) and k ≡ 2(mod 4).

Proof. By Lemmas 3.2, 3.3, 3.4, 3.6, and 3.7 given in the following subsections. �

3.1 B(r, k) where k ≤ 3

Lemma 3.2 Let r be a positive integer. Then B(r, 1) is nonempty if and only if
r �= 2.

(i) If r ≡ 1(mod 2), then min
G∈B(r,1)

{|V (G)|} = 2r.

(ii) If r ≡ 0(mod 2), then min
G∈B(r,1)

{|V (G)|} =

{
2(r + 3) = 14, if r = 4;

2(r + 2), if r > 4.

Proof. Let G be an arbitrary graph in B(r, 1). Then r �= 2 since any connected
2-regular bipartite graph is an even cycle, and so has pair length > 1. By Corollary
2.5, G is a spanning subgraph of Kn,n where n ≥ r. Hence, |V (G)| ≥ 2r.

(i) If r ≡ 1(mod 2), then r ≥ 1 since p(Kr,r) = 1 by [10] and, hence, |V (G)| ≥ 2r
is sharp.

(ii) If r ≡ 0(mod 2), then r ≥ 4 since r �= 2. Note that |V (G)| �= 2r since
p(Kr,r) = 2 when r is even. Moreover, |V (G)| �= 2(r+1) since any r-regular spanning
subgraph of Kr+1,r+1 has pair length 3 by Lemma 2.8. Hence, |V (G)| ≥ 2(r + 2).
We distinguish two cases based on r = 4 and r > 4 respectively.

Case 1. r = 4. We show that |V (G)| ≥ 2(r + 3) = 14 is a sharp bound.
First, |V (G)| �= 2(r + 2) = 12. Otherwise, if |V (G)| = 12, then G is a 4-

regular spanning subgraph of K6,6 of pair length p(G) = 1. Let G
bc
be the bipartite

complement of G. Then G
bc

is a 2-regular spanning subgraph of K6,6, and so a

disjoint union of even cycles. There are four possibilities for G
bc
: G

bc
= C12, or

G
bc
= C4 ∪C8, or G

bc
= C4 ∪C4 ∪C4, or G

bc
= C6 ∪C6. Suppose that G

bc
= C12, or

G
bc
= C4 ∪C8, or G

bc
= C4 ∪C4 ∪C4. Then G

bc
has a pair partition φ such that the

restriction of φ on each even cycle is the antipodal automorphism of the even cycle.
Note that any two antipodal vertices of an even cycle C2n have the same color if n

is even. Then v and φ(v) are in the same color class of G
bc
for any vertex v of G

bc
.

By Lemma 2.7, G has a k-pair partition φ for some even integer k ≥ 2. This is a

contradiction to the assumption that p(G) = 1. Suppose that G
bc
= C6 ∪C6. Let B

and W be two color classes of G
bc

and so of G. We denote one C6 = b1w1b2w2b3w3

and the other C6 = b′1w
′
1b

′
2w

′
2b

′
3w

′
3 where bi, b

′
i ∈ B and wi, w

′
i ∈ W for 1 ≤ i ≤ 3.

Then the involution φ satisfying φ(bi) = b′i and φ(wi) = w′
i for 1 ≤ i ≤ 3 is a pair

partition of G
bc
such that v and φ(v) are in same color class for any vertex v of G

bc
.

By Lemma 2.7, G has a k-pair partition φ for some even integer k ≥ 2. This is again
a contradiction to the assumption that p(G) = 1. Therefore, |V (G)| �= 12.
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Figure 2: Heawood graph.

Next, we construct a 4-regular bipartite graph of order 14 and pair length 1. Let
H be the Heawood graph, see Fig. 2. Then H is a 3-regular spanning subgraph

of K7,7. Let G = H
bc

be the bipartite complement of H . Then G is an r(= 4)-
regular bipartite graph of order 2n(= 14). Since r > n/2, it is easily seen that G is
connected. So, both G and H are connected pairable graphs. By Corollary 2.5, each
of p(G) and p(H) must be an odd number since G and H are spanning subgraphs
of K7,7. The Heawood graph H is 2-factor hamiltonian, that is, all its 2-factors are
Hamilton cycles [14]. So for each perfect matching M of the Heawood graph H , the
set of edges not in M forms a hamiltonian cycle. Every two perfect matchings and
every two Hamiltonian cycles of the Heawood graph H can be transformed into each
other by an automorphism of H [17]. Without loss of generality, we can consider
the perfect matching M of H marked in red. It is easily seen that the involution
switching the end vertices of each edge in M is not a 1-pair partition of H . By

Corollary 2.9, p(G) = 1 where G = H
bc
.

Case 2. r > 4. We show that |V (G)| ≥ 2(r+2) is a sharp bound by constructing
an r-regular bipartite graph G of order 2(r + 2) and pair length 1 as the bipartite
complement of the following graph H .

Subcase 2.1. If r = 4t where t > 1, then 2(r+2) = 2(4t+2) = 2(2t−1)+2(2t+3).
Let H be a disjoint union of two even cycles: H = C2(2t−1) ∪C2(2t+3). Then any pair
partition of H maps C2(2t−1) (respectively, C2(2t+3)) onto itself.

Subcase 2.2. If r = 4t + 2 where t ≥ 1, then 2(r + 2) = 2(4t + 4) = 2(2t + 1) +
2(2t+3). Let H be a disjoint union of two even cycles: H = C2(2t+1)∪C2(2t+3). Then
any pair partition of H maps C2(2t+1) (respectively, C2(2t+3)) onto itself.

Since each pair partition of H preserves a cycle at least as big as C6, there is
always a pair of mates that is not adjacent in H .

Let G = H
bc

be the bipartite complement of H in Kr+2,r+2. Then G is an r-
regular bipartite graph. It is easy to check that G is connected from its specific

structure, since G
bc
= H is a disjoint union of two even cycles and |V (G)| = 2(r+2)

with r ≥ 6.
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It is clear that G is pairable by Lemma 2.7. Additionally, by Lemma 2.7, any
pair partition of G is a pair partition of H . By the construction, any pair partition
of H has the property that any pair of mates must be from distinct color classes of
H , and at least one pair of them cannot be adjacent in H . It follows that any pair
partition of G has a pair of mates adjacent in G. Hence, p(G) = 1. �

Lemma 3.3 Let r be a positive integer. Then B(r, 2) is nonempty if and only if
r > 1.

(i) If r ≡ 0(mod 2), then min
G∈B(r,2)

{|V (G)|} = 2r.

(ii) If r ≡ 1(mod 2), then min
G∈B(r,2)

{|V (G)|} = 2(r + 3).

Proof. Let G be an arbitrary graph in B(r, 2). Then r > 1 since any connected 1-
regular graph is an edge of pair length 1. By Corollary 2.5, G is a spanning subgraph
of Kn,n where n ≥ r. Moreover, n is an even integer since p(G) = 2 is even.

(i) If r ≡ 0(mod 2), then |V (G)| = 2n ≥ 2r is a sharp bound since p(Kr,r) = 2
when r is even.

(ii) If r ≡ 1(mod 2), then we claim that n ≥ r + 3 as follows. First, n �= r, r + 2
since r is odd and n is even. Secondly, n �= r + 1 since any r-regular spanning
subgraph of Kr+1,r+1 has pair length 3, but p(G) = 2. Hence, n ≥ r + 3. We show
that |V (G)| = 2n ≥ 2(r + 3) is sharp by constructing a desired bipartite graph of
order 2(r + 3) and pair length 2 as follows.
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Figure 3: A 3-regular spanning subgraph H of Kr+3,r+3 when r > 1 is odd.

Let H be the 3-regular bipartite graph of order 2(r + 3) shown in Fig. 3. Let

G = H
bc

be the bipartite complement of H in Kr+3,r+3. Then G is an r-regular
bipartite graph. Again, it is easy to check the connectivity of G by the construction.
By Lemma 2.7, any partition of G is a pair partition of H and vice versa since both
of them are connected. Let φ be an arbitrary pair partition of H . We show that φ
is a k-pair partition of G for some integer k at most 2. By Theorem 2.4, there are
two possible cases.
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Case 1. x, φ(x) are from different color classes of H for each vertex x of H . Note
that H has exactly six edges (marked in red) that are not contained in any 4-cycles
of H . Any pair partition of H must map these six red edges among themselves as an
automorphism of H . Moreover, any automorphism of H cannot switch the two end
vertices of each edge for all six of these edges. It follows that there exists a vertex x0

such that x0, φ(x0) are not adjacent in H , and so x0, φ(x0) are adjacent in G. Hence,
φ is a 1-pair partition of G.

Case 2. x, φ(x) are in the same color class of H for each vertex x of H . Then
x, φ(x) have a common neighbor in G as follows. If r = 3, it is easy to check that
x, φ(x) have a common neighbor in G; If r > 3, then r > n

2
= r+3

2
, and so any two

vertices in the same color class of G has a common neighbor in G. Hence, φ is a 2-
pair partition of G. Existence of such a φ can be seen by the example, shown in Fig.
3, whose restriction to the boundary cycle C of H is the antipodal automorphism of
C.

Therefore, p(G) = 2. �

Lemma 3.4 Let r be a positive integer. Then B(r, 3) is nonempty if and only if
r > 1. Moreover, min

G∈B(r,3)
{|V (G)|} = 2(r + 1).

Proof. Let G be an arbitrary graph in B(r, 3). Then r > 1. By Corollary 2.5,
G is a spanning subgraph of Kn,n where n ≥ r. It is clear that n �= r since the
only r-regular spanning subgraph of Kr,r is itself which has pair length 1 or 2 based
on the parity of r. Then n ≥ r + 1 and |V (G)| ≥ 2(r + 1). This bound is sharp
since any bipartite graph obtained from Kr+1,r+1 by removing a perfect matching is
a connected r-regular bipartite graph of order 2(r+1) and pair length 3. Therefore,
min

G∈B(r,3)
{|V (G)|} = 2(r + 1). �

3.2 B(r, k) where k > 3 and at least one of k, r is even

Proposition 3.5 For any integers k > 3 and r > 1, min
G∈B(r,k)

{|V (G)|} ≥ kr. In

particular, if both k and r are odd, then min
G∈B(r,k)

{|V (G)|} ≥ kr + 1.

Proof. If r = 2, then it holds trivially since the only graph in B(2, k) is the 2k-cycle.
Assume that r > 2 and G is a graph in B(r, k) for k > 3. By Theorem 2.3, G
contains a strongly induced 2k-cycle C. Since G is r-regular, each vertex of C is
adjacent with r − 2 vertices of G− C. Hence, the number of edges between C and
G−C is 2k(r−2). On the other hand, each vertex of G−C can be adjacent with at
most two vertices of C since C is a strongly induced 2k-cycle where k > 3 and G is
bipartite. So the number of edges between C and G− C is at most 2(|V (G)| − 2k).
Then 2k(r− 2) ≤ 2(|V (G)| − 2k). It follows that |V (G)| ≥ kr. In particular, if both
r and k are odd, then min

G∈B(r,k)
{|V (G)|} ≥ kr + 1 since G has even order. �

Lemma 3.6 Let k > 3 and r > 1 be integers. If r is even, then min
G∈B(r,k)

{|V (G)|} =

kr.
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Proof. By Proposition 3.5, we only need to show that min
G∈B(r,k)

{|V (G)|} ≥ kr is a

sharp bound. Construct a desired bipartite graph of order kr as follows. Start with

2

1 2 k

k

r/2 r/2 r/2

r/2r/2r/2

V V V

V’ V’ V’1 

Figure 4: A graph G ∈ B(r, k) where r is even and k > 3.

a 2k-cycle v1v2 · · · vkv′1v′2 · · · v′k. Replace each vertex vi (respectively, v
′
i) of C by an

independent set Vi (respectively, V
′
i ) of cardinality r

2
. Then, for any two adjacent

vertices of C, we add all possible edges between two corresponding independent sets.
Thus, we obtain a connected r-regular bipartite graph G of order kr. See Fig. 4. It
is clear that G has pair length k. �

Note on constructions in Lemma 3.6 and beyond: The construction in
Lemma 3.6 is a graph blow-up. The constructions in subsequent statements are mod-
ified blow-ups of graphs. For instance, see the blow-up lemma at http://mathworld.
wolfram.com/Blow-UpLemma.html .

Lemma 3.7 Let k > 3 and r > 1 be integers. Assume that r is odd and k is even.
(i) If k ≡ 0(mod 4), then min

G∈B(r,k)
{|V (G)|} = kr.

(ii) If k ≡ 2(mod 4), then min
G∈B(r,k)

{|V (G)|} = kr + 2.

Proof. By Proposition 3.5, min
G∈B(r,k)

{|V (G)|} ≥ kr. By Corollary 2.5, |V (G)| = 2n

where n is even since k is even. Hence, |V (G)| = 2n ≡ 0(mod 4).
Case 1. k ≡ 0(mod 4). Then kr ≡ 0( mod 4). We show that min

G∈B(r,k)
{|V (G)|} ≥ kr

is a sharp bound by constructing a desired bipartite graph of order kr. See Fig. 5.
Start with a 2k-cycle C = v1v2 · · · vkv′1v′2 · · · v′k where k = 4m for some positive
integer m. Replace each vertex vi (respectively, v

′
i) of C by an independent set Vi

(respectively, V ′
i ) such that

|Vi| = |V ′
i | =

{
r−1
2
, if i = 4j − 3, 4j for 1 ≤ j ≤ m,

r+1
2
, otherwise.

Then, for any two adjacent vertices of C, we add all possible edges between two
corresponding independent sets. Thus, we obtain a connected r-regular bipartite
graph G of order kr and pair length k.
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4j−2

1 2 3 4 4m−3 4m−2 4m−1 4m

4m 4m−1 4m−2 4m−3

(r−1)/2 (r−1)/2 (r−1)/2 (r−1)/2 (r−1)/2 (r−1)/2

(r−1)/2 (r−1)/2(r−1)/2 (r−1)/2 (r−1)/2 (r−1)/2

(r+1)/2 (r+1)/2 (r+1)/2 (r+1)/2 (r+1)/2 (r+1)/2

(r+1)/2 (r+1)/2 (r+1)/2 (r+1)/2 (r+1)/2 (r+1)/2

4j−3 4j

4j−14j

V V V V V V V V VV V 4j−2V 4j−1

V’ V’ V’ V’ V’ V’ V’ V’ V’ V’ V’123V’44j−3

Figure 5: A graph G in B(r, k) where r is odd and k = 4m.

Case 2. k ≡ 2(mod 4). Then kr ≡ 2(mod 4) since r is odd. It follows that
min

G∈B(r,k)
{|V (G)|} ≥ kr + 2 since |V (G)| ≡ 0(mod 4). We show that this bound is

sharp by constructing a desired bipartite graph of order kr+2. See Fig. 6. Start with

V’ 14m 4m−1

(r−1)/2 (r−1)/2 (r−1)/2 (r−1)/2 (r−1)/2

(r−1)/2

(r+1)/2 (r+1)/2 (r+1)/2 (r+1)/2 (r+1)/2 (r+1)/2

(r+1)/2 (r+1)/2

(r−1)/2

(r−1)/2

(r+1)/2(r+1)/2

(r+1)/2 (r+1)/2

1 2 3 4 5 6 4m+24j+1 4j+24j−1 4j

56

(r+1)/2(r+1)/2(r−1)/2(r−1)/2 (r−1)/2 (r−1)/2(r+1)/2 (r+1)/2

4 34m+2 4m+1

4m−1 4m 4m+1V V V V V V V V V V V V V V

V’V’V’V’V’4j−1V’4j4j+1V’V’4j+2 V’V’2V’V’V’

Figure 6: A graph G in B(r, k) where r is odd and k = 4m+ 2.
The dotted double lines between V3 and V4 (respectively, V ′

3 and V ′
4) denote all

possible edges between the two vertex subsets but one perfect matching.

a 2k-cycle C = v1v2 · · · vkv′1v′2 · · · v′k where k = 4m + 2 for some positive integer m.
Replace each vertex vi (respectively, v

′
i) of C by an independent set Vi (respectively,

V ′
i ) such that

|Vi| = |V ′
i | =

{
r−1
2
, if i = 1, 6 or i = 4j − 1, 4j + 2 for 2 ≤ j ≤ m,

r+1
2
, otherwise.

Then for any two adjacent vertices of C, add all possible edges between two corre-
sponding independent sets. Finally, remove a perfect matching between V3 and V4

(respectively, V ′
3 and V ′

4). Then we obtain a connected r-regular bipartite graph G
of order kr + 2 and pair length k. �

3.3 On the remaining case

When both k ≥ 5 and r ≥ 3 are odd numbers, it becomes much more challenging
to determine min

G∈B(r,k)
{|V (G)|}. We have provided a lower bound min

G∈B(r,k)
{|V (G)|} ≥
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kr + 1 in Proposition 3.5. Here we give an upper bound as follows.

Proposition 3.8 For odd numbers k ≥ 5 and r ≥ 3, min
G∈B(r,k)

{|V (G)|} ≤ kr + (k −
4)(r − 2).

Proof. A desired graph attaining the bound can be constructed as follows.
Start with a 2k-cycle C = v1v2 · · · vkv′1v′2 · · · v′k. Replace each vertex vi (respec-

tively, v′i) of C by an independent set Ii (respectively, I
′
i) such that

|Ii| = |I ′i| =
{

r+1
2
, if i = 2, 3,

r−1
2
, otherwise.

Moreover, if |Ii| = r+1
2
, then Ii = {xi} ∪ Ji where xi is a single vertex and Ji is an

independent set of size r−1
2
, and if |I ′i| = r+1

2
, then I ′i = {x′

i} ∪ J ′
i where x′

i is a single
vertex and J ′

i is an independent set of size r−1
2
.

(r−1)/2

II1

2J J
3

2 3

x x2 3

E5

I’
5

E’
5

I’4

x’3
J’3

I’3

x’
2

I’2

J’2

I5

I’1

I I
4

(r−1)/2 (r−1)/2 (r−1)/2

(r−1)/2(r−1)/2 (r−1)/2

(r−1)/2 (r−1)/2

(r−1)/2 (r−1)/2 (r−1)/2

(r−1)/2

Figure 7: A graph G in B(r, 5) where r ≥ 3 is odd.
The double lines between I5 and E5 (respectively, I ′5 and E ′

5) denote a perfect
matching between the two vertex subsets.

Then for any two adjacent vertices of C, add all possible edges between two corre-
sponding independent sets. Next, remove all edges between J2 and J3 (respectively,
J ′
2 and J ′

3). Finally, for 5 ≤ i ≤ k, add an independent set Ei (respectively, E
′
i)

and a perfect matching between Ei and Ii (respectively, E
′
i and I ′i). Add all possible

edges joining Ei and Ei+1 and those joining E ′
i and E ′

i+1 for i = 5, . . . , k−1. Add all
possible edges between E5 and J3 (respectively, E ′

5 and J ′
3), and all possible edges

between Ek and J ′
2 (respectively, E ′

k and J2). Then we obtain a connected r-regular
bipartite graph G that has order kr + (k − 4)(r − 2) and pair length k. �

Note. By Lemma 3.4, we can see that if k = 3, the upper bound given in Proposition
3.8 equals exactly the desired minimum order of a graph in B(r, 3) for any odd number
r > 1. We conjecture that the same also holds for the special case when r = 3.

Conjecture:
For any odd number k > 1, the minimum order of a connected cubic bipartite

graph of pair length k is 4k − 4.
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Figure 8: A graph G in B(r, k) where both r ≥ 3 and k > 5 are odd.
The double lines between Ii and Ei (respectively, I

′
i and E ′

i) denote a perfect
matching between the two vertex subsets.
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