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Local gap colorings from edge labelings
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Abstract

We study a local version of gap vertex-distinguishing edge coloring. From
an edge labeling f : E(G) → {1, . . . , k} of a graph G, an induced vertex
coloring c is obtained by coloring the vertices with the greatest difference
between incident edge labels. The local gap chromatic number χe∆(G) is
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the minimum k for which there exists an edge coloring such that c(u) 6=
c(v) for all edges uv. We prove that χ(G) ≤ χe∆(G) ≤ χ(G) + 1 for all
graphs G, where χ(G) denotes the chromatic number of G. Further, we
provide graph classes attaining both bounds.

1 Introduction

Unless otherwise stated, a graph G is simple, finite, and undirected with no isolated
vertex. Standard graph theory notation ([13]) is used throughout.

Derived graph colorings, typically obtained from graph labelings, have been
widely studied. In 1988, Chartrand et al. [2] introduced the irregularity strength
of a graph G, which is the smallest positive integer k such that each edge can have a
label from [k] := {1, . . . , k} so that the sum of labels of edges incident to each vertex
is distinct. This topic was further studied in [1, 3, 8], among others. In 2008, Gyori
et al. [4] introduced a variation that seeks the smallest positive integer k such that
each edge can have a label from [k] so that the sets of the weights on edges incident
to vertices are distinct.

In addition to the global constraints described above, local constraints have also
been studied. The most active problem in this area, the 1-2-3 Conjecture, was
proposed in 2004 by Karoński,  Luczak, and Thomason [6]. For a graph G, let χeΣ(G)
be the smallest positive integer k such that G has a labeling ` : E(G) → [k] such
that, for every edge uv ∈ E(G),

∑
e3u

`(e) 6=
∑
e3v

`(e).

1-2-3 Conjecture (Karoński,  Luczak, Thomason [6]). If G has no component iso-
morphic to K2, then χ

e
Σ(G) ≤ 3.

Under the same assumptions, Kalkowski, Karoński, Pfender [5] showed that
χeΣ(G) ≤ 5. For a survey of work on the 1-2-3 Conjecture and derived colorings,
we direct the reader to [11].

In this paper, we are interested in a particular derived vertex coloring called gap
vertex-distinguishing edge coloring. Here, the derived coloring g` of a vertex is

g`(v) =

{
`(e)e3v if d(v) = 1

max
e3v

`(e)−min
e3v

`(e) otherwise,

where ` : E(G) → [k]. An edge coloring ` : E(G) → [k] of a graph G is called gap
vertex distinguishing when all vertices have distinct colors. The minimum k such that
a gap vertex-distinguishing edge coloring exists is called the gap chromatic number
of G and denoted gap(G). Introduced by Tahraoui, Duchêne, and Kheddouci in [12],
they conjectured that gap(G) ≤ n(G) + 1. In [9], Scheidweiler and Triesch prove
this conjecture for connected graphs, but disprove it in general by finding a class of
graphs with gap(G) = n(G) + 2.

Tahraoui et al. [12] introduce a similar derived coloring that distinguished ad-
jacent vertices. The gap-adjacent-chromatic number of a graph G, gapad(G), is the
minimum k for which a labeling ` : E(G) → [k] exists so that g` induces a proper
vertex coloring. Scheidweiler and Triesch [10] prove the following:
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Theorem 1 ([10]). If χ(G) ∈ {2, 3}, then gapad(G) ≤ χ(G) + 1.

Theorem 2 ([10]). If G is a graph without isolated edges, then

χ(G)− 1 ≤ gapad(G) ≤ χ(G) + 5.

In this paper, we improve Theorem 2 by giving sharp bounds.

Theorem 3. If G is a graph without isolated edges, then χ(G) ≤ gapad(G) ≤ χ(G)+1
unless G is a star, in which case gapad(G) = 1 = χ(G)− 1.

In order to define gap(G) for graphs with more than one leaf, the special treatment
of leaves in the definition of g` is necessary. In the local version, leaves are permitted
to have the same color. As such, it is natural to consider the following simpler
definition for the gap color of vertices

c`(v) = max
e3v

`(e)−min
e3v

`(e),

where ` : E(G)→ [k] and leaves do not receive special treatment. An edge coloring
` : E(G) → [k] of a graph G is a local gap k-coloring when adjacent vertices have
distinct colors under c`. The minimum k for which a local gap k-coloring exists is
called the local gap chromatic number of G and denoted by χe∆(G). In this paper,
we prove the following:

Theorem 4. If G has no isolated edges, then χe∆(G) ∈ {χ(G), χ(G) + 1}.

Despite the difference between c` and g`, we are able to use Theorem 4 to prove
Theorem 3. All bounds in Theorem 3 and 4 are sharp, as we will discuss in the next
section.

2 Sharpness Examples for Theorems 3 and 4

Assigning edge labels from [k] allows for k vertex colors under c`, namely 0, . . . , k−1.
Therefore, χe∆(G) ≥ χ(G). Equality is achieved by many graphs, some of which we
discuss in Section 5. A similar argument implies gapad(G) ≥ χ(G) − 1. However,
not all graphs have χe∆(G) = χ(G). For example, consider a complete graph with a
pendant edge added to each vertex. It is easy to see that χe∆(G) = χ(G) + 1 and
gapad(G) = χ(G).

For an example with χe∆(G) = gapad(G) = χ(G) + 1, consider the following
graph. Let s and r be positive integers such that s ≥ r + 1 ≥ 3, and let Kr

s be the
complete r-partite graph with s vertices in each partite set X1, . . . , Xr. For all i and
all u, v ∈ Xi, add a new vertex that is adjacent to u and v and call this graph G.
Since G has no leaves, χe∆(G) = gapad(G). We claim that χe∆(G) = r+1 = χ(G)+1.

To see this, suppose that χe∆(G) = r. Let c` be a local gap r-coloring of G. Since
Kr
s ⊆ G and there exists exactly one partition of Kr

s into r independent sets, there
is some partite set of Kr

s , say X1, such that c`(v) = 0 for all v ∈ X1. For every
v ∈ X1, all edges incident to v have the same label. This partitions X1 into at most
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r classes depending on the label of the incident edges. Since s ≥ r + 1, there are
two vertices u, v ∈ X1 that have the same label on all incident edges. Thus, the
vertex x outside Kr

s adjacent to u and v has c`(x) = 0, a contradiction. Therefore,
χe∆(G) ≥ r + 1 = χ(G) + 1; equality follows from Theorem 3.

One can generalize this construction by taking a large enough blow-up of any
graph G and joining new vertices to every t-tuple from the independent sets of the
blow-up corresponding to vertices of G.

3 An Upper Bound for χe
∆(G)

We turn our attention to proving an upper bound for χe∆(G). For this purpose, we
define the following sets based on distance to any X ⊆ V (G) (see Figure 1):

Vi(X) = {x ∈ V (G) : d(x,X) = i},
Ui(X) = {x ∈ Vi(X) : N(x) ⊆ Vi−1(X)},
Ei(X) = {xy ∈ E(G) : x ∈ Vi−1(X), y ∈ Vi(X)},
Fi(X) = {xy ∈ Ei(G) : y ∈ Ui(X)},

where i ∈ N, V0 = U0 = X. For i ≥ 2, let

V ′i−1(X) = {x ∈ Vi−1(X) : ∃xy ∈ Fi(X)}
F ′i−1(X) = {wx ∈ Ei−1(G) : x ∈ V ′i−1(X)}.

Vi−1 ViEi

V ′i−1

Ui−1 Ui

Fi

F ′i−1

Figure 1: Sets defined for proofs.

For brevity we write v when X = {v} and say that v has gap color m when c`(v) = m.
To prove Theorem 4, we cover three cases based on chromatic number in the following
lemmas.

Lemma 1. Let G be a connected bipartite graph not isomorphic to K2. Then
χe∆(G) ≤ 3.

Proof. Let v be a vertex in G that is not adjacent to a leaf. Define an edge labeling
` as follows for edge e ∈ Ei(v) (see Figure 2):

`(e) =


3 if i ≡ 1 mod 4, or both i ≡ 0 mod 4 and e ∈ Fi(v),

1 if i ≡ 2 mod 4, or both i ≡ 3 mod 4 and e ∈ F ′i (v),

2 otherwise.
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v
0

V1 V2 V3 V4 V5
E1 E2 E3 E4 E5

2

0,1

U2

0

0

V ′3

2

U3

0

1

U4

0

2

U5

0

3 1

1

F2

2

1

F ′3

2

F3

2

3

F4

3

3

F5

1

...

Figure 2: An edge labeling for connected bipartite graphs including derived gap
colors.

Notice that each Vi(v) is an independent set since G is bipartite. When i is even, the
gap color of vertices in Vi(v) is either 0 or 1. When i is odd, the gap color of vertices
in Vi(v) is either 0 or 2. Toward ` being a local gap 3-coloring, we show vertices
with gap color 0 are independent. Since v is not adjacent to a leaf, c`(x) = 2 for all
x ∈ V1(v). Notice that every vertex in some Ui(v) has gap color 0, and all of their
neighbors have nonzero gap color. When i ≡ 2 mod 4, every neighbor of a vertex
in Vi with gap color 0 has gap color 2. Vertices in V ′i (v) when i ≡ 3 mod 4 have
gap color 2 and are adjacent to vertices whose gap color is either 0 or 1. Thus, ` is
a local gap 3-coloring.

Lemma 2. Let G be a connected tripartite graph. Then χe∆(G) ≤ 4.

Proof. Let C1, C2, C3 be the color classes of a proper coloring of V (G) in which every
vertex in Ci has a neighbor in Cj for 1 ≤ j < i ≤ 3. Let Y1 = {v ∈ C1 : N(v) ⊆ C2},
Y2 = C1\Y1, X1 = {v ∈ C2 : N(v) ⊆ C1}, and X2 = C2\X1. We refine Y1 and X1 by
defining Y11 = {v ∈ Y1 : N(v) ⊆ X1}, Y12 = Y1 \ Y11, X11 = {v ∈ X1 : N(v) ⊆ Y1},
and X12 = X1 \X11. Define a partial edge labeling ` as follows (see Figure 3):

`(uv) =


4 if u ∈ C3 and v ∈ C1,

3 if u ∈ C3 and v ∈ C2,

1 if u ∈ X2 and v ∈ Y2.

Notice that vertices in C3, X2, and Y2 have gap colors 1, 2, and 3 respectively. Also
notice that the remaining edges all live in a bipartite graph. We attempt to mimic
Lemma 1 without changing the existing gap colors in C3, X2, and Y2. We examine
two completions of this coloring dependent upon Y12.

First, assume that Y12 = ∅. Since G is connected, X12 6= ∅. For all leaves u ∈ X12

incident to some v, define `(uv) = 1. Complete the partial edge labeling for all
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C3

C2C1

X12

X11

X2

Y12

Y11

Y2

4

31
120,3

Figure 3: A partial edge labeling for connected tripartite graphs including derived
gap colors.

remaining edges uv ∈ Ei(Y2) with u ∈ C2 and v ∈ C1 as follows (see Figure 4):

`(uv) =


4 if i ≡ 1 mod 4,

2 if i ≡ 2 mod 4,

3 if i ≡ 3 mod 4,

1 if i ≡ 0 mod 4.

C3

C2C1

X12

X11

X2

Y11

Y2

4

31

4

2

3

1

4

1

12

0,2

0,2

0,3

0,1,3

Figure 4: Completing the partial tripartite labeling from Figure 3 when Y12 = ∅.

The gap color of vertices in X1 is 0 or 2, and the gap color of vertices in Y1 = Y11 is 0,
1, or 3. Hence, the vertices in C2 have gap color 0 or 2, and vertices in C1 have gap
color 0, 1, or 3. Again, we must show the vertices with gap color 0 are independent.
Notice that if a vertex in (X1 ∪ Y1) ∩ Vi(Y2) has a neighbor in (X1 ∪ Y1) ∩ Vi+1(Y2)
then it has nonzero gap color. Let x ∈ (X ∪ Y )∩ Vi(Y2) with c`(x) = 0. Then, every
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neighbor of x is in Vi−1(Y2) and (the neighbor in Vi−1(Y2)) has a neighbor in Vi−2(Y2),
which is for i = 2 equal to Y2 and for i = 1 equal to C3. Hence, every neighbor of x
has nonzero gap color. Therefore, ` is a local gap 4-coloring.

Otherwise, Y12 6= ∅. Complete the edge labeling for all remaining edges uv ∈
Ei(X2) with u ∈ C2 and v ∈ C1 as follows (see Figure 5):

`(uv) =



1 if i ≡ 1 mod 4, u ∈ X12, and v ∈ Y2,

3 if i ≡ 1 mod 4, and u ∈ C2 \X12 or v ∈ Y1,

2 if i ≡ 2 mod 4,

4 if i ≡ 3 mod 4,

1 if i ≡ 0 mod 4.

C3

C2C1

X12

X11

X2

Y12

Y11

Y2

4

31

3

2

4

1

3

1

1,3

12

0,2

0,2

0,3

0,1

0,1,3

Figure 5: Completing the partial tripartite labeling from Figure 3 when Y12 6= ∅.

The gap color of vertices in X1 is either 0 or 2, and the gap color of vertices in Y1

are 0, 1, or 3. As before, the neighbors of any vertex with gap color 0 in X1 ∪ Y1

have nonzero gap color. Thus, ` is a local gap 4-coloring.

Lemma 3. Let G be a connected graph with χ(G) ≥ 4. Then χe∆(G) ≤ χ(G) + 1.

Proof. Let χ = χ(G), and let C1, . . . , Cχ be the color classes of a proper coloring on
V (G) in which every vertex in Ci has a neighbor in Cj for 1 ≤ j < i ≤ χ. Let X11,
X12, X2, Y11, Y12, and Y2 be defined as in the proof of Lemma 2. Define a partial
edge labeling for uv ∈ E(G) as follows (see Figure 6).

`(uv) =



χ− i+ 2 if u ∈ Ci and v ∈ Ci−1 for some i = 4, . . . , χ

1 if u ∈ C2 and v ∈ Ci for some i = 4, . . . , χ

2 if u ∈ C1 and v ∈ Ci for some i = 4, . . . , χ

2 if u ∈ Ci and v ∈ Cj for 4 ≤ i < j − 1 ≤ χ− 1

χ if u ∈ C3 and v ∈ C2

2 if u ∈ C3 and v ∈ C1

χ+ 1 if v ∈ Y2
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1 1
2 22

2 2

. . .. . .

1 1
2 22

2 2

. . .. . .

Cχ

1
2

Ci

χ− i+ 1
χ− i+ 2

C4

χ− 3
χ− 3χ− 2

C3

χ− 2
χ

C2

X12

X11

X2
1

C1

Y12

Y11

Y2

2
0

χ− 1
χ + 1
χ
+
1

Figure 6: A partial edge labeling of a χ partite graph with χ ≥ 4.

Notice that for i = 3, . . . , χ vertices in Ci have gap color χ − i + 1, vertices in Y2

with a neighbor in C2 have gap color χ − 1, and vertices in Y2 with no neighbor in
C2 have gap color 0. As in Lemma 2, every remaining edge lives in a bipartite graph
and we attempt to mimic Lemma 1 without changing the existing gap colors. We
further refine X2 and Y12 by defining Y121 = {v ∈ Y12 : N(v) ⊆ X2}, X21 = {v ∈
X2 : N(v) ⊆ C3∪(Y12\Y121)}, Y122 = {v ∈ Y12\Y121 : N(v)∩X21 6= ∅, N(v)∩X12 6= ∅},
X22 = X2 \X21, and Y123 = Y12 \ (Y121 ∪ Y122). Label edges uv ∈ E(G) as follows:

`(uv) =

{
χ+ 1 if u ∈ Y121, or u ∈ Y122 and v ∈ X1,

χ− 1 if u ∈ Y122 and v ∈ X21.

Let X ′ be the set of vertices in C2 that have an incident edge already labeled.
Complete the partial edge labeling for all remaining edges uv ∈ Ei(X ′) with u ∈ C2

and v ∈ C1 as follows (see Figure 7):

`(uv) =


χ if i ≡ 1 mod 4,

χ− 2 if i ≡ 2 mod 4,

χ− 3 if i ≡ 3 mod 4,

χ− 1 if i ≡ 0 mod 4.

Every edge is labeled under this labelling even if Y12 = ∅ since G is connected.
Notice that vertices in X2 adjacent to Y121∪Y2 have gap color 1 or χ, and the vertices
with gap color 1 in X2 have neighbors strictly in C1 ∪ C3. Since vertices in X2 with
gap color 0 do not have neighbors in Y121, vertices with gap color 0 in X1 ∪ Y1 are
independent. Notice that vertices in Y122 may have an incident edge labeled χ from
X22 but do not have an incident edge labeled χ− 2. Thus, vertices in Y122 have gap
color 2. Vertices with gap color 0 in X12 have neighborhoods strictly in Y2∪Y122 and
thus are independent from vertices with gap color 0. The remaining parity of colors
guarantees ` is a local gap (χ+ 1)-coloring.

Proof of Theorem 4. Apply Lemmas 1, 2, and 3 to appropriate components of G.
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C2

X22

X21

X12

X11

1

χ

χ

C1

Y121

Y122

Y123

Y11

2
0

χ− 1

Y2
χ + 1

χ
+
1

χ + 1

χ− 1

χ + 1

χ

χ− 2

χ− 3

χ− 1

χ

0

2

0,2

0,2

0,1

0,1

1

0,1,χ

χ− 1

Figure 7: Completing the partial edge labeling from Figure 6.

4 Improved Bounds for gapad(G)

Recall that for a graph G, g` is the gap coloring associated with gapad(G). In this
section, we improve the bounds on the gap-adjacent-chromatic number of graphs.
We begin by showing gapad(G) ≥ χ(G) when G is not a star, and then provide a
sharp upper bound for all graphs.

Lemma 4. Let G be a connected graph. Then gapad(G) = χ(G)− 1 if and only if G
is a star.

Proof. If G is a star, then ` : E(G)→ {1} gives gapad(G) = χ(G)− 1. Assume G is
not a star. Let L be the leaves of G and ` : E(G) → [k]. Since a proper coloring of
G − L can be extended to G without using an additional color, χ(G − L) = χ(G).
From the definition, g`(v) ∈ {0, . . . , k − 1} for all v ∈ V (G − L). Thus, in order to
properly color G− L, k ≥ χ(G− L) = χ(G).

Lemma 5. For any connected graph G not isomorphic to K2, gapad(G) ≤ χ(G) + 1.

Proof. Theorem 1 gives the desired result when χ(G) ∈ {2, 3}. Thus, we may assume
χ(G) ≥ 4 and, in particular, that G is not a path. We proceed by induction on the
number of leaves. If G has no leaves, then gapad(G) = χe∆(G) since the two colorings
associated with these parameters differ only on leaves. Lemma 3 completes the base
case.

Assume gapad(H) ≤ χ(H) + 1 for all graphs H with k leaves and let G be a
graph with k + 1 leaves. Let P = v0v1 · · · vpu be a minimum length path in G with
d(v0) = 1 and d(u) ≥ 3. Let G′ = G − {v0, . . . , vp}. By the induction hypothesis,
gapad(G′) ≤ χ(G′)+1 = χ(G)+1. Let ` : E(G′)→ [χ(G)+1] be a labeling such that
g` induces a proper vertex coloring of G′. Let m,M be the minimum and maximum
labels, respectively, incident to u in G′. We extend ` to E(G).



A. BRANDT ET AL. /AUSTRALAS. J. COMBIN. 65 (3) (2016), 200–211 209

Define `(uvp) = M . Notice that g`(u) does not change. If p = 0, then

g`(v0) = M > M −m = g`(u)

and we have extended ` from G′ to G. Thus, we may assume p ≥ 1. It is straight-
forward to iteratively label the remaining edges vpvp−1, . . . , v1v0 with values from
{1, 2, 3} so that g` induces a proper vertex coloring of G. To see this, notice that for
each i = 1, . . . , p − 1, the 3 available labels for `(vp−i+1vp−i) give at least 2 possible
values for g`(vp−i+1) when vp−i+2vp−i+1 is already labeled and vp+1 = u. Figure 8
illustrates the four cases for labeling v0v1 when p ≥ 3. For brevity, we omit the two
remaining cases of p = 1, 2.

u vp v2 v1 v0

M

m

M

... · · ·

g`(v2) `(v1v2) g`(v1) `(v0v1) g`(v0)
0 1 1 2 2
0 2 1 3 3
0 3 1 2 2
6= 0 x 0 x x

Figure 8: Extending ` from G′ to G when p ≥ 3. In the table, x ∈ {1, 2, 3}.

5 Further Pursuits

We determine χe∆(G) exactly for cliques, cycles, and trees in the following proposi-
tions. It is easy to see that χe∆(K3) = 4.

Proposition 1. Let n ≥ 4. Then χe∆(Kn) = n.

Proof. Let v1 · · · vn−1 be a cycle on all but one vertex, v0, of Kn. Define `(vn−1v1) = 1,
`(vivi+1) = i + 2 for i = 2, . . . , n − 2, and `(e) = 2 for all remaining edges e. Note
that c`(vi) = i for i = 0, . . . , n− 1.

v1

v2 v3

v0

2

4

1

v1

v2

v3

v4

v0

2

4

5

1

v1

v2

v3 v4

v5

v0

2

4

5

6

1

1
Figure 9: Partial labelings witnessing c`(Kn) = n for n = 4, 5, 6. Remaining edges
are labeled 2.
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Proposition 2. Let Cn be a cycle on n ≥ 4 vertices. Then

χe∆(Cn) =

{
2 if n ≡ 0 mod 4,

3 otherwise.

Proof. A local gap 2-coloring must alternate gap colors between 0 and 1 along ver-
tices. This is possible precisely when n ≡ 0 mod 4. For n ≡ 2 mod 4, Theorem 4
then implies χe∆(Cn) = 3. For odd n ≥ 5, let Cn = v1 . . . vn. If n ≡ 1 mod 4, define
`(vnv1) = 3 and, for i ∈ {1, . . . , n− 1},

`(vivi+1) =

{
1 if i ≡ 1, 2 mod 4,

2 if i ≡ 0, 3 mod 4.

If n ≡ 3 mod 4, define `(vn−1vn) = `(vnv1) = 3 and, for i ∈ {1, n− 2},

`(vivi+1) =

{
1 if i ≡ 1, 2 mod 4,

2 if i ≡ 0, 3 mod 4.

This completes the proof.

v1

v2 v3

v4

1

1

2

2 v1

v2

v3

v4

v5

1

1

2

2

3 v1

v2

v3 v4

v5

v6

1

1

2

2

3

3
v1

v2

v3

v4
v5

v6

v7
1

1

2
2

1

3

3

1

Figure 10: Labelings witnessing c`(Cn) for n = 4, 5, 6, 7.

Proposition 3. Let T be a tree on n vertices, n ≥ 3. Then χe∆(T ) = 2 if all the
leaves of T are in the same partite set of a bipartition of T ; otherwise χe∆(T ) = 3.

Proof. Lemma 1 implies that χe∆(T ) ≤ 3. Since all leaves have gap color 0, a local
gap 2-coloring is not possible if leaves appear in both partite sets of T .

Now, let all leaves be in the same partite set of T . Let v be a leaf of T . For each
e ∈ Ei(v), define `(e) = 1 if i ≡ 0, 1 mod 4, and `(e) = 2 otherwise. Since T has no
cycles, ` is a local gap 2-coloring of T .

Since determining χ(G) is APX-hard in general [7] and χe∆(G) is within an addi-
tive constant of χ(G), determining χe∆(G) is APX-hard as well. However, it would
be interesting to investigate when χe∆(G) can be determined in polynomial time if
χ(G) is given as part of the input.
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[5] M. Kalkowski, M. Karoński and F. Pfender, Vertex-coloring edge-weightings:
towards the 1-2-3-conjecture, J. Combin. Theory Ser. B 100(3) (2010), 347–349.
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