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Abstract

Let G be a graph of sufficiently large order n, and let a and b be integers
with 1 ≤ a ≤ b. Let h : E(G) → [0, 1] be a function. If a ≤ ∑

x∈e h(e) ≤ b
holds for any x ∈ V (G), then G[Fh] is called a fractional [a, b]-factor of G
with indicator function h, where Fh = {e ∈ E(G) | h(e) > 0}. A graph G
is fractional independent-set-deletable [a, b]-factor-critical (simply, frac-
tional ID-[a, b]-factor-critical) if G−I includes a fractional [a, b]-factor for
every independent set I of G. In this paper, we prove that G is fractional
ID-[a, b]-factor-critical if δ(G) ≥ bn

a+2b
+ a and max{degG(x), degG(y)} ≥

(a+b)n
a+2b

for any two nonadjacent vertices x, y ∈ V (G). This result is best
possible in some sense.

1 Introduction

In this paper, we consider only finite, simple and undirected graphs. Let G be a
graph with the vertex set V (G) and the edge set E(G). For x ∈ V (G), we denote
by degG(x) the degree of x in G, and by NG(x) the set of vertices adjacent to x in
G, and NG[x] for NG(x) ∪ {x}. The minimum degree of G is denoted by δ(G). For
S ⊆ V (G), we denote by G[S] the subgraph of G induced by S, and by G − S the
subgraph obtained from G by deleting vertices in S together with the edges incident
to vertices in S; G−S = G[V (G)−S]. A vertex set S of G is called an independent
set if G[S] has no edges.

Let a and b be two integers with 1 ≤ a ≤ b. A spanning subgraph F of G is
called an [a, b]-factor if a ≤ degF (x) ≤ b for each x ∈ V (G). If a = b = k, then an
[a, b]-factor is called a k-factor. Let h : E(G) → [0, 1] be a function. Then we call
G[Fh] a fractional [a, b]-factor of G with indicator function h if a ≤ ∑

x∈e h(e) ≤ b
holds for any vertex x ∈ V (G), where Fh = {e ∈ E(G) | h(e) > 0}. A graph G
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is fractional ID-[a, b]-factor-critical if G − I has a fractional [a, b]-factor for every
independent set I of G. Other notation and terminology are the same as those in [1].

The following results on k-factors, [a, b]-factors and fractional ID-[a, b]-factor-
critical graphs are already known.

Theorem A (Egawa and Enomoto [2]; Katerinis [3]) Let k be a positive inte-
ger, and let G be a graph of order n ≥ 4k−5, and suppose that δ(G) ≥ k, kn is even
and δ(G) ≥ n

2
. Then G has a k-factor.

Theorem B (Nishimura [6]) Let k be an integer with k ≥ 3, and let G be a
connected graph of order n ≥ 4k − 3, and suppose that δ(G) ≥ k, kn is even and
max{degG(x), degG(y)} ≥ n

2
for any two nonadjacent vertices x, y ∈ V (G). Then G

has a k-factor.

Theorem C (Li and Cai [4]) Let a and b be integers with 1 ≤ a ≤ b, let G be a
graph of order n ≥ 2a + b + a2−a

b
, and suppose that δ(G) ≥ a and max{degG(x),

degG(y)} ≥ an
a+b

for any two nonadjacent vertices x, y ∈ V (G). Then G has an
[a, b]-factor.

Theorem D (Zhou, Sun and Liu [7]) Let a and b be integers with 1 ≤ a ≤ b.

Let G be a graph of order n ≥ (a+2b)(a+b−2)
b

, and suppose that δ(G) ≥ (a+b)n
a+2b

. Then G
is fractional ID-[a, b]-factor-critical.

In this paper, we prove the following theorem for graphs to be fractional ID-[a, b]-
factor-critical, which is a extension of Theorem D in the same way that Theorem B
implies Theorem A.

Theorem 1.1 Let a and b be integers with 1 ≤ a ≤ b, and let G be a graph of order
n ≥ (a+2b)(2a+b+1)

b
, and suppose that δ(G) ≥ bn

a+2b
+ a and max{degG(x), degG(y)} ≥

(a+b)n
a+2b

for any two nonadjacent vertices x, y ∈ V (G). Then G is fractional ID-[a, b]-
factor-critical.

We prove Theorem 1.1 in next section. In the rest of this section, we show
examples concerning two sharpnesses in Theorem 1.1.

The lower bound of the degree condition in Theorem 1.1 is sharp in some sense.
We construct examples which show that we cannot replace (a+b)n

a+2b
by (a+b)n

a+2b
− 1. Let

t be any sufficiently large positive integer. We define a graph G by

V (G) = {vi | 1 ≤ i ≤ bt + 1} ∪ {wj | 1 ≤ j ≤ at} ∪ {xk | 1 ≤ k ≤ bt},
E(G) = {viwj | 1 ≤ i ≤ bt+ 1, 1 ≤ j ≤ at} ∪ {vixk | 1 ≤ i ≤ bt + 1, 1 ≤ k ≤ bt}

∪{wjxk | 1 ≤ j ≤ at, 1 ≤ k ≤ bt}.

Then it is easily seen that the order of G is n = (a+2b)t+1. Furthermore, it follows
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that

(a + b)n

a+ 2b
> max{degG(x), degG(y)} = (a + b) · n− 1

a+ 2b

=
(a+ b)n

a+ 2b
− a + b

a+ 2b
>

(a+ b)n

a + 2b
− 1

for any two nonadjacent vertices x, y ∈ {vi | 1 ≤ i ≤ bt + 1}. However, G cannot
be fractional ID-[a, b]-factor-critical. Set I = {vi | 1 ≤ i ≤ bt + 1}, and hence I is
an independent set of G. Application of Fractional Factor Theorem due to Liu and
Zhang with S = {wj | 1 ≤ j ≤ at} and T = {xk | 1 ≤ k ≤ bt} proves that G − I
has no fractional [a, b]-factor (we will show the Fractional Factor Theorem in next
section). Hence, G is not fractional ID-[a, b]-factor-critical.

Moreover, we construct examples which show that the lower bound bn
a+2b

+ a on
δ(G) is sharp. Let t be a sufficiently large positive integer, and bt even. We define a
graph G by

V (G) = {v} ∪ {wi | 1 ≤ i ≤ bt} ∪ {xj | 1 ≤ j ≤ at− 1} ∪
{
yk | 1 ≤ k ≤ bt

2

}

∪
{
zl | 1 ≤ l ≤ bt

2

}
,

E(G) = {vwi | 1 ≤ i ≤ bt} ∪ {vxj | 1 ≤ j ≤ a− 1} ∪
{
ykzl | 1 ≤ k = l ≤ bt

2

}

∪
{
wiyk, xjyk | 1 ≤ i ≤ bt, 1 ≤ j ≤ at− 1, 1 ≤ k ≤ bt

2

}

∪
{
wjzl, xjzl | 1 ≤ i ≤ bt, 1 ≤ j ≤ at− 1, 1 ≤ l ≤ bt

2

}
,

and set I = {wi | 1 ≤ i ≤ bt}. Then it is easily seen that the order of G is

n = (a+ 2b)t, δ(G) = degG(v) =
bn

a+2b
+ a− 1, and max{degG(y), degG(y′)} ≥ (a+b)n

a+2b

for any two nonadjacent vertices y, y′ ∈ V (G). In particular, the degree condition

takes the minimum value for any two vertices y, y′ ∈ V (
{
yk | 1 ≤ k ≤ bt

2

}
). However,

G− I has no fractional [a, b]-factor because δ(G− I) = degG−I(v) = a− 1. Thus G
is not fractional ID-[a, b]-factor-critical.

2 Proof of Theorem 1.1

In our proof, we use the following theorem for the existence of a fractional [a, b]-factor.

Theorem E (Liu and Zhang [5]; Fractional Factor Theorem) Let a and b be
integers with 1 ≤ a ≤ b. Let G be a graph. Then G has a fractional [a, b]-factor if
and only if for every subset S ⊆ V (G),

b|S|+
∑
x∈T

degG−S(x)− a|T | ≥ 0,

where T = {x ∈ V (G)− S | degG−S(x) ≤ a}.
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Let a, b, G and n be as in Theorem 1.1. Let I be an independent set of G
and H = G − I. In order to prove Theprem 1.1, it suffices to show that H has a
fractional [a, b]-factor. By way of contradiction, we suppose that H has no fractional
[a, b]-factors. Then by Theorem E, there exists some subset S of V (G) such that

θ(S, T ) := b|S|+
∑
x∈T

degH−S(x)− a|T | ≤ −1, (2.1)

where T = {x ∈ V (G)− S | degH−S(x) ≤ a}.
We start with the following claims.

Claim 2.1 |I| ≤ bn
a+2b

.

Proof. For 0 ≤ |I| ≤ 1, the inequality holds because n ≥ (a+2b)(2a+b+1)
b

. Thus
we may assume that |I| ≥ 2. By the degree condition of Theorem 1.1 and I is an
independent set, there exist two vertices x, y ∈ I such that max{degG(x), degG(y)} ≥
(a+b)n
a+2b

. Since I is an independent set, I ∩ (NG(x) ∪NG(y)) = ∅. Hence, we obtain

|I|+ (a+ b)n

a+ 2b
≤ |I|+max{degG(x), degG(y)} ≤ n,

that is,

|I| ≤ n− (a+ b)n

a + 2b
=

bn

a+ 2b
.

�
Claim 2.2 δ(H) ≥ a.

Proof. Since H = G− I, it follows from Claim 2.1 that

δ(H) ≥ δ(G)− |I| ≥
(

bn

a+ 2b
+ a

)
− bn

a+ 2b
= a.

�
Claim 2.3 |T | ≥ b+ 1.

Proof. Suppose that |T | ≤ b. Then it follows from Claim 2.2 and |S|+degH−S(x) ≥
degH(x) ≥ δ(H) ≥ a for each x ∈ T that

θ(S, T ) = b|S|+
∑
x∈T

degH−S(x)− a|T |

≥ |T ||S|+
∑
x∈T

degH−S(x)− a|T |

=
∑
x∈T

(
|S|+ degH−S(x)− a

)

≥
∑
x∈T

(
δ(H)− a

)
≥ 0,

which contradicts (2.1). �
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Claim 2.4 a|T | > b|S|.
Proof. Suppose that a|T | ≤ b|S|. Then by (2.1) we obtain

−1 ≥ θ(S, T ) = b|S|+
∑
x∈T

degH−S(x)− a|T | ≥ b|S| − a|T | ≥ 0,

a contradiction. �

Claim 2.5 |S|+ |I| < (a+b)n
a+2b

.

Proof. By Claims 2.1 and 2.4 and |S|+ |T |+ |I| ≤ n, we have

an ≥ a|S|+ a|T |+ a|I| ≥ a|S|+ b|S|+ a|I|+ 1 = (a+ b)(|S|+ |I|)− b|I|+ 1

≥ (a+ b)(|S|+ |I|)− b2n

a+ 2b
+ 1,

that is,

|S|+ |I| < (a+ b)n

a + 2b
.

�

By Claim 2.3, we have T 
= ∅.
Now we define

h1 = min{degH−S(x) | x ∈ T},

and let x1 be a vertex such that degH−S(x1) = h1. If T −NH[T ][x1] 
= ∅, we define

h2 = min{degH−S(x) | x ∈ T −NH[T ][x1]},

and let x2 be a vertex such that degH−S(x2) = h2. Furthermore, we define

T0 = {x ∈ T | degH−S(x) = 0}.

Note that 0 ≤ h1 ≤ h2 ≤ a by the definitions of h1, h2 and T .

We divide the proof into three cases.

Case 1: |T0| ≥ 2.

Then, there exist at least two nonadjacent vertices x, y ∈ T0 such that degH−S(x) =
degH−S(y) = 0. By Claim 2.5 and the degree condition of this theorem, we obtain

(a+ b)n

a + 2b
≤ max{degG(x), degG(y)} ≤ max{degH(x), degH(y)}+ |I|

≤ max{degH−S(x) + |S|, degH−S(y) + |S|}+ |I| = |S|+ |I| < (a+ b)n

a+ 2b
,
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which is a contradiction.

Case 2: |T0| = 1.

Then we obtain h1 = 0 and T0 = {x1}. In view of Claim 2.3, we have T−NH[T ][x1] 
=
∅. We now take a vertex x2 ∈ T − NH[T ][x1] such that degH−S(x2) = h2, and hence
x1x2 /∈ E(G) and 1 ≤ h2 ≤ a hold. By the degree condition of this theorem, we
obtain

(a+ b)n

a+ 2b
≤ max{degG(x1), degG(x2)}
≤ max{degH−S(x1) + |S|+ |I|, degH−S(x2) + |S|+ |I|}
≤ h2 + |S|+ |I|,

that is,

|S| ≥ (a+ b)n

a + 2b
− h2 − |I|. (2.2)

Also, it is easy to see that |T − NH[T ][x1]| = |T | − 1. Consequently, it follows from

Claim 2.1, (2.2), |S| + |T | + |I| ≤ n, b ≥ a ≥ 1, 1 ≤ h2 ≤ a and n ≥ (a+2b)(2a+b+1)
b

that

θ(S, T ) = b|S|+
∑
x∈T

degH−S(x)− a|T |

= b|S|+
∑

x∈NH[T ][x1]

degH−S(x) +
∑

x∈T−NH[T ][x1]

degH−S(x)− a|T |

= b|S|+
∑

x∈T−NH[T ][x1]

degH−S(x)− a|T |

≥ b|S|+ h2(|T | − 1)− a|T |
= b|S| − (a− h2)|T | − h2

≥ b|S| − (a− h2)(n− |S| − |I|)− h2

= (a+ b− h2)|S| − (a− h2)n + (a− h2)|I| − h2

≥ (a+ b− h2)

(
(a + b)n

a+ 2b
− h2 − |I|

)
− (a− h2)n+ (a− h2)|I| − h2

= (a+ b− h2)

(
(a + b)n

a+ 2b
− h2

)
− (a− h2)n− b|I| − h2

≥ (a+ b− h2)

(
(a + b)n

a+ 2b
− h2

)
− (a− h2)n− b2n

a+ 2b
− h2

= h2
2 +

(
bn

a+ 2b
− a− b− 1

)
h2

≥ h2
2 + ah2

= (a+ h2)h2 ≥ 0,

which contradicts (2.1).
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Case 3: |T0| = 0.

If h1 = a, then by (2.1) we obtain

−1 ≥ θ(S, T ) = b|S|+
∑
x∈T

degH−S(x)− a|T |

≥ b|S|+ h1|T | − a|T | = b|S| ≥ 0,

a contradiction. Thus, we obtain

1 ≤ h1 ≤ a− 1. (2.3)

Next, we prove the following claim.

Claim 2.6 T −NH[T ][x1] 
= ∅.
Proof. Otherwise, it is easy to see T = NH[T ][x1]. Then, it follows from (2.3) that

|T | = |NH[T ][x1]| ≤ |NH−S[x1]| = degH−S(x1) + 1 = h1 + 1 ≤ a,

which contradicts Claim 2.3. �

In view of Claim 2.6, there exists x2 ∈ T −NH[T ][x1] such that degH−S(x2) = h2,
and x1x2 /∈ E(G) holds. By the condition of this theorem, we obtain

(a+ b)n

a+ 2b
≤ max{degG(x1), degG(x2)}
≤ max{degH−S(x1) + |S|+ |I|, degH−S(x2) + |S|+ |I|}
≤ h2 + |S|+ |I|,

that is,

|S| ≥ (a+ b)n

a + 2b
− h2 − |I|. (2.4)

Also, it follows that

|NH[T ][x1]| ≤ |NH−S[x1]| = degH−S(x1) + 1 = h1 + 1. (2.5)

Hence, it follows from: 1 ≤ h1 ≤ h2 ≤ a; |S|+|T |+|I| ≤ n; n ≥ (a + 2b)(2a+ b+ 1)

b
;

and Claims 2.1, (2.4) and (2.5), that

θ(S, T ) = b|S|+
∑
x∈T

degH−S(x)− a|T |

= b|S|+
∑

x∈NH[T ][x1]

degH−S(x) +
∑

x∈T−NH[T ][x1]

degH−S(x)− a|T |
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≥ b|S|+ h1|NH[T ][x1]|+ h2(|T | − |NH[T ][x1]|)− a|T |
= b|S| − (h2 − h1)|NH[T ][x1]| − (a− h2)|T |
≥ b|S| − (h2 − h1)(h1 + 1)− (a− h2)(n− |S| − |I|)
= (a+ b− h2)|S| − (h2 − h1)(h1 + 1)− (a− h2)n + (a− h2)|I|
≥ (a+ b− h1)

(
(a + b)n

a+ 2b
− h2 − |I|

)
− (h2 − h1)(h1 + 1)− (a− h2)n

+(a− h2)|I|
= (a+ b− h2)

(
(a + b)n

a+ 2b
− h2

)
− (h2 − h1)(h1 + 1)− (a− h2)n− b|I|

≥ (a+ b− h2)

(
(a + b)n

a+ 2b
− h2

)
− (h2 − h1)(h1 + 1)− (a− h2)n− b2n

a+ 2b

=
bn

a+ 2b
· h2 − (a+ b− h2)h2 − (h2 − h1)(h1 + 1)

= h2
2 +

(
bn

a+ 2b
− a− b− 1− h1

)
h2 + (h1 + 1)h1

≥ h2
2 + (a− h2)h2 + (h1 + 1)h1 ≥ 0,

which contradicts (2.1).

This completes the proof of Theorem 1.1.
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