A class of totally antimagic total graphs

Jaroslav Ivančo
Institute of Mathematics
P. J. Šafárik University
Jesenná 5, 04154 Košice
Slovakia
jaroslav.ivanco@upjs.sk

Abstract

A total labeling of a graph G is a bijection from the vertex set and edge set of G onto the set $\{1,2, \ldots,|V(G)|+|E(G)|\}$. Such a labeling ξ is vertex-antimagic (edge-antimagic) if all vertex-weights $w t_{\xi}(v)=\xi(v)+$ $\sum_{v u \in E(G)} \xi(v u), v \in V(G)$, (all edge-weights $w t_{\xi}(v u)=\xi(v)+\xi(v u)+$ $\xi(u), v u \in E(G))$ are pairwise distinct. If a labeling is simultaneously vertex-antimagic and edge-antimagic it is called a totally antimagic total labeling. A graph that admits a totally antimagic total labeling is called a totally antimagic total graph. In this paper we will introduce a large class of totally antimagic total graphs.

1 Introduction

We consider finite undirected graphs without loops and multiple edges. If G is a graph, then $V(G)$ and $E(G)$ stand for the vertex set and edge set of G, respectively. The subgraph of a graph G induced by $U \subseteq V(G)$ is denoted by $G[U]$. The set of vertices of G adjacent to a vertex $v \in V(G)$ is denoted by $N_{G}(v)$. The cardinality of this set, denoted $\operatorname{deg}_{G}(v)$, is called the degree of v. As usual $\Delta(G)$ and $\delta(G)$ stand for the maximum and minimum degree among vertices of G. For integers p, q we denote by $[p, q]$ the set of all integers z satisfying $p \leq z \leq q$.

A total labeling of a graph G is a bijection ξ from $V(G) \cup E(G)$ onto the set $[1,|V(G)|+|E(G)|]$. The associated vertex-weight of a vertex $v \in V(G)$ is defined by

$$
w t_{\xi}(v)=\xi(v)+\sum_{u \in N_{G}(v)} \xi(v u),
$$

and the associated edge-weight of an edge $u v \in E(G)$ is defined by

$$
w t_{\xi}(u v)=\xi(u)+\xi(u v)+\xi(v) .
$$

A total labeling is called vertex-antimagic total (edge-antimagic total), for short VAT $(E A T)$, if all vertex-weights (edge-weights) are pairwise distinct. A total labeling that
is simultaneously vertex-antimagic total and edge-antimagic total is called totally antimagic total (TAT). A graph that admits a VAT (EAT, TAT) labeling is called a VAT (EAT, TAT) graph.

In [5] it is proved that every graph is VAT. Using a similar method one can check that every graph is EAT. The TAT graphs were defined by Bača et al. in [1], where there were also presented some examples of TAT graphs. The definition of totally antimagic total labeling is an antipodal version of the concept of totally magic labeling defined by Exoo et al. in [2] (see also [6]). The TAT labeling is also an analogy of well known antimagic (edge) labeling defined by Hartsfield and Ringel in [4]. We refer the reader to [3] for comprehensive references.

In this paper we will introduce a large class of graphs which admit TAT labelings.

2 TAT graphs

An overlaying of a graph G is a bijection π from $V(G)$ onto $[1,|V(G)|]$ such that for any two vertices $u, v \in V(G)$ satisfying $\pi(v)-\pi(u)=1$, there is an injective mapping $\sigma: N_{G}(u)-\{v\} \rightarrow N_{G}(v)-\{u\}$ such that

$$
\pi(\sigma(w)) \geq \pi(w) \text { for each } w \in N_{G}(u)-\{v\}
$$

A graph that admits an overlaying is called an overlaid graph.
Note that any two vertices u, v of a complete graph K_{n} satisfy:

$$
N_{K_{n}}(u)-\{v\}=V\left(K_{n}\right)-\{u, v\}=N_{K_{n}}(v)-\{u\} .
$$

Thus, every bijection from $V\left(K_{n}\right)$ onto $[1, n]$ is an overlaying of K_{n}.
Observation 1. The complete graph K_{n} is overlaid.
Similarly, $N_{D_{n}}(u)-\{v\}=\emptyset=N_{D_{n}}(v)-\{u\}$ for any two vertices u, v of a totally disconnected graph D_{n} (i.e., $\left.\bar{K}_{n}\right)$. Therefore, every bijection from $V\left(D_{n}\right)$ onto $[1, n]$ is an overlaying of D_{n}.

Observation 2. The totally disconnected graph D_{n} is overlaid.
We present a connection between overlaid graphs and TAT graphs. First we suggest that in [1] there were also defined special types of TAT graphs. A total labeling ξ of a graph G is called super, if the vertices are labeled with the smallest possible numbers, i.e., $\{\xi(u): u \in V(G)\}=[1,|V(G)|]$. Similarly, ξ is called to be sharp ordered if $w t_{\xi}(u)<w t_{\xi}(v)$ holds for every pair of vertices u, v of G such that $\xi(u)<\xi(v)$. A graph that admits a super (sharp ordered) labeling is called a super (sharp ordered) graph.

Now, we are able to prove the crucial result of the paper.
Proposition 1. Let G be an overlaid graph. Then G is a sharp ordered super TAT graph.

Proof. Set $p=|V(G)|, q=|E(G)|$, and suppose that π is an overlaying of G. For every edge $e=u v$ of G we denote by $s(e)$ the sum of labels of its end vertices, i.e., $s(e)=\pi(u)+\pi(v)$. Now, denote the edges of G by $e_{1}, e_{2}, \ldots, e_{q}$ in such a way that $s\left(e_{i}\right) \leq s\left(e_{j}\right)$ holds for every $i<j$. Consider the mapping ξ from $V(G) \cup E(G)$ to $[1, p+q]$ defined by

$$
\xi(x)= \begin{cases}\pi(x) & \text { if } x \in V(G) \\ p+i & \text { if } x=e_{i}\end{cases}
$$

Clearly, ξ is a super total labeling of G.
Suppose that e_{i} and e_{j} are distinct edges of G. Without loss of generality, let $i<j$. As $s\left(e_{i}\right) \leq s\left(e_{j}\right)$, we have

$$
\begin{aligned}
w t_{\xi}\left(e_{i}\right)=s\left(e_{i}\right)+\xi\left(e_{i}\right)=s\left(e_{i}\right)+p+i & <s\left(e_{j}\right)+p+j \\
& =s\left(e_{j}\right)+\xi\left(e_{j}\right)=w t_{\xi}\left(e_{j}\right) .
\end{aligned}
$$

Therefore, $w t_{\xi}\left(e_{1}\right)<w t_{\xi}\left(e_{2}\right)<\cdots<w t_{\xi}\left(e_{q}\right)$, i.e., ξ is an EAT labeling.
Now suppose that u and v are two vertices of G such that $\pi(v)-\pi(u)=1$. Then there is an injective mapping σ from $N_{G}(u)-\{v\}$ to $N_{G}(v)-\{u\}$ such that $\pi(\sigma(x)) \geq \pi(x)$ for every $x \in N_{G}(u)-\{v\}$. This implies

$$
s(u x)=\pi(u)+\pi(x)<\pi(v)+\pi(\sigma(x))=s(v \sigma(x))
$$

and consequently $\xi(u x)<\xi(v \sigma(x))$. Therefore,

$$
\sum_{x \in N_{G}(u)-\{v\}} \xi(u x) \leq \sum_{x \in N_{G}(u)-\{v\}} \xi(v \sigma(x)) \leq \sum_{y \in N_{G}(v)-\{u\}} \xi(v y) .
$$

Let $\xi^{*}(u, v)$ be equal to $\xi(u v)$ when $u v$ is an edge of G, and 0 otherwise. Then we have

$$
\begin{aligned}
w t_{\xi}(u) & =\xi(u)+\sum_{x \in N_{G}(u)} \xi(u x) \\
& =\xi(u)+\sum_{x \in N_{G}(u)-\{v\}} \xi(u x)+\xi^{*}(u, v) \\
& <\xi(v)+\sum_{y \in N_{G}(v)-\{u\}} \xi(v y)+\xi^{*}(u, v) \\
& =\xi(v)+\sum_{y \in N_{G}(v)} \xi(v y)=w t_{\xi}(v) .
\end{aligned}
$$

Thus, $w t_{\xi}\left(\pi^{-1}(1)\right)<w t_{\xi}\left(\pi^{-1}(2)\right)<\cdots<w t_{\xi}\left(\pi^{-1}(p)\right)$, i.e., ξ is a sharp ordered VAT labeling, which completes the proof.

According to Observations 1 and 2 we immediately have
Corollary 1. The complete graph K_{n} and the totally disconnected graph D_{n} are sharp ordered super TAT graphs.

3 Overlaid graphs

In this section we determine some basic properties of overlaid graphs. We also present some examples of overlaid graphs, i.e., sharp ordered super TAT graphs.

Lemma 1. Let π be an overlaying of a graph G with n vertices. Then

$$
\operatorname{deg}_{G}\left(\pi^{-1}(i)\right) \leq \operatorname{deg}_{G}\left(\pi^{-1}(i+1)\right)
$$

for every $i \in[1, n-1]$.
Proof. Set $u=\pi^{-1}(i)$ and $v=\pi^{-1}(i+1)$, for $i \in[1, n-1]$. As $\pi(v)-\pi(u)=1$, there is an injective mapping $\sigma: N_{G}(u)-\{v\} \rightarrow N_{G}(v)-\{u\}$. Then $\left|N_{G}(u)-\{v\}\right| \leq$ $\left|N_{G}(v)-\{u\}\right|$ and consequently $\left|N_{G}(u)\right| \leq\left|N_{G}(v)\right|$, i.e., $\operatorname{deg}_{G}(u) \leq \operatorname{deg}_{G}(v)$.

Theorem 1. Let G and H be overlaid graphs. If $\Delta(G) \leq \delta(H)$ then the disjoint union $G \cup H$ is also an overlaid graph.

Proof. Let $\pi(\nu)$ be an overlaying of a graph $G(H)$ with $p(n)$ vertices. Consider the mapping $\mu: V(G \cup H) \rightarrow[1, p+n]$ defined by

$$
\mu(w)= \begin{cases}\pi(w) & \text { if } w \in V(G) \\ p+\nu(w) & \text { if } w \in V(H)\end{cases}
$$

Evidently, μ is a bijection. Now suppose that u and v are two vertices of $G \cup H$ satisfying $\mu(v)-\mu(u)=1$. Distinguish the following cases.

If $\mu(u) \leq p-1$ then u and v are vertices of G. Moreover, $\pi(v)-\pi(u)=$ $\mu(v)-\mu(u)=1$. Thus, there is an injection σ from $N_{G}(u)-\{v\}$ to $N_{G}(v)-\{u\}$ such that $\pi(\sigma(w)) \geq \pi(w)$ for each $w \in N_{G}(u)-\{v\}$. Clearly, σ is an injective mapping from $N_{G \cup H}(u)-\{v\}$ to $N_{G \cup H}(v)-\{u\}$ such that $\mu(\sigma(w))=\pi(\sigma(w)) \geq \pi(w)=\mu(w)$ for each $w \in N_{G \cup H}(u)-\{v\}$.

If $\mu(u)=p$ then u is a vertex of G and v is a vertex of H. Moreover, $\pi(u)=p$, $\nu(v)=1$, and according to Lemma $1, \operatorname{deg}_{G}(u)=\Delta(G)$ and $\operatorname{deg}_{H}(v)=\delta(H)$. As $\Delta(G) \leq \delta(H)$, there is an injective mapping ρ from $N_{G}(u)=N_{G \cup H}(u)-\{v\}$ to $N_{H}(v)=N_{G \cup H}(v)-\{u\}$. Since $N_{G}(u) \subseteq V(G)$ and $N_{H}(v) \subseteq V(H), \mu(\rho(w)) \geq$ $p+1>p \geq \mu(w)$, for any $w \in N_{G}(u)$.

If $\mu(u) \geq p+1$ then u and v are vertices of H. Moreover, $\nu(v)-\nu(u)=\mu(v)-$ $\mu(u)=1$. Thus, there is an injection σ^{\prime} from $N_{H}(u)-\{v\}$ to $N_{H}(v)-\{u\}$ such that $\nu\left(\sigma^{\prime}(w)\right) \geq \nu(w)$ for each $w \in N_{H}(u)-\{v\}$. Clearly, σ^{\prime} is an injective mapping from $N_{G \cup H}(u)-\{v\}$ to $N_{G \cup H}(v)-\{u\}$ such that $\mu\left(\sigma^{\prime}(w)\right)=p+\nu\left(\sigma^{\prime}(w)\right) \geq p+\nu(w)=\mu(w)$ for each $w \in N_{G \cup H}(u)-\{v\}$.

Therefore, μ is an overlaying of $G \cup H$.
Corollary 2. The disjoint union of regular overlaid graphs is an overlaid graph. Especially, the disjoint union of complete graphs is an overlaid graph.

Proof. Let $G=\bigcup_{i=1}^{k} G_{i}$, where G_{i} is an overlaid regular graph of degree d_{i}. Without loss of generality we can assume that $d_{1} \leq d_{2} \leq \cdots \leq d_{k}$. For every $m \in[1, k]$, let $H_{m}=\bigcup_{i=1}^{m} G_{i} . H_{1}=G_{1}$ is an overlaid graph. Now suppose that H_{m} is an overlaid graph. As $\Delta\left(H_{m}\right)=d_{m} \leq d_{m+1}=\delta\left(G_{m+1}\right)$, by Theorem 1, $H_{m} \cup G_{m+1}=H_{m+1}$ is also an overlaid graph. Therefore, by induction, $H_{k}=G$ is an overlaid graph.

Any complete graph is regular and, by Observation 1, it is overlaid. Therefore, $G=\bigcup_{i=1}^{k} K_{n_{i}}$ is also an overlaid graph.

Let $m G$ denote the disjoint union of m copies of a graph G. According to Corollary 2 , we immediately have

Corollary 3. If G is a regular overlaid graph then $m G$ is an overlaid graph. Especially, $m K_{n}$ is an overlaid graph.

Let M be a subset of the vertex set of a graph G. The graph $G(M \triangleright)$ is obtained from G by adding a new vertex w and edges $\{w u: u \in M\}$. Note that $G(M \triangleright)$ is isomorphic to the disjoint union $G \cup K_{1}$ when $M=\emptyset$, and it is isomorphic to the join $G \oplus K_{1}$ when $M=V(G)$.

Lemma 2. Let π be an overlaying of a graph G. Let k be a positive integer satisfying $k+\Delta(G) \leq|V(G)|$ and let $M=\{u \in V(G): \pi(u) \in[k,|V(G)|]\}$. Then $G(M \triangleright)$ is an overlaid graph.
Proof. Set $n=|V(G)|$ and consider the mapping $\mu: V(G(M \triangleright)) \rightarrow[1,1+n]$ defined by

$$
\mu(x)= \begin{cases}\pi(x) & \text { if } x \in V(G) \\ 1+n & \text { if } x \notin V(G)\end{cases}
$$

Evidently, μ is a bijection. Now suppose that u and v are two vertices of $G(M \triangleright)$ satisfying $\mu(v)-\mu(u)=1$. Distinguish the following cases.

If $\mu(u) \leq k-1$ then u and v are vertices of G. Moreover, $\pi(v)-\pi(u)=$ $\mu(v)-\mu(u)=1$. Thus, there is an injection σ from $N_{G}(u)-\{v\}$ to $N_{G}(v)-\{u\}$ such that $\pi(\sigma(x)) \geq \pi(x)$ for each $x \in N_{G}(u)-\{v\}$. Clearly, σ is an injective mapping from $N_{G(M \triangleright)}(u)-\{v\}$ to $N_{G(M \triangleright)}(v)-\{u\}$ such that $\mu(\sigma(x))=\pi(\sigma(x)) \geq \pi(x)=\mu(x)$ for each $x \in N_{G(M \triangleright)}(u)-\{v\}$.

If $k \leq \mu(u)<n$ then u and v are vertices of G. Moreover, $\pi(v)-\pi(u)=$ $\mu(v)-\mu(u)=1$. Thus, there is an injection σ from $N_{G}(u)-\{v\}$ to $N_{G}(v)-\{u\}$ such that $\pi(\sigma(x)) \geq \pi(x)$ for each $x \in N_{G}(u)-\{v\}$. Clearly, the mapping σ^{\prime}, given by

$$
\sigma^{\prime}(x)= \begin{cases}\sigma(x) & \text { if } x \in N_{G}(u)-\{v\}, \\ w & \text { if } x=w\end{cases}
$$

is an injective mapping from $N_{G(M \triangleright)}(u)-\{v\}$ to $N_{G(M \triangleright)}(v)-\{u\}$ such that $\mu\left(\sigma^{\prime}(x)\right)=$ $\pi(\sigma(x)) \geq \pi(x)=\mu(x)$ for each $x \in N_{G(M \triangleright)}(u)-\{v, w\}$ and $\mu\left(\sigma^{\prime}(w)\right)=1+n=\mu(w)$.

If $\mu(u)=n$ then u is a vertex of G and $v=w$. Moreover, $\pi(u)=n$ and according to Lemma 1, $\operatorname{deg}_{G}(u)=\Delta(G)$, so $\operatorname{deg}_{G(M \triangleright)}(u)=1+\Delta(G)$. As $\operatorname{deg}_{G(M \triangleright)}(w)=$ $1+n-k \geq 1+\Delta(G)$ and $\left\{\mu(x): x \in N_{G(M \triangleright)}(w)\right\}=[k, n]$, there is an injective
mapping ρ from $N_{G(M \triangleright)}(u)-\{w\}$ to $N_{G(M \triangleright)}(w)-\{u\}$ such that $\mu(\rho(x)) \geq \mu(x)$, for any $x \in N_{G(M \triangleright)}(u)-\{w\}$.

Theorem 2. Let G be an overlaid graph and let n be a positive integer. Then the join $G \oplus K_{n}$ is an overlaid graph.

Proof. According to Lemma 2, $G \oplus K_{1}$ is an overlaid graph. As $G \oplus K_{m}=(G \oplus$ $\left.K_{m-1}\right) \oplus K_{1}, m \in[2, n]$, by induction, $G \oplus K_{n}$ is an overlaid graph.

According to Corollary 3, the graph $m K_{r}$ is overlaid. Therefore, we immediately have

Corollary 4. Let m, r and n be positive integers. Then the graph $m K_{r} \oplus K_{n}$ is overlaid.

Thus, the complete $(n+1)$-partite graph $K_{m, 1, \ldots, 1}=m K_{1} \oplus K_{n}$, the star $K_{m, 1}$ and the friendship graph $m K_{2} \oplus K_{1}$ are overlaid.

Lemma 3. Let π be an overlaying of a graph G. Let k be a positive integer satisfying $k \leq 1+\delta(G)$ and $\operatorname{deg}_{G}\left(\pi^{-1}(k+1)\right)>\operatorname{deg}_{G}\left(\pi^{-1}(k)\right)$. Then $G(M \triangleright)$ is an overlaid graph when $M=\{u \in V(G): \pi(u) \in[1, k]\}$.

Proof. Set $n=|V(G)|$ and consider the mapping $\mu: V(G(M \triangleright)) \rightarrow[1,1+n]$ defined by

$$
\mu(x)= \begin{cases}1+\pi(x) & \text { if } x \in V(G) \\ 1 & \text { if } x \notin V(G)\end{cases}
$$

Evidently, μ is a bijection. Now suppose that u and v are two vertices of $G(M \triangleright)$ satisfying $\mu(v)-\mu(u)=1$. Distinguish the following cases.

If $\mu(u)=1$ then u is the added vertex, i.e., $u=w$. Moreover, $\pi(v)=1$ and according to Lemma $1, \operatorname{deg}_{G}(v)=\delta(G)$, so $\operatorname{deg}_{G(M \triangleright)}(v)=1+\delta(G) \geq k$. As $\operatorname{deg}_{G(M \triangleright)}(w)=k$ and $\left\{\mu(x): x \in N_{G(M \triangleright)}(w)\right\}=[2,1+k]$, there is an injective mapping ρ from $N_{G(M \triangleright)}(w)-\{v\}$ to $N_{G(M \triangleright)}(v)-\{w\}$ such that $\mu(\rho(x)) \geq \mu(x)$, for any $x \in N_{G(M \triangleright)}(w)-\{v\}$.

If $1<\mu(u) \leq k$ then u and v are vertices of G. Moreover, $\pi(v)-\pi(u)=$ $\mu(v)-\mu(u)=1$. Thus, there is an injection σ from $N_{G}(u)-\{v\}$ to $N_{G}(v)-\{u\}$ such that $\pi(\sigma(x)) \geq \pi(x)$ for each $x \in N_{G}(u)-\{v\}$. Clearly, the mapping σ^{\prime}, given by

$$
\sigma^{\prime}(x)= \begin{cases}\sigma(x) & \text { if } x \in N_{G}(u)-\{v\} \\ w & \text { if } x=w\end{cases}
$$

is an injective mapping from $N_{G(M \triangleright)}(u)-\{v\}$ to $N_{G(M \triangleright)}(v)-\{u\}$ such that $\mu\left(\sigma^{\prime}(x)\right)=$ $1+\pi(\sigma(x)) \geq 1+\pi(x)=\mu(x)$ for each $x \in N_{G(M \triangleright)}(u)-\{v, w\}$ and $\mu\left(\sigma^{\prime}(w)\right)=1=$ $\mu(w)$.

If $\mu(u)=k+1$ then u and v are vertices of G. Moreover, $\pi(v)-\pi(u)=$ $\mu(v)-\mu(u)=1$. Thus, there is an injection σ from $N_{G}(u)-\{v\}$ to $N_{G}(v)-\{u\}$ such that $\pi(\sigma(x)) \geq \pi(x)$ for each $x \in N_{G}(u)-\{v\}$. As $u=\pi^{-1}(k), v=\pi^{-1}(k+1)$,
$\operatorname{deg}_{G}(v)>\operatorname{deg}_{G}(u)$, and there is a vertex $y \in N_{G}(v)-\{u\}$ such that $\sigma(x) \neq y$ for each $x \in N_{G}(u)-\{v\}$. Clearly, the mapping σ^{\prime}, given by

$$
\sigma^{\prime}(x)= \begin{cases}\sigma(x) & \text { if } x \in N_{G}(u)-\{v\} \\ y & \text { if } x=w\end{cases}
$$

is an injective mapping from $N_{G(M \triangleright)}(u)-\{v\}$ to $N_{G(M \triangleright)}(v)-\{u\}$ such that $\mu(\sigma(x))=$ $1+\pi(\sigma(x)) \geq 1+\pi(x)=\mu(x)$ for each $x \in N_{G(M \triangleright)}(u)-\{v, w\}$ and $\mu\left(\sigma^{\prime}(w)\right)=\mu(y)>$ $1=\mu(w)$.

If $\mu(u)>k+1$ then u and v are vertices of G. Moreover, $\pi(v)-\pi(u)=$ $\mu(v)-\mu(u)=1$. Thus, there is an injection σ from $N_{G}(u)-\{v\}$ to $N_{G}(v)-\{u\}$ such that $\pi(\sigma(x)) \geq \pi(x)$ for each $x \in N_{G}(u)-\{v\}$. Clearly, σ is an injective mapping from $N_{G(M \triangleright)}(u)-\{v\}$ to $N_{G(M \triangleright)}(v)-\{u\}$ such that $\mu(\sigma(x))=1+\pi(\sigma(x)) \geq 1+\pi(x)=\mu(x)$ for each $x \in N_{G(M \triangleright)}(u)-\{v\}$.

Theorem 3. Let G be an overlaid graph on p vertices. Let n and m be positive integers satisfying $n \geq p-1-\delta(G)$ and $m \leq p-1-\Delta(G)$. Then the join $G \oplus\left(K_{n} \cup K_{m}\right)$ is an overlaid graph.

Proof. m is a positive integer and so $\Delta(G)<p-1$. According to Theorem 2, $G \oplus K_{n}$ is an overlaid graph. Therefore, there is an overlaying π of $G \oplus K_{n}$. As $\operatorname{deg}_{G \oplus K_{n}}(v)=$ $n+\operatorname{deg}_{G}(v)$ for $v \in V(G)$ and $\operatorname{deg}_{G \oplus K_{n}}(v)=n-1+p$ for $v \in V\left(K_{n}\right)$, according to Lemma 1, $\{\pi(v): v \in V(G)\}=[1, p]$ and $\left\{\pi(v): v \in V\left(K_{n}\right)\right\}=[p+1, p+n]$. Since

$$
1+\delta\left(G \oplus K_{n}\right)=1+n+\delta(G) \geq p
$$

and

$$
\begin{aligned}
\operatorname{deg}_{G \oplus K_{n}}\left(\pi^{-1}(p)\right) & =n+\Delta(G) \\
& <n-1+p=\operatorname{deg}_{G \oplus K_{n}}\left(\pi^{-1}(p+1)\right),
\end{aligned}
$$

by Lemma $3,\left(G \oplus K_{n}\right)(V(G) \triangleright)=G \oplus\left(K_{n} \cup K_{1}\right)$ is an overlaid graph.
As $G \oplus\left(K_{n} \cup K_{t}\right)=\left(G \oplus\left(K_{n} \cup K_{t-1}\right)\right)\left(\left(V(G) \cup V\left(K_{t-1}\right)\right) \triangleright\right), t \in[2, m]$, by induction, $G \oplus\left(K_{n} \cup K_{m}\right)$ is an overlaid graph.

By Corollary 3, the graph $s K_{r}$ is overlaid. Thus, we immediately have
Corollary 5. Let s, r, n and m be positive integers satisfying $n \geq(s-1) r \geq m$. Then the join sK$K_{r} \oplus\left(K_{n} \cup K_{m}\right)$ is an overlaid graph.

Let G and H be disjoint graphs. Let h be a mapping from $V(H)$ to $V(G)$. By $G \cup_{h} H$ we denote the graph $G \cup H$ together with all edges joining each vertex $u \in V(H)$ and $h(u) \in V(G)$. Note that if G is a graph on n vertices and h : $V(n H) \rightarrow V(G)$ is a mapping such that the image of any vertex of i th copy of H is the i th vertex of G, then $G \cup_{h} n H$ is well-known corona of G with H, denoted by $G \odot H$.

Lemma 4. Let π and ν be overlayings of graphs G and H, respectively. Let h be a mapping from $V(H)$ to $V(G)$ satisfying:
(a1) $(\forall u, v \in V(H)) \quad \nu(u)<\nu(v) \Longrightarrow \pi(h(u)) \leq \pi(h(v))$;
(a2) $(\forall u, v \in V(G)) \quad \pi(u)<\pi(v) \Longrightarrow \operatorname{deg}_{G}(u)+|\{w: h(w)=u\}| \leq \operatorname{deg}_{G}(v)+$ $|\{w: h(w)=v\}|$;
(a3) $\left(\exists z \in N_{G}\left(\pi^{-1}(1)\right)\right) \quad \pi\left(h\left(\nu^{-1}(|V(H)|)\right)\right) \leq \pi(z)$.
If $\Delta(H)<\delta(G)$ then $G \cup_{h} H$ is an overlaid graph.
Proof. Set $p=|V(G)|$ and $n=|V(H)|$. Consider the mapping μ from $V\left(G \cup_{h} H\right)$ to $[1, n+p]$ defined by

$$
\mu(w)= \begin{cases}\nu(w) & \text { if } w \in V(H) \\ n+\pi(w) & \text { if } w \in V(G)\end{cases}
$$

Evidently, μ is a bijection. Now suppose that u and v are two vertices of $G \cup_{h} H$ satisfying $\mu(v)-\mu(u)=1$. Distinguish the following cases.

If $\mu(u)<n$ then u and v are vertices of H. Moreover, $\nu(v)-\nu(u)=\mu(v)-$ $\mu(u)=1$. Thus, there is an injection σ from $N_{H}(u)-\{v\}$ to $N_{H}(v)-\{u\}$ such that $\nu(\sigma(x)) \geq \nu(x)$ for each $x \in N_{H}(u)-\{v\}$. Clearly, the mapping σ^{\prime}, given by

$$
\sigma^{\prime}(x)= \begin{cases}\sigma(x) & \text { if } x \in N_{H}(u)-\{v\}, \\ h(v) & \text { if } x=h(u)\end{cases}
$$

is an injective mapping from $N_{G \cup_{h} H}(u)-\{v\}$ to $N_{G \cup_{h} H}(v)-\{u\}$ such that $\mu\left(\sigma^{\prime}(x)\right)=$ $\nu(\sigma(x)) \geq \nu(x)=\mu(x)$ for each $x \in N_{G \cup_{h} H}(u)-\{v, h(u)\}$, and by (a1), $\mu\left(\sigma^{\prime}(h(u))\right)=$ $\mu(h(v))=n+\pi(h(v)) \geq n+\pi(h(u))=\mu(h(u))$.

If $\mu(u)=n$ then u is a vertex of H and v is a vertex of G. Moreover, $\nu(u)=n$, $\pi(v)=1$, and according to Lemma 1, $\operatorname{deg}_{H}(u)=\Delta(H)$ and $\operatorname{deg}_{G}(v)=\delta(G)$. As $\Delta(H)<\delta(G)$, there is an injective mapping ρ from $N_{H}(u)$ to $N_{G}(v)-\{z\}$. Since $N_{H}(u) \subseteq V(H)$ and $N_{G}(v) \subseteq V(G), \mu(\rho(w)) \geq n+1>n \geq \mu(w)$, for any $w \in N_{H}(u)$. Therefore, the mapping ρ^{\prime}, given by

$$
\rho^{\prime}(x)= \begin{cases}\rho(x) & \text { if } x \in N_{G \cup_{h} H}(u)-\{h(u)\}, \\ z & \text { if } x=h(u),\end{cases}
$$

(or $\rho^{\prime}=\rho$, when $h(u)=v$) is an injective mapping from $N_{G \cup_{h} H}(u)-\{v\}$ to $N_{G \cup_{h} H}(v)-\{u\}$ such that $\mu\left(\rho^{\prime}(x)\right)=\mu(\rho(x)) \geq \mu(x)$ for each $x \in N_{G \cup_{h} H}(u)-$ $\{v, h(u)\}$, and by (a3), $\mu\left(\rho^{\prime}(h(u))\right)=\mu(z)=n+\pi(z) \geq n+\pi(h(u))=\mu(h(u))$.

If $\mu(u)>n$ then u and v are vertices of G. Moreover, $\pi(v)-\pi(u)=\mu(v)-$ $\mu(u)=1$. Thus, there is an injection σ from $N_{G}(u)-\{v\}$ to $N_{G}(v)-\{u\}$ such that $\pi(\sigma(x)) \geq \pi(x)$ for each $x \in N_{G}(u)-\{v\}$. By (a2), there is an injective mapping ϱ from $\{w: h(w)=u\}$ to $\{w: h(w)=v\} \cup N_{G}(v)-\left(\{u\} \cup\left\{\sigma(x): x \in N_{G}(u)-\{v\}\right\}\right)$. According to (a1), $\mu(\varrho(x)) \geq \mu(x)$ for every $x \in\{w: h(w)=u\}$. Since $N_{G \cup_{h} H}(u)=$ $N_{G}(u) \cup\{w: h(w)=u\}$, the mapping σ^{\prime}, given by

$$
\sigma^{\prime}(x)= \begin{cases}\sigma(x) & \text { if } x \in N_{G}(u)-\{v\}, \\ \varrho(x) & \text { if } x \in\{w: h(w)=u\},\end{cases}
$$

is an injective mapping from $N_{G \cup_{h} H}(u)-\{v\}$ to $N_{G \cup_{h} H}(v)-\{u\}$ such that $\mu\left(\sigma^{\prime}(x)\right)=$ $\mu(\sigma(x))=n+\pi(\sigma(x)) \geq n+\pi(x)=\mu(x)$ for each $x \in N_{G}(u)-\{v\}$ and $\mu\left(\sigma^{\prime}(x)\right)=$ $\mu(\varrho(x)) \geq \mu(x)$ for each $x \in\{w: h(w)=u\}$.

Let k be a positive integer and let G_{i}, for $i \in[0, k]$, be a graph. Let $n_{0}=1$ and $n_{i+1}=n_{i} \cdot\left|V\left(G_{i}\right)\right|$, for $i \in[0, k-1]$. Denote by $\odot\left(G_{0}, G_{1}, \ldots, G_{k}\right)$ the graph satisfying:
(b1) $\bigcup_{i=0}^{k} n_{i} G_{i}$ is its spanning subgraph;
(b2) its subgraph induced by $V\left(n_{i} G_{i} \cup n_{i+1} G_{i+1}\right)$ is $n_{i} G_{i} \odot G_{i+1}, i \in[0, k-1]$;
(b3) any its edge belongs to some induced subgraph considered in (b2).
Theorem 4. Let k be a positive integer and let G_{i} be an overlaid graph for each $i \in[0, k]$. Suppose that the following conditions are satisfied:
(c1) $\Delta\left(G_{0}\right)=\left|V\left(G_{0}\right)\right|-1$;
(c2) G_{i} is a d_{i}-regular graph for each $i \in[1, k]$;
(c3) $d_{0}=\delta\left(G_{0}\right)>d_{1}$ when $\left|V\left(G_{0}\right)\right|>1$;
(c4) $d_{i} \geq d_{i+1}$ for each $i \in[1, k-1]$;
(c5) $d_{i}+\left|V\left(G_{i+1}\right)\right| \leq d_{i-1}+\left|V\left(G_{i}\right)\right|$ for each $i \in[1, k-1]$.
Then $\odot\left(G_{0}, G_{1}, \ldots, G_{k}\right)$ is an overlaid graph.
Proof. Let $n_{0}=1$ and $n_{i+1}=n_{i} \cdot\left|V\left(G_{i}\right)\right|$, for $i \in[0, k-1]$. For $j \in[1, k]$, the regular graph G_{j} is overlaid and, by Corollary $3, n_{j} G_{j}$ is also an overlaid graph. Therefore, there is an overlaying ν_{j} of $n_{j} G_{j}$. Moreover, according to proof of Theorem 1, we can assume that the values of vertices of r th copy of G_{j} belong to $\left[(r-1)\left|V\left(G_{j}\right)\right|+\right.$ $\left.1, r\left|V\left(G_{j}\right)\right|\right], r \in\left[1, n_{j}\right]$. This means that $\nu_{j}^{-1}(t)$ is a vertex of $\left\lceil t /\left|V\left(G_{j}\right)\right|\right\rceil$ th copy of G_{j}, for each $t \in\left[1, n_{j}\left|V\left(G_{j}\right)\right|\right]$.

If $G_{0}=K_{1}$ then $\odot\left(G_{0}, G_{1}\right)$ is isomorphic to $G_{1} \oplus K_{1}$. Therefore, by Theorem 2, the graph $\odot\left(G_{0}, G_{1}\right)$ is overlaid.

Similarly, if $\left|V\left(G_{0}\right)\right|>1$ then G_{0} is overlaid and there is an overlaying π_{0} of G_{0}. Let h_{1} be a mapping from $n_{1} G_{1}$ to G_{0} given by

$$
h_{1}\left(\nu_{1}^{-1}(t)\right)=\pi_{0}^{-1}\left(\left\lceil t /\left|V\left(G_{1}\right)\right|\right\rceil\right), \quad t \in\left[1, n_{1}\left|V\left(G_{1}\right)\right|\right] .
$$

Suppose that u and v are vertices of $n_{1} G_{1}$ such that $\nu_{1}(u)<\nu_{1}(v)$. Let $\nu_{1}(u)=r$, $\nu_{1}(v)=s$. Then $r<s$ and

$$
\begin{aligned}
\pi_{0}\left(h_{1}(u)\right) & =\pi_{0}\left(h_{1}\left(\nu_{1}^{-1}(r)\right)\right)=\pi_{0}\left(\pi_{0}^{-1}\left(\left\lceil r /\left|V\left(G_{1}\right)\right|\right\rceil\right)\right) \\
& =\left\lceil r /\left|V\left(G_{1}\right)\right|\right\rceil \leq\left\lceil s /\left|V\left(G_{1}\right)\right|\right\rceil \\
& =\pi_{0}\left(\pi_{0}^{-1}\left(\left\lceil s /\left|V\left(G_{1}\right)\right|\right\rceil\right)\right)=\pi_{0}\left(h_{1}\left(\nu_{1}^{-1}(s)\right)\right)=\pi_{0}\left(h_{1}(v)\right) .
\end{aligned}
$$

Suppose that u and v are vertices of G_{0} such that $\pi_{0}(u)<\pi_{0}(v)$. Then, by Lemma 1, $\operatorname{deg}_{G_{0}}(u) \leq \operatorname{deg}_{G_{0}}(v)$ and

$$
\begin{aligned}
\operatorname{deg}_{G_{0}}(u) & +\left|\left\{w: h_{1}(w)=u\right\}\right|=\operatorname{deg}_{G_{0}}(u)+\left|V\left(G_{1}\right)\right| \\
& \leq \operatorname{deg}_{G_{0}}(v)+\left|V\left(G_{1}\right)\right|=\operatorname{deg}_{G_{0}}(v)+\left|\left\{w: h_{1}(w)=v\right\}\right| .
\end{aligned}
$$

Set $z=\pi_{0}^{-1}\left(\left|V\left(G_{0}\right)\right|\right)$. According to Lemma 1 and (c1), we have

$$
\operatorname{deg}_{G_{0}}(z)=\Delta\left(G_{0}\right)=\left|V\left(G_{0}\right)\right|-1
$$

Thus, $z \in N_{G_{0}}\left(\pi_{0}^{-1}(1)\right)$ and $\pi_{0}\left(h_{1}\left(\nu_{1}^{-1}\left(\left|V\left(n_{1} G_{1}\right)\right|\right)\right)\right) \leq \pi_{0}(z)$.
Moreover, by (c3), $\Delta\left(n_{1} G_{1}\right)=d_{1}<\delta\left(G_{0}\right)$. Therefore, the assumptions of Lemma 4 hold, and so the graph $G_{0} \cup_{h_{1}} n_{1} G_{1}$ is overlaid. As $G_{0} \cup_{h_{1}} n_{1} G_{1}$ is isomorphic to $\odot\left(G_{0}, G_{1}\right)$, the graph $\odot\left(G_{0}, G_{1}\right)$ is overlaid.

Note that in both cases (see proofs of Lemmas 2 and 4) there is an overlaying π_{1} of $\odot\left(G_{0}, G_{1}\right)$ such that $\pi_{1}^{-1}(t)$ is a vertex of $\left\lceil t /\left|V\left(G_{1}\right)\right|\right\rceil$ th copy of G_{1}, for $t \in$ $\left[1, n_{1}\left|V\left(G_{1}\right)\right|\right]$, and $\pi_{1}^{-1}(t)$ is a vertex of G_{0}, for $t>n_{1}\left|V\left(G_{1}\right)\right|$.

Now suppose that there is an overlaying π_{p} of $O_{p}=\odot\left(G_{0}, G_{1}, \ldots, G_{p}\right), p \in[1, k-$ $1]$, such that $\pi_{p}^{-1}(t)$ is a vertex of $\left\lceil t /\left|V\left(G_{p}\right)\right|\right\rceil$ th copy of G_{p}, for $t \in\left[1, n_{m}\left|V\left(G_{p}\right)\right|\right]$, and $\pi_{p}^{-1}(t)$ is a vertex of $\odot\left(G_{0}, \ldots, G_{p-1}\right)$, for $t>n_{p}\left|V\left(G_{p}\right)\right|$. Define the mapping $h_{p+1}: n_{p+1} G_{p+1} \rightarrow O_{p}$ by

$$
h_{p+1}\left(\nu_{p+1}^{-1}(t)\right)=\pi_{p}^{-1}\left(\left\lceil t /\left|V\left(G_{p+1}\right)\right|\right\rceil\right), \quad t \in\left[1, n_{p+1}\left|V\left(G_{p+1}\right)\right|\right] .
$$

In the same manner as above we can show that if $\nu_{p+1}(u)<\nu_{p+1}(v), u, v \in$ $n_{p+1} G_{p+1}$, then $\pi_{p}\left(h_{p+1}(u)\right) \leq \pi_{p}\left(h_{p+1}(v)\right)$.

If $u \in V\left(n_{p} G_{p}\right)$ then $\operatorname{deg}_{O_{p}}(u)+\left|\left\{w: h_{p+1}(w)=u\right\}\right|=1+d_{p}+\left|V\left(G_{p+1}\right)\right|$. If $v \in V\left(\odot\left(G_{0}, \ldots, G_{p-1}\right)\right)$ then

$$
\operatorname{deg}_{O_{p}}(v)+\left|\left\{w: h_{p+1}(w)=v\right\}\right|=\operatorname{deg}_{O_{p}}(v) \geq 1+d_{p-1}+\left|V\left(G_{p}\right)\right| .
$$

Therefore, according to (c5),

$$
\operatorname{deg}_{O_{p}}(u)+\left|\left\{w: h_{p+1}(w)=u\right\}\right| \leq \operatorname{deg}_{O_{p}}(v)+\left|\left\{w: h_{p+1}(w)=v\right\}\right|,
$$

for $u, v \in V\left(O_{p}\right)$ such that $\pi_{p}(u)<\pi_{p}(v)$.
Let $z=h_{p}\left(\nu_{p}^{-1}(1)\right)$. Then $z \in \odot\left(G_{0}, \ldots, G_{p-1}\right)$ and $\pi_{p}(z)>n_{p}\left|V\left(G_{p}\right)\right|$. As $\nu_{p}^{-1}(1)=\pi_{p}^{-1}(1), z$ belongs to $N_{O_{p}}\left(\pi_{p}^{-1}(1)\right)$ and

$$
\begin{aligned}
\pi_{p}\left(h_{p+1}\left(\nu_{p+1}^{-1}\left(\left|V\left(n_{p+1} G_{p+1}\right)\right|\right)\right)\right) & =\pi_{p}\left(\pi_{p}^{-1}\left(n_{p+1}\right)\right) \\
& =n_{p+1}=n_{p}\left|V\left(G_{p}\right)\right|<\pi_{p}(z) .
\end{aligned}
$$

By (c4), $\Delta\left(n_{p+1} G_{p+1}\right)=d_{p+1}<1+d_{p}=\delta\left(O_{p}\right)$. Therefore, the assumptions of Lemma 4 hold, and so the graph $O_{p} \cup_{h_{p+1}} n_{p+1} G_{p+1}$ is overlaid. As $O_{p} \cup_{h_{p+1}} n_{p+1} G_{p+1}$ is isomorphic to $\odot\left(G_{0}, G_{1}, \ldots, G_{p+1}\right)$, the graph $\odot\left(G_{0}, G_{1}, \ldots, G_{p+1}\right)$ is overlaid. Moreover, by proof of Lemma 4 , there is an overlaying π_{p+1} of $\odot\left(G_{0}, G_{1}, \ldots, G_{p+1}\right)$ such that $\pi_{p+1}^{-1}(t)$ is a vertex of $\left\lceil t /\left|V\left(G_{p+1}\right)\right|\right\rceil$ th copy of G_{p+1}, for $t \in\left[1, n_{p+1}\left|V\left(G_{p+1}\right)\right|\right]$, and $\pi_{p+1}^{-1}(t)$ is a vertex of O_{p}, for $t>n_{p+1}\left|V\left(G_{p+1}\right)\right|$.

Therefore, by induction, $\odot\left(G_{0}, G_{1}, \ldots, G_{k}\right)$ is an overlaid graph.

A tree in which every vertex that is not a leaf has the degree d is called d-regular tree. If G_{0} is a tree and G_{1}, \ldots, G_{k} are totally disconnected graphs then the graph $\odot\left(G_{0}, G_{1}, \ldots, G_{k}\right)$ is a tree. Thus, by Theorem 4 , we immediately have

Corollary 6. Let r be a positive integer. Then the ($r+1$)-regular trees $\odot\left(K_{1}, D_{r+1}\right.$, $\left.D_{r}, \ldots, D_{r}\right)$ and $\odot\left(K_{2}, D_{r}, \ldots, D_{r}\right)$ are overlaid graphs.

Let P_{n} denote a path on n vertices. Clearly, $P_{1}=K_{1}, P_{2}=K_{2}$ and $P_{3}=K_{2,1}$ are overlaid. The path on $n \geq 4$ vertices is a 2 -regular tree $\odot\left(K_{2}, D_{1}, \ldots, D_{1}\right)$ when n is even, and $\odot\left(K_{1}, D_{2}, D_{1}, \ldots, D_{1}\right)$ when n is odd. Thus, we get

Corollary 7. The path P_{n} is an overlaid graph for each $n \geq 1$.
Corollary 8. The cycle C_{n} is an overlaid graph for each $n \geq 3$.
Proof. By Observation 1, the cycle $C_{3}=K_{3}$ is an overlaid graph.
The path $P_{m}, m \geq 3$, is overlaid. Thus, there is an overlaying π of P_{m}. By Lemma $1, \pi^{-1}(1)$ and $\pi^{-1}(2)$ are vertices of degree 1 , and $\pi^{-1}(3)$ is a vertex of degree 2. Therefore, by Lemma $3, P_{m}(M \triangleright)$ is an overlaid graph when $M=\{u \in$ $\left.V\left(P_{m}\right): \pi(u) \in[1,2]\right\}$. Clearly, the graph $P_{m}(M \triangleright)$ is isomorphic to C_{m+1}.

Combining Theorem 2 and Corollary 7 (Corollary 8) we get
Corollary 9. The fan $P_{n} \oplus K_{1}$ and the wheel $C_{n} \oplus K_{1}$ are overlaid graphs.
Theorem 5. For any graph G there is an overlaid graph which contains an induced subgraph isomorphic to G.

Proof. If G is totally disconnected then, by Observation 2, it is overlaid.
If $G=G^{\prime} \cup D_{n}$ and there is an overlaid graph H^{\prime} containing an induced subgraph isomorphic to G^{\prime} then, by Theorem 1 , the disjoint union $H^{\prime} \cup D_{n}$ is also an overlaid graph. Clearly, $H^{\prime} \cup D_{n}$ contains an induced subgraphs isomorphic to G. Therefore, next we can assume that $\delta(G) \geq 1$.

Set $p=|V(G)|, q=|E(G)|$ and $k=p+2 q+1$. Denote the vertices of G by $v_{1}, v_{2}, \ldots, v_{p}$ in such a way that $\operatorname{deg}_{G}\left(v_{i}\right) \leq \operatorname{deg}_{G}\left(v_{j}\right)$ holds for every $i<j$. For $i \in[1, p]$, let $s_{i}=\sum_{t=1}^{i} \operatorname{deg}_{G}\left(v_{t}\right)$. Now consider the graph H satisfying:
(i) $V(H)=\left\{v_{i}: i \in[1, k]\right\}$;
(ii) the subgraph of H induced by $\left\{v_{i}: i \in[1, p]\right\}$ is G;
(iii) the subgraph of H induced by $\left\{v_{i}: i \in[p+2, k]\right\}$ is $K_{2 q}$;
(iv) $E(H)=\bigcup_{i=1}^{p}\left\{v_{i+1} v_{j}: j \in\left[k+1-s_{i}, k\right]\right\} \cup E(G) \cup E\left(K_{2 q}\right)$.

Define the bijection $\pi: V(H) \rightarrow[1, k]$ by $\pi\left(v_{i}\right)=i$ and distinguish the following cases.

Let $i=1$. Then $N_{H}\left(v_{1}\right)=N_{G}\left(v_{1}\right)$ and $N_{H}\left(v_{2}\right)=N_{G}\left(v_{2}\right) \cup\left\{v_{j}: j \in[k+1-\right.$ $\left.\left.\operatorname{deg}_{G}\left(v_{1}\right), k\right]\right\}$. As $\left|N_{H}\left(v_{1}\right)\right|=\operatorname{deg}_{G}\left(v_{1}\right)=\left|\left[k+1-\operatorname{deg}_{G}\left(v_{1}\right), k\right]\right|$, there is an injective
mapping σ from $N_{H}\left(v_{1}\right)-\left\{v_{2}\right\}$ to $\left\{v_{j}: j \in\left[k+1-\operatorname{deg}_{G}\left(v_{1}\right), k\right]\right\}$. Clearly, $\pi(\sigma(x))>$ $p \geq \pi(x)$ for every $x \in N_{H}\left(v_{1}\right)-\left\{v_{2}\right\}$.

Let $i \in[2, p-1]$. Then $N_{H}\left(v_{i}\right)=N_{G}\left(v_{i}\right) \cup\left\{v_{j}: j \in\left[k+1-s_{i-1}, k\right]\right\}$ and $N_{H}\left(v_{i+1}\right)=N_{G}\left(v_{i+1}\right) \cup\left\{v_{j}: j \in\left[k+1-s_{i}, k\right]\right\}$. As $\left|N_{G}\left(v_{i}\right)\right|=\operatorname{deg}_{G}\left(v_{i}\right)=\mid[k+$ $\left.1-s_{i}, k-s_{i-1}\right] \mid$, there is an injective mapping ρ from $N_{G}\left(v_{i}\right)-\left\{v_{i+1}\right\}$ to $\left\{v_{j}: j \in\right.$ $\left.\left[k+1-s_{i}, k-s_{i-1}\right]\right\}$. Clearly, the mapping σ, given by

$$
\sigma(x)= \begin{cases}\rho(x) & \text { if } x \in N_{G}\left(v_{i}\right)-\left\{v_{i+1}\right\}, \\ x & \text { if } x \in\left\{v_{j}: j \in\left[k+1-s_{i-1}, k\right]\right\}\end{cases}
$$

is an injective mapping from $N_{H}\left(v_{i}\right)-\left\{v_{i+1}\right\}$ to $N_{H}\left(v_{i+1}\right)-\left\{v_{i}\right\}$ such that $\pi(\sigma(x))=$ $\pi(\rho(x))>p \geq \pi(x)$ for each $x \in N_{G}\left(v_{i}\right)-\left\{v_{i+1}\right\}$ and $\pi(\sigma(x))=\pi(x)$ for $x \in\left\{v_{j}\right.$: $\left.j \in\left[k+1-s_{i-1}, k\right]\right\}$.

Let $i=p$. Then $N_{H}\left(v_{p}\right)=N_{G}\left(v_{p}\right) \cup\left\{v_{j}: j \in\left[k+1-s_{p-1}, k\right]\right\}$ and $N_{H}\left(v_{p+1}\right)=$ $\left\{v_{j}: j \in\left[k+1-s_{p}, k\right]\right\}$. As $\left|N_{G}\left(v_{p}\right)\right|=\left|\left[k+1-s_{p}, k-s_{p-1}\right]\right|$, there is an injection ρ from $N_{G}\left(v_{p}\right)$ to $\left\{v_{j}: j \in\left[k+1-s_{p}, k-s_{p-1}\right]\right\}$. Clearly, the mapping σ, given by

$$
\sigma(x)= \begin{cases}\rho(x) & \text { if } x \in N_{G}\left(v_{p}\right), \\ x & \text { if } x \in\left\{v_{j}: j \in\left[k+1-s_{p-1}, k\right]\right\},\end{cases}
$$

is an injective mapping from $N_{H}\left(v_{p}\right)-\left\{v_{p+1}\right\}$ to $N_{H}\left(v_{p+1}\right)-\left\{v_{p}\right\}$ such that $\pi(\sigma(x))=$ $\pi(\rho(x))>p>\pi(x)$ for each $x \in N_{G}\left(v_{p}\right)$ and $\pi(\sigma(x))=\pi(x)$ for $x \in\left\{v_{j}: j \in\right.$ $\left.\left[k+1-s_{p-1}, k\right]\right\}$.

Let $i \in[p+1, k-1]$. Then $\left\{v_{j}: j \in[p+1, k]\right\} \subseteq N_{H}\left(v_{i}\right) \cup\left\{v_{i}\right\} \subseteq N_{H}\left(v_{i+1}\right) \cup\left\{v_{i+1}\right\}$. Therefore, the injection σ from $N_{H}\left(v_{i}\right)-\left\{v_{i+1}\right\}$ to $N_{H}\left(v_{i+1}\right)-\left\{v_{i}\right\}$, given by $\sigma(x)=x$, satisfies $\pi(\sigma(x))=\pi(x)$.

Thus, π is an overlaying of H and G is an induced subgraph of the overlaid graph H.

Combining Theorem 5 and Proposition 1 we get
Corollary 10. For any graph G there is a sharp ordered super TAT graph which contains an induced subgraph isomorphic to G.

4 Conclusion

In the paper we present overlaid graphs. By Proposition 1, these graphs are sharp ordered super TAT. So, we present a large class of sharp ordered super TAT graphs. Moreover, two conjectures are stated in [1] (namely, 1: every graph $G \oplus K_{1}$ is $T A T$ and 2: every complete graph is TAT). Corollary 1 confirms Conjecture 2. Conjecture 1 is still open, however Corollary 10 is a weak version of this conjecture.

Hartsfield and Ringel [4] conjectured that every connected graph except P_{2} admits a vertex-antimagic edge labeling. We believe that the following analogy of this conjecture is true.

Conjecture. Every graph is TAT.

Acknowledgements

This work was supported by Slovak VEGA Grant 1/0652/12 and by Slovak VEGA Grant 1/0368/16.

References

[1] M. Bača, M. Miller, O. Phanalasy, J. Ryan, A. Semaničová-Feňovčíková and A. A. Sillasen, Totally antimagic total graphs, Australas. J. Combin. 61 (2015), 42-56.
[2] G. Exoo, A. C. H. Ling, J. P. McSorley, N. C. K. Phillips and W. D. Wallis, Totally magic graphs, Discrete Math. 254 (2002), 103-113.
[3] J. A. Gallian, A dynamic survey of graph labeling, Electron. J. Combin. (2015), \#DS6.
[4] N. Hartsfield and G. Ringel, Pearls in Graph Theory, Academic Press, Boston San Diego - New York - London, 1990.
[5] M. Miller, O. Phanalasy and J. Ryan, All graphs have antimagic total labelings, Electron. Notes Discrete Math. 38 (2011), 645-650.
[6] W.D. Wallis, Magic Graphs, Birkhäuser, Boston, 2001.

