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Abstract

A total labeling of a graph G is a bijection from the vertex set and edge
set of G onto the set {1, 2, . . . , |V (G)| + |E(G)|}. Such a labeling ξ is
vertex-antimagic (edge-antimagic) if all vertex-weights wtξ(v) = ξ(v) +∑

vu∈E(G) ξ(vu), v ∈ V (G), (all edge-weights wtξ(vu) = ξ(v) + ξ(vu) +

ξ(u), vu ∈ E(G)) are pairwise distinct. If a labeling is simultaneously
vertex-antimagic and edge-antimagic it is called a totally antimagic total
labeling. A graph that admits a totally antimagic total labeling is called
a totally antimagic total graph. In this paper we will introduce a large
class of totally antimagic total graphs.

1 Introduction

We consider finite undirected graphs without loops and multiple edges. If G is
a graph, then V (G) and E(G) stand for the vertex set and edge set of G, respectively.
The subgraph of a graph G induced by U ⊆ V (G) is denoted by G[U ]. The set of
vertices of G adjacent to a vertex v ∈ V (G) is denoted by NG(v). The cardinality of
this set, denoted degG(v), is called the degree of v. As usual Δ(G) and δ(G) stand
for the maximum and minimum degree among vertices of G. For integers p, q we
denote by [p, q] the set of all integers z satisfying p ≤ z ≤ q.

A total labeling of a graph G is a bijection ξ from V (G) ∪ E(G) onto the set
[1, |V (G)| + |E(G)|]. The associated vertex-weight of a vertex v ∈ V (G) is defined
by

wtξ(v) = ξ(v) +
∑

u∈NG(v)

ξ(vu),

and the associated edge-weight of an edge uv ∈ E(G) is defined by

wtξ(uv) = ξ(u) + ξ(uv) + ξ(v).

A total labeling is called vertex-antimagic total (edge-antimagic total), for short VAT
(EAT ), if all vertex-weights (edge-weights) are pairwise distinct. A total labeling that
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is simultaneously vertex-antimagic total and edge-antimagic total is called totally
antimagic total (TAT ). A graph that admits a VAT (EAT, TAT) labeling is called
a VAT (EAT, TAT ) graph.

In [5] it is proved that every graph is VAT. Using a similar method one can
check that every graph is EAT. The TAT graphs were defined by Bača et al. in
[1], where there were also presented some examples of TAT graphs. The definition
of totally antimagic total labeling is an antipodal version of the concept of totally
magic labeling defined by Exoo et al. in [2] (see also [6]). The TAT labeling is also
an analogy of well known antimagic (edge) labeling defined by Hartsfield and Ringel
in [4]. We refer the reader to [3] for comprehensive references.

In this paper we will introduce a large class of graphs which admit TAT labelings.

2 TAT graphs

An overlaying of a graph G is a bijection π from V (G) onto [1, |V (G)|] such that
for any two vertices u, v ∈ V (G) satisfying π(v) − π(u) = 1, there is an injective
mapping σ : NG(u)− {v} → NG(v)− {u} such that

π(σ(w)) ≥ π(w) for each w ∈ NG(u)− {v}.

A graph that admits an overlaying is called an overlaid graph.
Note that any two vertices u, v of a complete graph Kn satisfy:

NKn(u)− {v} = V (Kn)− {u, v} = NKn(v)− {u}.

Thus, every bijection from V (Kn) onto [1, n] is an overlaying of Kn.

Observation 1. The complete graph Kn is overlaid.

Similarly, NDn(u)−{v} = ∅ = NDn(v)−{u} for any two vertices u, v of a totally
disconnected graph Dn (i.e., Kn). Therefore, every bijection from V (Dn) onto [1, n]
is an overlaying of Dn.

Observation 2. The totally disconnected graph Dn is overlaid.

We present a connection between overlaid graphs and TAT graphs. First we
suggest that in [1] there were also defined special types of TAT graphs. A total
labeling ξ of a graph G is called super, if the vertices are labeled with the smallest
possible numbers, i.e., {ξ(u) : u ∈ V (G)} = [1, |V (G)|]. Similarly, ξ is called to be
sharp ordered if wtξ(u) < wtξ(v) holds for every pair of vertices u, v of G such that
ξ(u) < ξ(v). A graph that admits a super (sharp ordered) labeling is called a super
(sharp ordered) graph.

Now, we are able to prove the crucial result of the paper.

Proposition 1. Let G be an overlaid graph. Then G is a sharp ordered super TAT
graph.
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Proof. Set p = |V (G)|, q = |E(G)|, and suppose that π is an overlaying of G. For
every edge e = uv of G we denote by s(e) the sum of labels of its end vertices, i.e.,
s(e) = π(u) + π(v). Now, denote the edges of G by e1, e2, . . . , eq in such a way that
s(ei) ≤ s(ej) holds for every i < j. Consider the mapping ξ from V (G) ∪ E(G) to
[1, p+ q] defined by

ξ(x) =

{
π(x) if x ∈ V (G),

p+ i if x = ei.

Clearly, ξ is a super total labeling of G.
Suppose that ei and ej are distinct edges of G. Without loss of generality, let

i < j. As s(ei) ≤ s(ej), we have

wtξ(ei) = s(ei) + ξ(ei) = s(ei) + p+ i < s(ej) + p+ j

= s(ej) + ξ(ej) = wtξ(ej).

Therefore, wtξ(e1) < wtξ(e2) < · · · < wtξ(eq), i.e., ξ is an EAT labeling.
Now suppose that u and v are two vertices of G such that π(v) − π(u) = 1.

Then there is an injective mapping σ from NG(u) − {v} to NG(v) − {u} such that
π(σ(x)) ≥ π(x) for every x ∈ NG(u)− {v}. This implies

s(ux) = π(u) + π(x) < π(v) + π(σ(x)) = s(vσ(x))

and consequently ξ(ux) < ξ(vσ(x)). Therefore,∑
x∈NG(u)−{v}

ξ(ux) ≤
∑

x∈NG(u)−{v}
ξ(vσ(x)) ≤

∑
y∈NG(v)−{u}

ξ(vy).

Let ξ∗(u, v) be equal to ξ(uv) when uv is an edge of G, and 0 otherwise. Then we
have

wtξ(u) = ξ(u) +
∑

x∈NG(u)

ξ(ux)

= ξ(u) +
∑

x∈NG(u)−{v}
ξ(ux) + ξ∗(u, v)

< ξ(v) +
∑

y∈NG(v)−{u}
ξ(vy) + ξ∗(u, v)

= ξ(v) +
∑

y∈NG(v)

ξ(vy) = wtξ(v).

Thus, wtξ(π
−1(1)) < wtξ(π

−1(2)) < · · · < wtξ(π
−1(p)), i.e., ξ is a sharp ordered VAT

labeling, which completes the proof.

According to Observations 1 and 2 we immediately have

Corollary 1. The complete graph Kn and the totally disconnected graph Dn are
sharp ordered super TAT graphs.
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3 Overlaid graphs

In this section we determine some basic properties of overlaid graphs. We also present
some examples of overlaid graphs, i.e., sharp ordered super TAT graphs.

Lemma 1. Let π be an overlaying of a graph G with n vertices. Then

degG
(
π−1(i)

) ≤ degG
(
π−1(i+ 1)

)
for every i ∈ [1, n− 1].

Proof. Set u = π−1(i) and v = π−1(i+1), for i ∈ [1, n−1]. As π(v)−π(u) = 1, there
is an injective mapping σ : NG(u) − {v} → NG(v) − {u}. Then |NG(u) − {v}| ≤
|NG(v)− {u}| and consequently |NG(u)| ≤ |NG(v)|, i.e., degG(u) ≤ degG(v).

Theorem 1. Let G and H be overlaid graphs. If Δ(G) ≤ δ(H) then the disjoint
union G ∪H is also an overlaid graph.

Proof. Let π (ν) be an overlaying of a graph G (H) with p (n) vertices. Consider
the mapping μ : V (G ∪H) → [1, p+ n] defined by

μ(w) =

{
π(w) if w ∈ V (G),

p+ ν(w) if w ∈ V (H).

Evidently, μ is a bijection. Now suppose that u and v are two vertices of G ∪ H
satisfying μ(v)− μ(u) = 1. Distinguish the following cases.

If μ(u) ≤ p − 1 then u and v are vertices of G. Moreover, π(v) − π(u) =
μ(v)−μ(u) = 1. Thus, there is an injection σ from NG(u)−{v} to NG(v)−{u} such
that π(σ(w)) ≥ π(w) for each w ∈ NG(u)− {v}. Clearly, σ is an injective mapping
from NG∪H(u)−{v} to NG∪H(v)−{u} such that μ(σ(w)) = π(σ(w)) ≥ π(w) = μ(w)
for each w ∈ NG∪H(u)− {v}.

If μ(u) = p then u is a vertex of G and v is a vertex of H . Moreover, π(u) = p,
ν(v) = 1, and according to Lemma 1, degG(u) = Δ(G) and degH(v) = δ(H). As
Δ(G) ≤ δ(H), there is an injective mapping ρ from NG(u) = NG∪H(u) − {v} to
NH(v) = NG∪H(v) − {u}. Since NG(u) ⊆ V (G) and NH(v) ⊆ V (H), μ(ρ(w)) ≥
p + 1 > p ≥ μ(w), for any w ∈ NG(u).

If μ(u) ≥ p + 1 then u and v are vertices of H . Moreover, ν(v)− ν(u) = μ(v)−
μ(u) = 1. Thus, there is an injection σ′ from NH(u)−{v} to NH(v)−{u} such that
ν(σ′(w)) ≥ ν(w) for each w ∈ NH(u)−{v}. Clearly, σ′ is an injective mapping from
NG∪H(u)−{v} toNG∪H(v)−{u} such that μ(σ′(w)) = p+ν(σ′(w)) ≥ p+ν(w) = μ(w)
for each w ∈ NG∪H(u)− {v}.

Therefore, μ is an overlaying of G ∪H .

Corollary 2. The disjoint union of regular overlaid graphs is an overlaid graph.
Especially, the disjoint union of complete graphs is an overlaid graph.
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Proof. Let G =
⋃k

i=1Gi, where Gi is an overlaid regular graph of degree di. Without
loss of generality we can assume that d1 ≤ d2 ≤ · · · ≤ dk. For every m ∈ [1, k], let
Hm =

⋃m
i=1Gi. H1 = G1 is an overlaid graph. Now suppose that Hm is an overlaid

graph. As Δ(Hm) = dm ≤ dm+1 = δ(Gm+1), by Theorem 1, Hm ∪ Gm+1 = Hm+1 is
also an overlaid graph. Therefore, by induction, Hk = G is an overlaid graph.

Any complete graph is regular and, by Observation 1, it is overlaid. Therefore,
G =

⋃k
i=1Kni

is also an overlaid graph.

Let mG denote the disjoint union of m copies of a graph G. According to Corol-
lary 2, we immediately have

Corollary 3. If G is a regular overlaid graph then mG is an overlaid graph. Espe-
cially, mKn is an overlaid graph.

Let M be a subset of the vertex set of a graph G. The graph G(M�) is obtained
from G by adding a new vertex w and edges {wu : u ∈ M}. Note that G(M�) is
isomorphic to the disjoint union G ∪ K1 when M = ∅, and it is isomorphic to the
join G⊕K1 when M = V (G).

Lemma 2. Let π be an overlaying of a graph G. Let k be a positive integer satisfying
k + Δ(G) ≤ |V (G)| and let M = {u ∈ V (G) : π(u) ∈ [k, |V (G)|]}. Then G(M�) is
an overlaid graph.

Proof. Set n = |V (G)| and consider the mapping μ : V
(
G(M�)

) → [1, 1+n] defined
by

μ(x) =

{
π(x) if x ∈ V (G),

1 + n if x /∈ V (G).

Evidently, μ is a bijection. Now suppose that u and v are two vertices of G(M�)
satisfying μ(v)− μ(u) = 1. Distinguish the following cases.

If μ(u) ≤ k − 1 then u and v are vertices of G. Moreover, π(v) − π(u) =
μ(v)−μ(u) = 1. Thus, there is an injection σ from NG(u)−{v} to NG(v)−{u} such
that π(σ(x)) ≥ π(x) for each x ∈ NG(u) − {v}. Clearly, σ is an injective mapping
from NG(M�)(u)−{v} to NG(M�)(v)−{u} such that μ(σ(x)) = π(σ(x)) ≥ π(x) = μ(x)
for each x ∈ NG(M�)(u)− {v}.

If k ≤ μ(u) < n then u and v are vertices of G. Moreover, π(v) − π(u) =
μ(v) − μ(u) = 1. Thus, there is an injection σ from NG(u) − {v} to NG(v) − {u}
such that π(σ(x)) ≥ π(x) for each x ∈ NG(u)− {v}. Clearly, the mapping σ′, given
by

σ′(x) =

{
σ(x) if x ∈ NG(u)− {v},
w if x = w,

is an injective mapping fromNG(M�)(u)−{v} toNG(M�)(v)−{u} such that μ(σ′(x)) =
π(σ(x)) ≥ π(x) = μ(x) for each x ∈ NG(M�)(u)−{v, w} and μ(σ′(w)) = 1+n = μ(w).

If μ(u) = n then u is a vertex of G and v = w. Moreover, π(u) = n and according
to Lemma 1, degG(u) = Δ(G), so degG(M�)(u) = 1 + Δ(G). As degG(M�)(w) =
1 + n − k ≥ 1 + Δ(G) and {μ(x) : x ∈ NG(M�)(w)} = [k, n], there is an injective
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mapping ρ from NG(M�)(u)−{w} to NG(M�)(w)−{u} such that μ(ρ(x)) ≥ μ(x), for
any x ∈ NG(M�)(u)− {w}.
Theorem 2. Let G be an overlaid graph and let n be a positive integer. Then the
join G⊕Kn is an overlaid graph.

Proof. According to Lemma 2, G ⊕ K1 is an overlaid graph. As G ⊕ Km = (G ⊕
Km−1)⊕K1, m ∈ [2, n], by induction, G⊕Kn is an overlaid graph.

According to Corollary 3, the graph mKr is overlaid. Therefore, we immediately
have

Corollary 4. Let m, r and n be positive integers. Then the graph mKr ⊕ Kn is
overlaid.

Thus, the complete (n + 1)-partite graph Km,1,...,1 = mK1 ⊕ Kn, the star Km,1

and the friendship graph mK2 ⊕K1 are overlaid.

Lemma 3. Let π be an overlaying of a graph G. Let k be a positive integer satisfying
k ≤ 1 + δ(G) and degG

(
π−1(k + 1)

)
> degG

(
π−1(k)

)
. Then G(M�) is an overlaid

graph when M = {u ∈ V (G) : π(u) ∈ [1, k]}.
Proof. Set n = |V (G)| and consider the mapping μ : V

(
G(M�)

) → [1, 1+n] defined
by

μ(x) =

{
1 + π(x) if x ∈ V (G),

1 if x /∈ V (G).

Evidently, μ is a bijection. Now suppose that u and v are two vertices of G(M�)
satisfying μ(v)− μ(u) = 1. Distinguish the following cases.

If μ(u) = 1 then u is the added vertex, i.e., u = w. Moreover, π(v) = 1 and
according to Lemma 1, degG(v) = δ(G), so degG(M�)(v) = 1 + δ(G) ≥ k. As
degG(M�)(w) = k and {μ(x) : x ∈ NG(M�)(w)} = [2, 1 + k], there is an injective
mapping ρ from NG(M�)(w)− {v} to NG(M�)(v)− {w} such that μ(ρ(x)) ≥ μ(x), for
any x ∈ NG(M�)(w)− {v}.

If 1 < μ(u) ≤ k then u and v are vertices of G. Moreover, π(v) − π(u) =
μ(v) − μ(u) = 1. Thus, there is an injection σ from NG(u) − {v} to NG(v) − {u}
such that π(σ(x)) ≥ π(x) for each x ∈ NG(u)− {v}. Clearly, the mapping σ′, given
by

σ′(x) =

{
σ(x) if x ∈ NG(u)− {v},
w if x = w,

is an injective mapping fromNG(M�)(u)−{v} toNG(M�)(v)−{u} such that μ(σ′(x)) =
1 + π(σ(x)) ≥ 1 + π(x) = μ(x) for each x ∈ NG(M�)(u)− {v, w} and μ(σ′(w)) = 1 =
μ(w).

If μ(u) = k + 1 then u and v are vertices of G. Moreover, π(v) − π(u) =
μ(v) − μ(u) = 1. Thus, there is an injection σ from NG(u) − {v} to NG(v) − {u}
such that π(σ(x)) ≥ π(x) for each x ∈ NG(u)−{v}. As u = π−1(k), v = π−1(k+1),
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degG(v) > degG(u), and there is a vertex y ∈ NG(v) − {u} such that σ(x) 
= y for
each x ∈ NG(u)− {v}. Clearly, the mapping σ′, given by

σ′(x) =

{
σ(x) if x ∈ NG(u)− {v},
y if x = w,

is an injective mapping from NG(M�)(u)−{v} to NG(M�)(v)−{u} such that μ(σ(x)) =
1+π(σ(x)) ≥ 1+π(x) = μ(x) for each x ∈ NG(M�)(u)−{v, w} and μ(σ′(w)) = μ(y) >
1 = μ(w).

If μ(u) > k + 1 then u and v are vertices of G. Moreover, π(v) − π(u) =
μ(v)−μ(u) = 1. Thus, there is an injection σ from NG(u)−{v} to NG(v)−{u} such
that π(σ(x)) ≥ π(x) for each x ∈ NG(u)−{v}. Clearly, σ is an injective mapping from
NG(M�)(u)−{v} toNG(M�)(v)−{u} such that μ(σ(x)) = 1+π(σ(x)) ≥ 1+π(x) = μ(x)
for each x ∈ NG(M�)(u)− {v}.
Theorem 3. Let G be an overlaid graph on p vertices. Let n and m be positive
integers satisfying n ≥ p−1−δ(G) andm ≤ p−1−Δ(G). Then the join G⊕(Kn∪Km)
is an overlaid graph.

Proof. m is a positive integer and so Δ(G) < p−1. According to Theorem 2, G⊕Kn

is an overlaid graph. Therefore, there is an overlaying π of G⊕Kn. As degG⊕Kn
(v) =

n + degG(v) for v ∈ V (G) and degG⊕Kn
(v) = n− 1 + p for v ∈ V (Kn), according to

Lemma 1, {π(v) : v ∈ V (G)} = [1, p] and {π(v) : v ∈ V (Kn)} = [p+ 1, p+ n]. Since

1 + δ(G⊕Kn) = 1 + n+ δ(G) ≥ p

and

degG⊕Kn

(
π−1(p)

)
= n+Δ(G)

< n− 1 + p = degG⊕Kn

(
π−1(p+ 1)

)
,

by Lemma 3,
(
G⊕Kn

)(
V (G) �

)
= G⊕ (Kn ∪K1) is an overlaid graph.

As G ⊕ (Kn ∪ Kt) =
(
G ⊕ (Kn ∪ Kt−1)

)(
(V (G) ∪ V (Kt−1)) �

)
, t ∈ [2, m], by

induction, G⊕ (Kn ∪Km) is an overlaid graph.

By Corollary 3, the graph sKr is overlaid. Thus, we immediately have

Corollary 5. Let s, r, n and m be positive integers satisfying n ≥ (s − 1)r ≥ m.
Then the join sKr ⊕ (Kn ∪Km) is an overlaid graph.

Let G and H be disjoint graphs. Let h be a mapping from V (H) to V (G). By
G ∪h H we denote the graph G ∪ H together with all edges joining each vertex
u ∈ V (H) and h(u) ∈ V (G). Note that if G is a graph on n vertices and h :
V (nH) → V (G) is a mapping such that the image of any vertex of ith copy of H is
the ith vertex of G, then G ∪h nH is well-known corona of G with H , denoted by
G�H .

Lemma 4. Let π and ν be overlayings of graphs G and H, respectively. Let h be
a mapping from V (H) to V (G) satisfying:
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(a1)
(∀u, v ∈ V (H)

)
ν(u) < ν(v) =⇒ π(h(u)) ≤ π(h(v));

(a2)
(∀u, v ∈ V (G)

)
π(u) < π(v) =⇒ degG(u) + |{w : h(w) = u}| ≤ degG(v) +

|{w : h(w) = v}|;
(a3)

(∃z ∈ NG(π
−1(1))

)
π(h(ν−1(|V (H)|))) ≤ π(z).

If Δ(H) < δ(G) then G ∪h H is an overlaid graph.

Proof. Set p = |V (G)| and n = |V (H)|. Consider the mapping μ from V (G ∪h H)
to [1, n+ p] defined by

μ(w) =

{
ν(w) if w ∈ V (H),

n + π(w) if w ∈ V (G).

Evidently, μ is a bijection. Now suppose that u and v are two vertices of G ∪h H
satisfying μ(v)− μ(u) = 1. Distinguish the following cases.

If μ(u) < n then u and v are vertices of H . Moreover, ν(v) − ν(u) = μ(v) −
μ(u) = 1. Thus, there is an injection σ from NH(u)−{v} to NH(v)− {u} such that
ν(σ(x)) ≥ ν(x) for each x ∈ NH(u)− {v}. Clearly, the mapping σ′, given by

σ′(x) =

{
σ(x) if x ∈ NH(u)− {v},
h(v) if x = h(u),

is an injective mapping from NG∪hH(u)−{v} to NG∪hH(v)−{u} such that μ(σ′(x)) =
ν(σ(x)) ≥ ν(x) = μ(x) for each x ∈ NG∪hH(u)−{v, h(u)}, and by (a1), μ(σ′(h(u))) =
μ(h(v)) = n+ π(h(v)) ≥ n+ π(h(u)) = μ(h(u)).

If μ(u) = n then u is a vertex of H and v is a vertex of G. Moreover, ν(u) = n,
π(v) = 1, and according to Lemma 1, degH(u) = Δ(H) and degG(v) = δ(G).
As Δ(H) < δ(G), there is an injective mapping ρ from NH(u) to NG(v) − {z}.
Since NH(u) ⊆ V (H) and NG(v) ⊆ V (G), μ(ρ(w)) ≥ n + 1 > n ≥ μ(w), for any
w ∈ NH(u). Therefore, the mapping ρ′, given by

ρ′(x) =

{
ρ(x) if x ∈ NG∪hH(u)− {h(u)},
z if x = h(u),

(or ρ′ = ρ, when h(u) = v) is an injective mapping from NG∪hH(u) − {v} to
NG∪hH(v) − {u} such that μ(ρ′(x)) = μ(ρ(x)) ≥ μ(x) for each x ∈ NG∪hH(u) −
{v, h(u)}, and by (a3), μ(ρ′(h(u))) = μ(z) = n + π(z) ≥ n+ π(h(u)) = μ(h(u)).

If μ(u) > n then u and v are vertices of G. Moreover, π(v) − π(u) = μ(v) −
μ(u) = 1. Thus, there is an injection σ from NG(u)− {v} to NG(v)− {u} such that
π(σ(x)) ≥ π(x) for each x ∈ NG(u)− {v}. By (a2), there is an injective mapping 	
from {w : h(w) = u} to {w : h(w) = v}∪NG(v)−

({u}∪{σ(x) : x ∈ NG(u)−{v}}).
According to (a1), μ(	(x)) ≥ μ(x) for every x ∈ {w : h(w) = u}. Since NG∪hH(u) =
NG(u) ∪ {w : h(w) = u}, the mapping σ′, given by

σ′(x) =

{
σ(x) if x ∈ NG(u)− {v},
	(x) if x ∈ {w : h(w) = u},
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is an injective mapping from NG∪hH(u)−{v} to NG∪hH(v)−{u} such that μ(σ′(x)) =
μ(σ(x)) = n+ π(σ(x)) ≥ n+ π(x) = μ(x) for each x ∈ NG(u)− {v} and μ(σ′(x)) =
μ(	(x)) ≥ μ(x) for each x ∈ {w : h(w) = u}.

Let k be a positive integer and let Gi, for i ∈ [0, k], be a graph. Let n0 = 1
and ni+1 = ni · |V (Gi)|, for i ∈ [0, k − 1]. Denote by �(G0, G1, . . . , Gk) the graph
satisfying:

(b1)
⋃k

i=0 niGi is its spanning subgraph;

(b2) its subgraph induced by V (niGi ∪ ni+1Gi+1) is niGi �Gi+1, i ∈ [0, k − 1];

(b3) any its edge belongs to some induced subgraph considered in (b2).

Theorem 4. Let k be a positive integer and let Gi be an overlaid graph for each
i ∈ [0, k]. Suppose that the following conditions are satisfied:

(c1) Δ(G0) = |V (G0)| − 1;

(c2) Gi is a di-regular graph for each i ∈ [1, k];

(c3) d0 = δ(G0) > d1 when |V (G0)| > 1;

(c4) di ≥ di+1 for each i ∈ [1, k − 1];

(c5) di + |V (Gi+1)| ≤ di−1 + |V (Gi)| for each i ∈ [1, k − 1].

Then �(G0, G1, . . . , Gk) is an overlaid graph.

Proof. Let n0 = 1 and ni+1 = ni · |V (Gi)|, for i ∈ [0, k−1]. For j ∈ [1, k], the regular
graph Gj is overlaid and, by Corollary 3, njGj is also an overlaid graph. Therefore,
there is an overlaying νj of njGj . Moreover, according to proof of Theorem 1, we
can assume that the values of vertices of rth copy of Gj belong to [(r− 1)|V (Gj)|+
1, r|V (Gj)|], r ∈ [1, nj]. This means that ν−1

j (t) is a vertex of �t/|V (Gj)|�th copy of
Gj , for each t ∈ [1, nj|V (Gj)|].

If G0 = K1 then �(G0, G1) is isomorphic to G1 ⊕K1. Therefore, by Theorem 2,
the graph �(G0, G1) is overlaid.

Similarly, if |V (G0)| > 1 then G0 is overlaid and there is an overlaying π0 of G0.
Let h1 be a mapping from n1G1 to G0 given by

h1

(
ν−1
1 (t)

)
= π−1

0 (�t/|V (G1)|�), t ∈ [1, n1|V (G1)|].

Suppose that u and v are vertices of n1G1 such that ν1(u) < ν1(v). Let ν1(u) = r,
ν1(v) = s. Then r < s and

π0

(
h1(u)

)
= π0

(
h1(ν

−1
1 (r))

)
= π0

(
π−1
0 (�r/|V (G1)|�)

)
= �r/|V (G1)|� ≤ �s/|V (G1)|�
= π0

(
π−1
0 (�s/|V (G1)|�)

)
= π0

(
h1(ν

−1
1 (s))

)
= π0

(
h1(v)

)
.
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Suppose that u and v are vertices of G0 such that π0(u) < π0(v). Then, by
Lemma 1, degG0

(u) ≤ degG0
(v) and

degG0
(u) + |{w : h1(w) = u}| = degG0

(u) + |V (G1)|
≤ degG0

(v) + |V (G1)| = degG0
(v) + |{w : h1(w) = v}|.

Set z = π−1
0 (|V (G0)|). According to Lemma 1 and (c1), we have

degG0
(z) = Δ(G0) = |V (G0)| − 1.

Thus, z ∈ NG0

(
π−1
0 (1)

)
and π0(h1(ν

−1
1 (|V (n1G1)|))) ≤ π0(z).

Moreover, by (c3), Δ(n1G1) = d1 < δ(G0). Therefore, the assumptions of
Lemma 4 hold, and so the graph G0∪h1n1G1 is overlaid. As G0∪h1n1G1 is isomorphic
to �(G0, G1), the graph �(G0, G1) is overlaid.

Note that in both cases (see proofs of Lemmas 2 and 4) there is an overlaying
π1 of �(G0, G1) such that π−1

1 (t) is a vertex of �t/|V (G1)|�th copy of G1, for t ∈
[1, n1|V (G1)|], and π−1

1 (t) is a vertex of G0, for t > n1|V (G1)|.
Now suppose that there is an overlaying πp of Op = �(G0, G1, . . . , Gp), p ∈ [1, k−

1], such that π−1
p (t) is a vertex of �t/|V (Gp)|�th copy of Gp, for t ∈ [1, nm|V (Gp)|],

and π−1
p (t) is a vertex of �(G0, . . . , Gp−1), for t > np|V (Gp)|. Define the mapping

hp+1 : np+1Gp+1 → Op by

hp+1

(
ν−1
p+1(t)

)
= π−1

p (�t/|V (Gp+1)|�), t ∈ [1, np+1|V (Gp+1)|].
In the same manner as above we can show that if νp+1(u) < νp+1(v), u, v ∈

np+1Gp+1, then πp

(
hp+1(u)

) ≤ πp

(
hp+1(v)

)
.

If u ∈ V (npGp) then degOp
(u) + |{w : hp+1(w) = u}| = 1 + dp + |V (Gp+1)|. If

v ∈ V (�(G0, . . . , Gp−1)) then

degOp
(v) + |{w : hp+1(w) = v}| = degOp

(v) ≥ 1 + dp−1 + |V (Gp)|.
Therefore, according to (c5),

degOp
(u) + |{w : hp+1(w) = u}| ≤ degOp

(v) + |{w : hp+1(w) = v}|,
for u, v ∈ V (Op) such that πp(u) < πp(v).

Let z = hp(ν
−1
p (1)). Then z ∈ �(G0, . . . , Gp−1) and πp(z) > np|V (Gp)|. As

ν−1
p (1) = π−1

p (1), z belongs to NOp(π
−1
p (1)) and

πp(hp+1(ν
−1
p+1(|V (np+1Gp+1)|))) = πp(π

−1
p (np+1))

= np+1 = np|V (Gp)| < πp(z).

By (c4), Δ(np+1Gp+1) = dp+1 < 1 + dp = δ(Op). Therefore, the assumptions of
Lemma 4 hold, and so the graph Op∪hp+1np+1Gp+1 is overlaid. As Op∪hp+1np+1Gp+1 is
isomorphic to �(G0, G1, . . . , Gp+1), the graph �(G0, G1, . . . , Gp+1) is overlaid. More-
over, by proof of Lemma 4, there is an overlaying πp+1 of �(G0, G1, . . . , Gp+1) such
that π−1

p+1(t) is a vertex of �t/|V (Gp+1)|�th copy of Gp+1, for t ∈ [1, np+1|V (Gp+1)|],
and π−1

p+1(t) is a vertex of Op, for t > np+1|V (Gp+1)|.
Therefore, by induction, �(G0, G1, . . . , Gk) is an overlaid graph.
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A tree in which every vertex that is not a leaf has the degree d is called d-regular
tree. If G0 is a tree and G1, . . . , Gk are totally disconnected graphs then the graph
�(G0, G1, . . . , Gk) is a tree. Thus, by Theorem 4, we immediately have

Corollary 6. Let r be a positive integer. Then the (r+1)-regular trees �(K1, Dr+1,
Dr, . . . , Dr) and �(K2, Dr, . . . , Dr) are overlaid graphs.

Let Pn denote a path on n vertices. Clearly, P1 = K1, P2 = K2 and P3 = K2,1

are overlaid. The path on n ≥ 4 vertices is a 2-regular tree �(K2, D1, . . . , D1) when
n is even, and �(K1, D2, D1, . . . , D1) when n is odd. Thus, we get

Corollary 7. The path Pn is an overlaid graph for each n ≥ 1.

Corollary 8. The cycle Cn is an overlaid graph for each n ≥ 3.

Proof. By Observation 1, the cycle C3 = K3 is an overlaid graph.
The path Pm, m ≥ 3, is overlaid. Thus, there is an overlaying π of Pm. By

Lemma 1, π−1(1) and π−1(2) are vertices of degree 1, and π−1(3) is a vertex of
degree 2. Therefore, by Lemma 3, Pm(M�) is an overlaid graph when M = {u ∈
V (Pm) : π(u) ∈ [1, 2]}. Clearly, the graph Pm(M�) is isomorphic to Cm+1.

Combining Theorem 2 and Corollary 7 (Corollary 8) we get

Corollary 9. The fan Pn ⊕K1 and the wheel Cn ⊕K1 are overlaid graphs.

Theorem 5. For any graph G there is an overlaid graph which contains an induced
subgraph isomorphic to G.

Proof. If G is totally disconnected then, by Observation 2, it is overlaid.
If G = G′∪Dn and there is an overlaid graph H ′ containing an induced subgraph

isomorphic to G′ then, by Theorem 1, the disjoint union H ′ ∪Dn is also an overlaid
graph. Clearly, H ′ ∪Dn contains an induced subgraphs isomorphic to G. Therefore,
next we can assume that δ(G) ≥ 1.

Set p = |V (G)|, q = |E(G)| and k = p + 2q + 1. Denote the vertices of G by
v1, v2, . . . , vp in such a way that degG(vi) ≤ degG(vj) holds for every i < j. For
i ∈ [1, p], let si =

∑i
t=1 degG(vt). Now consider the graph H satisfying:

(i) V (H) = {vi : i ∈ [1, k]};
(ii) the subgraph of H induced by {vi : i ∈ [1, p]} is G;

(iii) the subgraph of H induced by {vi : i ∈ [p+ 2, k]} is K2q;

(iv) E(H) =
⋃p

i=1{vi+1vj : j ∈ [k + 1− si, k]} ∪ E(G) ∪ E(K2q).

Define the bijection π : V (H) → [1, k] by π(vi) = i and distinguish the following
cases.

Let i = 1. Then NH(v1) = NG(v1) and NH(v2) = NG(v2) ∪ {vj : j ∈ [k + 1 −
degG(v1), k]}. As |NH(v1)| = degG(v1) = |[k + 1− degG(v1), k]|, there is an injective
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mapping σ from NH(v1)−{v2} to {vj : j ∈ [k+1−degG(v1), k]}. Clearly, π(σ(x)) >
p ≥ π(x) for every x ∈ NH(v1)− {v2}.

Let i ∈ [2, p − 1]. Then NH(vi) = NG(vi) ∪ {vj : j ∈ [k + 1 − si−1, k]} and
NH(vi+1) = NG(vi+1) ∪ {vj : j ∈ [k + 1 − si, k]}. As |NG(vi)| = degG(vi) = |[k +
1 − si, k − si−1]|, there is an injective mapping ρ from NG(vi) − {vi+1} to {vj : j ∈
[k + 1− si, k − si−1]}. Clearly, the mapping σ, given by

σ(x) =

{
ρ(x) if x ∈ NG(vi)− {vi+1},
x if x ∈ {vj : j ∈ [k + 1− si−1, k]},

is an injective mapping from NH(vi)−{vi+1} to NH(vi+1)−{vi} such that π(σ(x)) =
π(ρ(x)) > p ≥ π(x) for each x ∈ NG(vi) − {vi+1} and π(σ(x)) = π(x) for x ∈ {vj :
j ∈ [k + 1− si−1, k]}.

Let i = p. Then NH(vp) = NG(vp) ∪ {vj : j ∈ [k + 1− sp−1, k]} and NH(vp+1) =
{vj : j ∈ [k + 1 − sp, k]}. As |NG(vp)| = |[k + 1− sp, k − sp−1]|, there is an injection
ρ from NG(vp) to {vj : j ∈ [k + 1− sp, k − sp−1]}. Clearly, the mapping σ, given by

σ(x) =

{
ρ(x) if x ∈ NG(vp),

x if x ∈ {vj : j ∈ [k + 1− sp−1, k]},

is an injective mapping from NH(vp)−{vp+1} to NH(vp+1)−{vp} such that π(σ(x)) =
π(ρ(x)) > p > π(x) for each x ∈ NG(vp) and π(σ(x)) = π(x) for x ∈ {vj : j ∈
[k + 1− sp−1, k]}.

Let i ∈ [p+1, k−1]. Then {vj : j ∈ [p+1, k]} ⊆ NH(vi)∪{vi} ⊆ NH(vi+1)∪{vi+1}.
Therefore, the injection σ fromNH(vi)−{vi+1} toNH(vi+1)−{vi}, given by σ(x) = x,
satisfies π(σ(x)) = π(x).

Thus, π is an overlaying of H and G is an induced subgraph of the overlaid graph
H .

Combining Theorem 5 and Proposition 1 we get

Corollary 10. For any graph G there is a sharp ordered super TAT graph which
contains an induced subgraph isomorphic to G.

4 Conclusion

In the paper we present overlaid graphs. By Proposition 1, these graphs are sharp
ordered super TAT. So, we present a large class of sharp ordered super TAT graphs.
Moreover, two conjectures are stated in [1] (namely, 1: every graph G⊕K1 is TAT and
2: every complete graph is TAT). Corollary 1 confirms Conjecture 2. Conjecture 1 is
still open, however Corollary 10 is a weak version of this conjecture.

Hartsfield and Ringel [4] conjectured that every connected graph except P2 admits
a vertex-antimagic edge labeling. We believe that the following analogy of this
conjecture is true.

Conjecture. Every graph is TAT.
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(Received 25 Aug 2015)


