# Coloring $k$-trees with forbidden monochrome and rainbow triangles 

Julian Allagan<br>Department of Mathematics<br>University of North Georgia<br>Watkinsville, Georgia<br>U.S.A.<br>julian.allagan@ung.edu<br>Vitaly Voloshin<br>Department of Mathematics and Geomatics<br>Troy University<br>Troy, Alabama<br>U.S.A.<br>vvoloshin@troy.edu


#### Abstract

An $(\mathscr{H}, H)$-good coloring is the coloring of the edges of a (hyper)graph $\mathscr{H}$ such that no subgraph $H \subseteq \mathscr{H}$ is monochrome or rainbow. Similarly, we define an $(\mathscr{H}, H)$-proper coloring to be the coloring of the vertices of $\mathscr{H}$ with forbidden monochromatic and rainbow copies of $H$. An $\left(\mathscr{H}, K_{t}\right)$-good coloring is also known as a mixed Ramsey coloring when $\mathscr{H}=K_{n}$ is a complete graph, and an $\left(\mathscr{H}, \bar{K}_{t}\right)$-proper coloring is a mixed hypergraph coloring of a $t$-uniform hypergraph $\mathscr{H}$. We highlight these two related theories by finding the number of $\left(T_{k}^{n}, K_{3}\right)$-good and proper colorings for some $k$-trees, $T_{k}^{n}$ with $k \geq 2$. Further, a partition of an edge/vertex set into $i$ nonempty classes is called feasible if it is induced by a good/proper coloring using $i$ colors. If $r_{i}$ is the number of feasible partitions for $1 \leq i \leq n$, then the vector $\left(r_{1}, \ldots, r_{n}\right)$ is called the chromatic spectrum. We investigate and compare the exact values in the chromatic spectrum for some 2-trees, given $\left(T_{2}^{n}, K_{3}\right)$-good versus $\left(T_{2}^{n}, K_{3}\right)$-proper colorings. In particular, we find that when $T_{2}^{n}$ is a fan, $r_{2}$ follows a Fibonacci recurrence.


## 1 Preliminaries

It is customary to define a hypergraph $\mathscr{H}$ to be the ordered pair $(X, \mathcal{E})$, where $X$ is a finite set of vertices with order $|X|=n$ and $\mathcal{E}$ is a collection of nonempty subsets of $X$, called (hyper)edges. $\mathscr{H}$ is said to be linear (otherwise it is nonlinear) if $E_{1} \cap E_{2}$ is either empty or a singleton, for any pair of hyperedges. The number of vertices contained in $E$ of $\mathcal{E}$, denoted $|E|$, is the size of $E$. When $|E|=r, \mathscr{H}$ is said to be $r$-uniform and a 2 -uniform hypergraph $\mathscr{H}=G$ is a graph. For more basic definitions of graphs and hypergraphs, we recommend [17].

Consider the mapping $c: A \rightarrow\{1,2, \ldots, \lambda\}$ being a $\lambda$-coloring of the elements of $A$. A subset $B \subseteq A$ is said to be monochrome if all of its elements share the same color and $B$ is rainbow if all of its elements have distinct colors. Let $H$ be a subgraph of a graph $G$. An edge coloring of $G$ is called $(G ; H)$-good if it admits no monochromatic copy of $H$ and no rainbow copy of $H$. Likewise, a $(G ; H)$-proper coloring is the coloring of the vertices of $G$ such that no copy of $H$ is monochrome or rainbow. Figure 1(A) is an example of a ( $G ; K_{3}$ )-proper coloring while Figure 1(B) shows a $\left(G ; K_{3}\right)$-good coloring.

Axenovich et al. 22 have referred to $\left(K_{n}, K_{3}\right)$-good coloring as mixed-Ramsey coloring, a hybrid of classical Ramsey and anti-Ramsey colorings [2, 8, 14] and the minumum and maximum numbers of colors used in a ( $K_{n}, K_{3}$ )-good coloring have been the subject of extensive research in [2, 3], for instance. Further, in mixed hypergraph colorings [16], a hypergraph $\mathscr{H}$ that admits an $(\mathscr{H} ; H)$-proper coloring is called a bihypergraph when $H=\overline{K_{t}}$, the complement of a complete graph on $t \geq 3$ vertices. We note here that, mixed hypergraphs are often used to encode partitioning constraints, and recently bihypergraphs have appeared in communication models for cyber security [11. Although this paper focuses on graphs, it is worth noting that the results concern some linear and nonlinear bihypergraphs as well.

A partition of an edge/vertex set into $i$ nonempty classes is called feasible if it is induced by a good/proper coloring using $i$ colors. If $r_{i}$ is the number of feasible partitions for each $1 \leq i \leq n$, then the vector $\left(r_{1}, \ldots, r_{n}\right)$ is called the chromatic spectrum. The chromatic spectrum of mixed hypergraphs has been well studied by several researchers such as Kràl and Tuza [5, 6, 12, 13]. Here, we found the values in the chromatic spectrum for any $(G ; H)$-good or $(G ; H)$-proper colorings when $G$ is some non-isomorphic 2-trees, which are triangulated graphs, and $H$ is a triangle. A comparative analysis of these values is presented in our effort to establish some bounds. In the process, we found that when $G$ is a fan, $r_{2}$ follows a shifted Fibonacci recurrence. If we denote the falling factorial by $\lambda^{i}=\lambda(\lambda-1)(\lambda-2) \ldots(\lambda-i+1)$, then the (chromatic) polynomial $P(G ; H, \lambda)=P(G ; H)=\sum_{i=1}^{n} r_{i} \lambda^{i}$, counts the number of colorings given some constraint on $H$, using at most $\lambda$ colors. This polynomial is well known in the case of vertex colorings of graphs with a forbidden monochrome subgraph $H \in\left\{K_{2}, \overline{K_{t}}\right\}$ [4, 7, 15]. In this paper, we also presented this polynomial for $k$-trees with forbidden monochrome or rainbow $K_{t}$ for all $t \geq 3$. Here, the Stirling
number of the second kind is denoted by $\left\{\begin{array}{l}n \\ k\end{array}\right\}$; it counts the number of partitions of a set of $n$ elements into $k$ nonempty subsets. See Table 4 for some of its values. These notations and other combinatorial identities can be found in [10. In Appendix, we present some arrays of the values of the parameters involved in this article; the zero entries are omitted in each table.

## 2 Chromatic polynomial of some $k$-trees

As a generalization of a tree, a $k$-tree is a graph which arises from a $k$-clique by 0 or more iterations of adding $n$ new vertices, each joined to a $k$-clique in the old graph; This process generates several non-isomorphic $k$-trees. Figure 1 shows two non-isomorphic 2 -trees on 6 vertices. $K$-trees, when $k \geq 2$, are shown to be useful in constructing reliable network in [9]. Here, we denote by $T_{k}^{n}$, a $k$-tree on $n+k$ vertices which is obtained from a $k$-clique $S$, by repeatedly adding $n$ new vertices and making them adjacent to all the vertices of $S$. When $k=2$, this particular 2-tree is also known as an $(n+1)$-bridge $\theta(1,2, \ldots, 2)$. See Figure $1(\mathrm{~B})$ when $n=4$.

(A) Fan graph, $F^{4}$

(B) 5-bridge graph, $T_{2}^{4}$

Figure 1: Two non-isomorphic 2-trees with a unique ( $F^{4} ; K_{3}$ )-proper 4 -coloring and a unique $\left(T_{n}^{4} ; K_{3}\right)$-good 5 -coloring

Theorem 2.1. Suppose $T_{k}^{n}$ is a $k$-tree on $n+2$ vertices. The number of its $\left(T_{k}^{n} ; K_{k+1}\right)$-good colorings is

$$
P\left(T_{k}^{n} ; K_{k+1}\right)=\lambda\left(\lambda^{k}-1\right)^{n}+\lambda \underline{\binom{k}{2}}\left(\lambda^{k}-\left(\lambda-\binom{k}{2}\right)^{\underline{k}}\right)^{n}+\left(\lambda^{\binom{k}{2}}-\lambda \underline{\binom{k}{2}}-\lambda\right) \lambda^{n k} .
$$

Proof. Given any coloring of $T_{k}^{n}$, one of the following is true:
(i) $S$ is monochromatic, giving $\lambda$ colorings. For each such coloring, there are $\lambda^{k}-1$ ways to color the remaining $k$ edges, that arise from each of the $n$ vertices added, giving the first term.
(ii) $S$ is rainbow, giving $\lambda \underline{|S|}$ colorings. For each such coloring, there are $\lambda^{k}-$ $(\lambda-|S|)^{\underline{k}}$ ways to color the remaining $k$ edges of each of the $n(k+1)$ cliques, giving the second term.
(iii) $S$ is neither monochromatic nor rainbow, giving $\lambda^{|S|}-\lambda^{|S|}-\lambda$ colorings. For each such coloring, there are $\lambda^{k}$ ways to color the remaining edges of each added vertex, giving the last term. The result follows from the fact that $|S|=\binom{k}{2}$.

Using a similar argument as in the proof of Theorem [2.1] when $|S|=k$, gives
Theorem 2.2. Suppose $T_{k}^{n}$ is a $k$-tree on $n+2$ vertices. The number of its $\left(T_{k}^{n} ; K_{k+1}\right)$ proper colorings is given by

$$
P\left(T_{k}^{n} ; K_{k+1}\right)=\lambda(\lambda-1)^{n}+\lambda^{\underline{k}} k^{n}+\left(\lambda^{k}-\lambda^{\underline{k}}-\lambda\right) \lambda^{n} .
$$

Remark 1: Following the argument for the proof of Theorem 2.1, we can deduce that the number of $\left(G ; K_{3}\right)$-good colorings for any 2-tree $G$ is the same; this gives rise to equivalent chromatic spectral values. However, in the next section, we show that this is not the case for $\left(G ; K_{3}\right)$-proper colorings, when $G$ is some 2-tree.

## 3 Chromatic spectra of (monochrome and rainbow)-triangle free 2-trees

Here, we find and compare the values in the chromatic spectrum of some 2-trees. The next proposition is instrumental in expressing several formulas in the previous section into a falling factorial form, giving the chromatic spectral values.

Proposition 3.1. The equality $\lambda(\lambda-1)^{n}=\sum_{k=2}^{n+1}\left[\sum_{s=0}^{n-k+1}(-1)^{s}\binom{n}{s}\left\{\begin{array}{c}n+1-s \\ k\end{array}\right\}\right] \lambda^{\underline{k}}$ holds for all $n \geq 1$.

Proof. Clearly,

$$
\begin{align*}
\lambda(\lambda-1)^{n} & =\sum_{i=0}^{n}(-1)^{i}\binom{n}{i} \lambda^{n+1-i} \\
& =\sum_{i=0}^{n}(-1)^{i}\binom{n}{i}\left[\sum_{k=1}^{n+1-i}\left\{\begin{array}{c}
n+1-i \\
k
\end{array}\right\} \lambda^{\underline{k}}\right] \\
& =\sum_{k=1}^{n+1}\left[\sum_{s=0}^{n-k+1}(-1)^{s}\binom{n}{s}\left\{\begin{array}{c}
n+1-s \\
k
\end{array}\right\}\right] \lambda^{\underline{k}} \\
& =\sum_{s=0}^{n}(-1)^{s}\binom{n}{s}\left\{\begin{array}{c}
n+1-s \\
1
\end{array}\right\} \lambda^{\underline{1}}  \tag{1}\\
& +\sum_{k=2}^{n+1}\left[\sum_{s=0}^{n-k+1}(-1)^{s}\binom{n}{s}\left\{\begin{array}{c}
n+1-s \\
k
\end{array}\right\}\right] \lambda^{\underline{k}} . \tag{2}
\end{align*}
$$

The result follows from the fact that (1) is equal to zero.
Corollary 3.1. If $G$ is a 2 -tree on $n+2$ vertices then the chromatic spectrum of its $\left(G ; K_{3}\right)$-good coloring is $\left(r_{2}, \ldots, r_{k}, \ldots, r_{n+1}\right)$, where $r_{k}=3^{n}\left(\sum_{i=0}^{n-k+1}(-1)^{i}\binom{n}{i}\left\{\begin{array}{c}n+1-i \\ k\end{array}\right\}\right), k=2, \ldots, n+1$.

Proof. The result follows from Theorem 2.1] when $k=2$, Remark 1 and Proposition 3.1.

Here is the analogous result in a $\left(G ; K_{3}\right)$-proper coloring when $G$ is the specific 2-tree $T_{2}^{n}$ which we described in the previous section.

Corollary 3.2. If $G=\theta(1,2, \ldots, 2)$, a 2 -tree on $n+2$ vertices, then the chromatic spectrum of its $\left(G ; K_{3}\right)$-proper coloring is $\left(r_{2}^{\prime}, \ldots, r_{k}^{\prime}, \ldots, r_{n+1}^{\prime}\right)$, where

$$
r_{k}^{\prime}= \begin{cases}\sum_{i=0}^{n-k+1}(-1)^{i}\binom{n}{i}\left\{\begin{array}{c}
n+1-i \\
k
\end{array}\right\} & \text { if } k \geq 3 \\
2^{n}+1 & \text { otherwise }\end{cases}
$$

Proof. Since $G=T_{2}^{n}$, a 2-tree, it follows from Theorem 2.2 (when $k=2$ ) that $P\left(G ; K_{3}\right)=P\left(T_{2}^{n} ; K_{3}\right)=\lambda(\lambda-1)^{n}+2^{n} \lambda^{2}$, to which we then apply Proposition 3.1. Also, observe that from (2) when $k=2$,

$$
\sum_{i=0}^{n-1}(-1)^{i}\binom{n}{i}\left\{\begin{array}{c}
n+1-i \\
2
\end{array}\right\}=1
$$

given the second statement.
Now, we take a closer look at another well-known 2-tree. Construct a graph $G$ as follows: start with a triangle $\left\{w_{1}, w_{2}, u_{1}\right\}$, and iteratively add $n-1$ new vertices, such that each additional vertex $u_{i}$ is adjacent to the pair $\left\{u_{1}, u_{i-1}\right\}$, for $i=3, \ldots, n+1$, and $u_{2}$ is adjacent to the pair $\left\{u_{1}, w_{2}\right\} . G$ is often called a fan on and we denote it by $F^{n}$; see Figure 1(A) for an example when $n=4$. Further, from the construction, it is clear that $F^{n}$ is also a 2-tree. Here, we color the vertices of $F^{n}$, and recursively count the number of $\left(F^{n} ; K_{3}\right)$-proper colorings. To help illustrate this recursion, we present the next example.

Example 3.1. Chromatic spectrum of an $\left(F^{4} ; K_{3}\right)$-proper coloring.
Consider the fan $F^{4}$, obtained by iteratively adding $n=4$ vertices to a base edge $\left\{w_{1}, w_{2}\right\}$ as shown in Figure $1(\mathrm{~A})$. When $n=1$, it is clear that there are exactly $2 \lambda^{\underline{2}}+\lambda^{\underline{2}}$ ways to color the vertices of the triangle $\left\{w_{1}, w_{2}, u_{1}\right\}$ so that it is neither monochrome nor rainbow. The first and second terms count the cases when (a) $c\left(u_{1}\right) \neq c\left(w_{2}\right)$ and $(b) c\left(u_{1}\right)=c\left(w_{2}\right)$, respectively. When $n=2$, from (a) it
follows that for each such colorings, there are exactly two ways to color $u_{2}$; either $c\left(u_{2}\right)=c\left(u_{1}\right) \neq c\left(w_{2}\right)$ or $c\left(u_{2}\right)=c\left(w_{2}\right) \neq c\left(u_{1}\right)$. Likewise from (b), there are $\lambda-1$ ways to color $u_{2}$ such that $c\left(u_{2}\right) \neq c\left(u_{1}\right)=c\left(w_{2}\right)$. Together, we have

$$
\begin{equation*}
P\left(F^{2} ; K_{3}\right)=2\left(2 \lambda^{\underline{2}}\right)+(\lambda-1) \lambda^{\underline{2}}=\lambda^{2}[2+(\lambda-1)]+2 \lambda^{\underline{2}} . \tag{3}
\end{equation*}
$$

As the terms in the last expression of (3) are arranged so that the first term counts the case when $c\left(u_{1}\right) \neq c\left(u_{2}\right)$ and the last term counts the case when $c\left(u_{1}\right)=c\left(u_{2}\right)$, we can apply once again the same argument to the newly added vertex $u_{3}$. Thus, we have

$$
\begin{equation*}
P\left(F^{3} ; K_{3}\right)=2\left[\lambda^{\underline{2}}(2+(\lambda-1))\right]+(\lambda-1)\left[2 \lambda^{\underline{2}}\right]=\lambda^{2}[2+3(\lambda-1)]+\lambda^{2}[2+(\lambda-1)] . \tag{4}
\end{equation*}
$$

Similarly, by adding $u_{4}$ to $F^{3}$, we obtain from (4),

$$
\begin{equation*}
P\left(F^{4} ; K_{3}\right)=\lambda^{2}\left[2+5(\lambda-1)+(\lambda-1)^{2}\right]+\lambda^{2}[2+3(\lambda-1)], \tag{5}
\end{equation*}
$$

after rearranging the expression so that the first and last terms count the cases when $c\left(u_{1}\right) \neq c\left(u_{4}\right)$ and $c\left(u_{1}\right)=c\left(u_{4}\right)$, respectively. Hence,

$$
\begin{equation*}
P\left(F^{4} ; K_{3}\right)=4 \lambda(\lambda-1)+8 \lambda(\lambda-1)^{2}+1 \lambda(\lambda-1)^{3} \tag{6}
\end{equation*}
$$

Now apply Proposition 3.1 to each term of (6) to obtain

$$
\begin{align*}
P\left(F^{4} ; K_{3}\right) & =4\left[\binom{1}{0}\left\{\begin{array}{l}
2 \\
2
\end{array}\right\}\right] \lambda^{\underline{2}}+8\left[\binom{2}{0}\left\{\begin{array}{l}
3 \\
2
\end{array}\right\}-\binom{2}{1}\left\{\begin{array}{l}
2 \\
2
\end{array}\right\}\right] \lambda^{\underline{2}} \\
& +1\left[\binom{3}{0}\left\{\begin{array}{l}
4 \\
2
\end{array}\right\}-\binom{3}{1}\left\{\begin{array}{l}
3 \\
2
\end{array}\right\}+\binom{3}{2}\left\{\begin{array}{l}
2 \\
2
\end{array}\right\}\right] \lambda^{\underline{2}} \\
& \left.+8\left[\begin{array}{l}
2 \\
0
\end{array}\right)\left\{\begin{array}{l}
3 \\
3
\end{array}\right\}\right] \lambda^{\underline{3}}+1\left[\binom{3}{0}\left\{\begin{array}{l}
4 \\
3
\end{array}\right\}-\binom{3}{1}\left\{\begin{array}{l}
3 \\
3
\end{array}\right\}\right] \lambda^{3}+1\left[\binom{4}{0}\left\{\begin{array}{l}
4 \\
4
\end{array}\right\}\right] \lambda^{\underline{4}} \\
& =[4+8(3-2)+1(7-3 \cdot 3+3)] \lambda^{\underline{2}}+[8+1(6-3)] \lambda^{\underline{3}}+1\left[\lambda^{4}\right] \\
& =13 \lambda^{\underline{2}}+11 \lambda^{\underline{3}}+1 \lambda^{\underline{4}} . \tag{7}
\end{align*}
$$

Thus, the chromatic spectrum of any $\left(F^{4} ; K_{3}\right)$-proper coloring is $(13,11,1)$.
To support a general recursion presented in the next theorem, we let $a_{4,0}=2$, $a_{4,1}=5, a_{4,2}=1, a_{4,3}=2$ and $a_{4,4}=3$; Table 2 shows the values of each $a_{i, j}$ (when $n=4$ ). With these coefficients we obtain directly from (5):

$$
\begin{align*}
P\left(F^{4} ; K_{3}\right) & =\lambda^{2}\left[a_{4,0}(\lambda-1)^{0}+a_{4,1}(\lambda-1)^{1}+a_{4,2}(\lambda-1)^{2}\right] \\
& +\lambda^{2}\left[a_{4,3}(\lambda-1)^{0}+a_{4,4}(\lambda-1)^{1}\right] \\
& =\phi(4,0) \lambda(\lambda-1)^{1}+\phi(4,1) \lambda(\lambda-1)^{2}+\phi(4,2) \lambda(\lambda-1)^{3} \tag{8}
\end{align*}
$$

where

$$
\phi(4, r)= \begin{cases}a_{4, r}+a_{4,3+r} & \text { if } r<2 \\ a_{4,2} & \text { otherwise }\end{cases}
$$

We note that (8) follows from Theorem 3.1, when $n=4$. Now, Proposition 3.1 gives

$$
\begin{aligned}
P\left(F^{4} ; K_{3}\right) & =[\phi(4,0)(1)+\phi(4,1)(3-2)+\phi(4,2)(7-3 \cdot 3+3)] \lambda^{\underline{2}} \\
& +[\phi(4,1)(1)+\phi(4,2)(6-3)] \lambda^{\underline{3}}+[\phi(4,2)] \lambda^{\underline{4}} \\
& =[\phi(4,0)+\phi(4,1)+\phi(4,2)] \lambda^{2}+[\phi(4,1)+3 \phi(4,2)] \lambda^{\underline{3}}+\phi(4,2) \lambda^{\underline{4}} .(9)
\end{aligned}
$$

Again, observe that (9) follows from (13) when $n=4$. The values of $\phi(n, r)$ when $n=11$ are recorded in Table 3, with $0 \leq r \leq\left\lfloor\frac{n}{2}\right\rfloor$. Thus, since $\phi(4,0)=4$, $\phi(4,1)=8, \phi(4,2)=1$, we have

$$
P\left(F^{4} ; K_{3}\right)=13 \lambda^{\underline{2}}+11 \lambda^{\underline{3}}+1 \lambda^{\underline{4}}
$$

Table 1 in the Appendix shows some of the chromatic spectral values given a $\left(T_{2}^{n} ; K_{3}\right)$ good coloring, a ( $T_{2}^{n} ; K_{3}$ )-proper coloring and an $\left(F^{n} ; K_{3}\right)$-proper coloring when $n=$ $1, \ldots, 6$. These values can be derived from Corollary 3.1, Corollary 3.2, and Corollary 3.3 respectively, for each coloring condition.

Theorem 3.1. The number of $\left(F^{n} ; K_{3}\right)$-proper colorings is

$$
\begin{aligned}
& P\left(F^{n} ; K_{3}\right)=\sum_{0 \leq r \leq\left\lfloor\frac{n}{2}\right\rfloor} \phi(n, r) \lambda(\lambda-1)^{r+1}, \text { where } \\
& \phi(n, r)= \begin{cases}a_{n, r}+a_{n,\left\lceil\frac{n+1}{2}\right\rceil+r} & \text { if } r<\frac{n}{2} \\
a_{n, \frac{n}{2}} & \text { otherwise }\end{cases}
\end{aligned}
$$

and the values of $a_{i, j}$ satisfy, for $0 \leq j \leq i \leq n$,
(i) $a_{i, 0}=2$ and $a_{1,1}=1$
(ii) for all even $i \geq 2, a_{i, j}= \begin{cases}\left.a_{i-1, j}+a_{i-1, j+\left\lfloor\frac{i-1}{2}\right\rfloor}\right\rfloor & ; 1 \leq j \leq\left\lceil\frac{i-1}{2}\right\rceil \\ 1 & ; j=\frac{i}{2} \\ a_{i-1, j-\left\lceil\frac{i+1}{2}\right\rceil} & ;\left\lceil\frac{i+1}{2}\right\rceil \leq j \leq i\end{cases}$
(iii) for all odd $i \geq 3, a_{i, j}= \begin{cases}a_{i-1, j}+a_{i-1, j+\left\lfloor\frac{i-1}{2}\right\rfloor} & ; 1 \leq j \leq \frac{i-1}{2} \\ a_{i-1, j-\left\lceil\frac{i}{2}\right\rceil} & ;\left\lceil\frac{i}{2}\right\rceil \leq j \leq i\end{cases}$

Proof. When $n=1$, it follows that $P\left(F^{1} ; K_{3}\right)=\phi(1,0) \lambda(\lambda-1)^{1}=\left[a_{1,0}+a_{1,1}\right] \lambda(\lambda-$ $1)^{1}=3 \lambda(\lambda-1)$, since $a_{1,0}=2$ and $a_{1,1}=1$ by condition $(i)$. For $n \geq 2$, at each iteration, we separate the cases when $c\left(u_{1}\right) \neq c\left(u_{k}\right)$ from when $c\left(u_{1}\right)=c\left(u_{k}\right)$. Further, we rearrange the terms of the resulting expression of $P\left(F^{k} ; K_{3}\right)$ so that the
first counts the colorings $c\left(u_{1}\right) \neq c\left(u_{k}\right)$, and the last counts the colorings $c\left(u_{1}\right)=c\left(u_{k}\right)$ for $k=1, \ldots, n$. Hence, for $n \geq 1$,

$$
\begin{align*}
P\left(F^{n} ; K_{3}\right)= & \lambda^{\underline{2}}\left(\sum_{1 \leq k \leq\left\lceil\frac{n+1}{2}\right\rceil} a_{n, k-1}(\lambda-1)^{k-1}\right) \\
& +\lambda^{2}\left(\sum_{1+\left\lceil\frac{n+1}{2}\right\rceil \leq k \leq n} a_{n, k-1}(\lambda-1)^{k-\left\lceil\frac{n+1}{2}\right\rceil-1}\right) \\
= & \sum_{1 \leq k \leq\left\lceil\frac{n+1}{2}\right\rceil}\left[a_{n, k-1}+a_{n,\left\lceil\frac{n+1}{2}\right\rceil+k-1}\right] \lambda(\lambda-1)^{k+1}, \tag{10}
\end{align*}
$$

where the coefficients $a_{i, j}$ are obtained recursively from items (i)-(iii). By letting $a_{i, j}=0$ when $i<j$, it follows that

$$
\begin{equation*}
P\left(F^{n} ; K_{3}\right)=\sum_{0 \leq r \leq\left\lfloor\frac{n}{2}\right\rfloor} \phi(n, r) \lambda(\lambda-1)^{r+1} \tag{11}
\end{equation*}
$$

where $\phi(n, r)= \begin{cases}a_{n, r}+a_{n,\left\lceil\frac{n+1}{2}\right\rceil+r} & \text { if } r<\frac{n}{2} \\ a_{n, \frac{n}{2}} & \text { otherwise } .\end{cases}$
Observation 1: The previous result can be reinterpreted as follows: Let $a_{0,0}=2$ and define an $(n+1) \times(n+1)$ matrix $A$ whose entries are the coefficients $a_{i, j}$ for $0 \leq i, j \leq n$. It follows that (10) is equivalent to the equation $P=\lambda A \cdot B$, where

$$
P=\left[\begin{array}{c}
P\left(F^{0} ; K_{3}\right)+\lambda(\lambda-2) \\
P\left(F^{1} ; K_{3}\right) \\
\vdots \\
P\left(F^{n} ; K_{3}\right)
\end{array}\right], A=\left[\begin{array}{cccc}
a_{0,0} & & & \\
a_{1,0} & a_{1,1} & & \\
\vdots & \vdots & \ddots & \\
a_{n, 0} & a_{n, 1} & \ldots & a_{n, n}
\end{array}\right], B=\left[B^{1} \mid B^{2}\right],,^{T}
$$

$$
\text { with } B^{1}=\left[(\lambda-1)^{1} \ldots(\lambda-1)^{\left\lceil\frac{n+1}{2}\right\rceil}\right] \text { and } B^{2}=\left[(\lambda-1)^{1} \ldots(\lambda-1)^{\left\lfloor\frac{n+1}{2}\right\rfloor}\right]
$$

When $n=10$, we present the entries of the lower triangular matrix $A$ in Table 2 to help in the verification of the formula. The matrix $A$ has several interesting properties, some of which we discuss in the next observation. For now, it is easy to see that its determinant is

$$
\operatorname{det}(A)=\prod_{i=0}^{n} a_{i, i}=2\left(\left\lceil\frac{n+1}{2}\right\rceil\right)!,
$$

and its characteristic polynomial is given by

$$
(-1)^{n+1}(x-1)^{\left\lceil\frac{n}{2}\right\rceil}(x-2)^{2}(x-3) \ldots\left(x-\left\lceil\frac{n+1}{2}\right\rceil\right) .
$$

Corollary 3.3. The values in the chromatic spectrum of any $\left(F^{n} ; K_{3}\right)$-proper coloring are given by $r_{k}^{\prime \prime}=\sum_{k-2 \leq r \leq\left\lfloor\frac{n}{2}\right\rfloor} \phi(n, r)\left(\sum_{0 \leq i \leq r-k+2}(-1)^{i}\binom{r+1}{i}\left\{\begin{array}{c}r+2-i \\ k\end{array}\right\}\right)$, for each $k=2, \ldots,\left\lceil\frac{n+1}{2}\right\rceil+1$, with

$$
\phi(n, r)= \begin{cases}a_{n, r}+a_{n,\left\lceil\frac{n+1}{2}\right\rceil+r} & \text { if } r<\left\lfloor\frac{n}{2}\right\rfloor \\ a_{n,\left\lfloor\frac{n}{2}\right\rfloor} & \text { otherwise }\end{cases}
$$

Proof. For each $r=0, \ldots,\left\lfloor\frac{n}{2}\right\rfloor$, we apply Proposition 3.1 to $P\left(F^{n} ; K_{3}\right)$, giving

$$
\begin{align*}
P\left(F^{n} ; K_{3}\right)= & \phi(n, 0)\left[(-1)^{0}\binom{1}{0}\left\{\begin{array}{l}
2 \\
2
\end{array}\right\}\right] \lambda^{\underline{2}} \\
& +\phi(n, 1)\left[(-1)^{0}\binom{2}{0}\left\{\begin{array}{l}
3 \\
2
\end{array}\right\}+(-1)^{1}\binom{2}{1}\left\{\begin{array}{l}
2 \\
2
\end{array}\right\}\right] \lambda^{\underline{2}} \\
& +\phi(n, 1)\left[(-1)^{0}\binom{2}{0}\left\{\begin{array}{l}
3 \\
3
\end{array}\right\}\right] \lambda^{\underline{3}} \\
& +\phi(n, 2)\left[(-1)^{0}\binom{3}{0}\left\{\begin{array}{l}
4 \\
2
\end{array}\right\}+(-1)^{1}\binom{3}{1}\left\{\begin{array}{l}
3 \\
2
\end{array}\right\}+(-1)^{2}\binom{3}{2}\left\{\begin{array}{l}
2 \\
2
\end{array}\right\}\right] \lambda^{\underline{2}} \\
& +\phi(n, 2)\left[(-1)^{0}\binom{3}{0}\left\{\begin{array}{l}
4 \\
3
\end{array}\right\}+(-1)^{1}\binom{3}{1}\left\{\begin{array}{l}
4 \\
4
\end{array}\right\}\right] \lambda^{\underline{3}} \\
& +\phi(n, 3)\left[(-1)^{0}\binom{3}{0}\left\{\begin{array}{l}
4 \\
4
\end{array}\right\}\right] \lambda^{\underline{4}} \\
& \vdots  \tag{12}\\
& +\phi\left(n,\left\lfloor\frac{n}{2}\right\rfloor\right)\left[(-1)^{0}\binom{\left\lceil\frac{n+1}{2}\right\rceil}{ 0}\left\{\begin{array}{l}
\left\lceil\frac{n+1}{2}\right\rceil+1 \\
\left\lceil\frac{n+1}{2}\right\rceil+1
\end{array}\right\}\right] \lambda \frac{\left\lceil\frac{n+1}{2}\right\rceil+1}{}
\end{align*}
$$

Therefore,

$$
P\left(F^{n} ; K_{3}\right)=\sum_{k=2}^{\left\lceil\frac{n+1}{2}\right\rceil+1}\left(\sum_{r=k-2}^{\left\lfloor\frac{n}{2}\right\rfloor} \phi(n, r)\left[\sum_{0 \leq i \leq r-k+2}(-1)^{i}\binom{r+1}{i}\left\{\begin{array}{c}
r+2-i  \tag{13}\\
k
\end{array}\right\}\right]\right) \lambda^{\underline{k}}
$$

giving the result.

Observation 2: When $k=\left\lceil\frac{n+1}{2}\right\rceil+1$, the last term of (13) is

$$
\phi\left(n,\left\lfloor\frac{n}{2}\right\rfloor\right)= \begin{cases}1 & \text { if } \mathrm{n} \text { is even } \\ 3+\frac{n-1}{2} & \text { otherwise }\end{cases}
$$

Also, it is worth noting that when $k=2$,

$$
\sum_{r=0}^{\left\lfloor\frac{n}{2}\right\rfloor} \phi(n, r)\left[\sum_{0 \leq i \leq r}(-1)^{i}\binom{r+1}{i}\left\{\begin{array}{c}
r+2-i \\
2
\end{array}\right\}\right]=\sum_{r=0}^{\left\lfloor\frac{n}{2}\right\rfloor} \phi(n, r)
$$

this proceeds from the simple fact that $\sum_{i=0}^{n}(-1)^{i}\binom{n}{i}\left\{\begin{array}{c}n+1-i \\ 2\end{array}\right\}=1$, for all $n$. Further, observe that if we define $b_{i}=\sum_{j=0}^{\left\lfloor\frac{n}{2}\right\rfloor} \phi(n, j)$ for each $i \leq n$, it follows that $b_{i}=\sum_{j} a_{i, j}$ and the sequence $\left\{b_{n}\right\}$ satisfies the shifted Fibonacci recurrence given by $b_{0}=2, b_{1}=3$ and $b_{n}=b_{n-1}+b_{n-2}$, for $n \geq 2$. From this observation, we determine the generating function in the next proposition.

Proposition 3.2. The number of partitions of the $n+2$ vertices of a fan into 2 nonempty classes such that no triangle is monochrome or rainbow is given by

$$
b_{n}=\frac{1}{\sqrt{5}}\left[(2+\sqrt{5}) \alpha^{n}-(2-\sqrt{5}) \beta^{n}\right], \text { where } \alpha=\frac{1+\sqrt{5}}{2} \text { and } \beta=\frac{1-\sqrt{5}}{2} .
$$

Proof. Let $b(x)=\sum_{n=0}^{\infty} b_{n} x^{n}$ such that $b_{0}=2, b_{1}=3$ and $b_{n}=b_{n-1}+b_{n-2}$. It follows that

$$
\begin{aligned}
b(x) & =2+3 x+\sum_{n=2}^{\infty} b_{n} x^{n} \\
& =2+3 x+x \sum_{k=1}^{\infty} b_{k} x^{k}+x^{2} \sum_{k=0}^{\infty} b_{k} x^{k} \\
& =2+3 x+x\left(\sum_{k=0}^{\infty} b_{k} x^{k}-2\right)+x^{2} \sum_{k=0}^{\infty} b_{k} x^{k} \\
& =2+x+x b(x)+x^{2} b(x) .
\end{aligned}
$$

This implies that $b(x)=\frac{2+x}{1-x-x^{2}}=-\frac{2+x}{(x+\alpha)(x+\beta)}$, with $\alpha=\frac{1+\sqrt{5}}{2}$ and $\beta=\frac{1-\sqrt{5}}{2}$. Using a partial fraction decomposition, and subsequently the power series, we obtain

$$
\begin{aligned}
b(x) & =\frac{1}{\sqrt{5}}\left[\frac{\beta-2}{x+\beta}-\frac{\alpha-2}{x+\alpha}\right] \\
& =\frac{1}{\sqrt{5}}\left[\frac{\beta-2}{\beta}\left(\sum_{n=0}^{\infty} \alpha^{n} x^{n}\right)-\frac{\alpha-2}{\alpha}\left(\sum_{n=0}^{\infty} \beta^{n} x^{n}\right)\right] \\
& =\sum_{n=0}^{\infty} \frac{1}{\sqrt{5}}\left[\frac{\beta-2}{\beta} \alpha^{n}-\frac{\alpha-2}{\alpha} \beta^{n}\right] x^{n},
\end{aligned}
$$

giving that $b_{n}=\frac{1}{\sqrt{5}}\left[\frac{\beta-2}{\beta} \alpha^{n}-\frac{\alpha-2}{\alpha} \beta^{n}\right]$. The result follows, after a simplification.

In summary, the extreme chromatic spectral values given the aforementioned colorings are clear; the lower values are, $r_{2}=3^{n}, r_{2}^{\prime}=2^{n}+1, r_{2}^{\prime \prime}=b(x)$ where $b(x)=\frac{1}{\sqrt{5}}\left[\frac{\beta-2}{\beta} \alpha^{n}-\frac{\alpha-2}{\alpha} \beta^{n}\right]$. Also, for all $n>1$, the upper values are also shown to be $r_{n+1}=3^{n}, r_{n+1}^{\prime}=1$, and $r_{\left\lceil\frac{n+1}{2}\right\rceil+1}^{\prime \prime}= \begin{cases}1 & \text { if } n \text { is even, } \\ 3+\frac{n-1}{2} & \text { otherwise. }\end{cases}$

## 4 Conclusion and future work

To the best of our knowledge, the problem of finding the exact chromatic spectral values in a $\left(K_{n} ; K_{t}\right)$-good coloring remains open for all $t \geq 3$ and larger values of $n$; this particular problem has greatly inspired this research. When $G$ is a 2 -tree, the findings in Corollaries 3.1, 3.2, and 3.3 suggest the existence of some constant $c<1$, such that $r_{k}^{*}=c r_{k}$ where $r_{k}^{*}$ and $r_{k}$ are the corresponding values in the chromatic spectra of a $\left(G ; K_{3}\right)$-proper and a $\left(G ; K_{3}\right)$-good coloring, respectively. For instance, $c=\left(\frac{1}{3}\right)^{n}$ when $G$ is an $(n+1)$-bridge. Further work is needed to determine whether the values in the chromatic spectrum of a $(G ; H)$-good coloring remain upper bounds for their counterparts in a $(G ; H)$-proper coloring, given any other graph $G$ and some subgraph $H$.

Also, the original definition of a $(G ; H)$-proper coloring can be extended to include more than one subgraph. For instance, a $\left(G ; H_{1}, \ldots, H_{m}\right)$-proper coloring can be defined as the coloring of the vertices of $G$ such that no copy of (distinct) subgraphs $H_{i}$ is monochrome or rainbow, for $i=1, \ldots, m$. As such, when $G=\mathscr{H}$ and $H_{i}=$ $\bar{K}_{t_{i}}, \mathscr{H}$ is a non-uniform bihypergraph with hyperedges of sizes $t_{i} \geq 3$. Some related results concerning non-uniform bihypergraphs can be found in [1]. As a step in this direction for graphs, we propose the next lemma. This lemma shows that the chromatic spectral values of any $\left(F^{n} ; K_{3}, H\right)$-proper coloring are identical when $H \in\left\{P_{n}^{*}, K_{1, n-1}, C_{n}, \theta\left(1, n_{1}, n_{2}\right)\right\}$, where $P_{n}^{*}, K_{1, n-1}$ and $C_{n}$ denote respectively, an $n$-path that includes a fixed vertex (apex) $u_{1}$, an $n$-cycle, and an $n$-star.
Corollary 4.1. Suppose $G$ is a fan on $n \geq 4$ vertices. Any $\left(G ; K_{3}\right)$-proper coloring is a $(G ; H)$-proper coloring where $H \in\left\{P_{s}^{*}, K_{1, t}, C_{r}, \theta\left(1, n_{1}, n_{2}\right)\right\}$ with $s \geq 4,\left\lfloor\frac{n-1}{2}\right\rfloor \leq$ $t \leq n-1, r \geq 3$, and $2 \leq n_{1} \leq n_{2}$ such that $n_{1}+n_{2} \leq n$.

Proof. Suppose $G$ is a fan on $n \geq 4$ vertices which we can construct as follow: start with a triangle, say $\left(u_{1}, u_{2}, u_{3}\right)$, and iteratively add $n-3$ new vertices such that each additional vertex $u_{i}$ is adjacent to the pair $\left(u_{1}, u_{i-1}\right)$, for $i=4, \ldots, n$. Assume there is a $\left(G ; K_{3}\right)$-proper coloring.
(i) Observe that for $s \geq 4$, every path $P_{s}^{*} \subseteq G$ contains the subgraph $u_{1} u_{i} u_{i+1}$ for some $i(2 \leq i \leq n-2)$. If some 3 -path (that includes $u_{1}$ ) is monochrome/rainbow then the triangle $\left(u_{1}, u_{i}, u_{i+1}\right)$ is monochrome/rainbow, violating our ( $G ; K_{3}$ )-proper coloring assumption. Hence $G$ admits a $\left(G ; P_{s}^{*}\right)$-proper coloring for all $s \geq 4$.
(ii) By letting the vertices of $K_{1, t} \subseteq G$ be all the vertices of $G$, it follows that $t \leq n-1$. Now, consider the coloring such $c\left(u_{1}\right)=c\left(u_{2 k}\right)$ and $c\left(u_{1}\right) \neq c\left(u_{2 k+1}\right)$
for $k=1, \ldots,\left\lceil\frac{n-1}{2}\right\rceil$. Clearly, such coloring does not violate our original coloring assumption. The lower bound of $t$ is satisfied by letting the vertices of $K_{1, t}$ be $\left\{u_{1}, u_{2}\right\} \cup\left\{u_{2 k+1}: k=1, \ldots,\left\lceil\frac{n-1}{2}\right\rceil\right\}$, which guarantees a $\left(G ; K_{1, t}\right)$-proper coloring for all $t \geq\left\lceil\frac{n-1}{2}\right\rceil$.
(iii) For $r \geq 4$, since every cycle $C_{r} \subseteq G$ includes the apex $u_{1}$, there exists an $s \leq r$ such that $P_{s}^{*} \subseteq C_{r}$, with $4 \leq s \leq r \leq n$. From (i), we can conclude that there is a $\left(G ; C_{r}\right)$-proper coloring. The case when $r=3$ is trivial.
(iv) Likewise, since $\theta\left(1, n_{1}, n_{2}\right)$ contains $C_{1+q} \subseteq G$ with $q \in\left\{n_{1}, n_{2}\right\}$, the result follows from (iii) that, for all $2 \leq n_{1} \leq n_{2}$ such that $n_{1}+n_{2} \leq n$, there is a ( $G ; \theta\left(1, n_{1}, n_{2}\right)$ )-proper coloring.

In conclusion, it is worth noting that future work can address the coloring of the vertices/edges of a graph with either forbidden monochrome subgraphs or forbidden rainbow subgraphs (but not both). As a step in this direction, we present a simple case when coloring the elements of an $n$-set such that no $t$-subset is rainbow.

Corollary 4.2. The chromatic spectral values in the colorings of the vertices of a complete graph $K_{n}$ such that no $K_{t}$ is rainbow are given by $r_{k}=\left\{\begin{array}{l}n \\ k\end{array}\right\}$, for $k=$ $1, \ldots, t-1$.

Note that these values also correspond to the chromatic spectral values of any complete $t$-uniform cohypergraph of order $n$; cohypergraphs are hypergraphs whose hyperedges are forbidden to be rainbow given any proper (vertex) coloring [16].

## Acknowledgements

The authors are grateful for the anonymous referee's suggestions and for the journal editor's careful reading of the previous version of this article.

## Appendix

|  | $\left(T_{2}^{n} ; K_{3}\right)$-good | $\left(T_{2}^{n} ; K_{3}\right)$-proper | $\left(F^{n} ; K_{3}\right)$-proper |
| :---: | :---: | :---: | :---: |
| $n=1$ | (3) | (3) | (3) |
| $n=2$ | $3^{2}(1,1)$ | $(5,1)$ | $(5,1)$ |
| $n=3$ | $3^{3}(1,3,1)$ | (9,3,1) | $(8,4)$ |
| $n=4$ | $3^{4}(1,7,6,1)$ | (17,7,6,1) | $(13,11,1)$ |
| $n=5$ | $3^{5}(1,15,25,10,1)$ | (33,15,25,10,1) | $(27,17,5)$ |
| $n=6$ | $3^{6}(1,31,90,65,15,1)$ | $(65,31,90,65,15,1)$ | (37,62,7,1) |

Table 1: chromatic spectral values of some ( $G ; K_{3}$ )-good colorings and some ( $G ; K_{3}$ )proper colorings for $n \leq 6$

| $n \backslash j$ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 2 |  |  |  |  |  |  |  |  |  |  |  |
| 1 | 2 | 1 |  |  |  |  |  |  |  |  |  |  |
| 2 | 2 | 1 | 2 |  |  |  |  |  |  |  |  |  |
| 3 | 2 | 3 | 2 | 1 |  |  |  |  |  |  |  |  |
| 4 | 2 | 5 | 1 | 2 | 3 |  |  |  |  |  |  |  |
| 5 | 2 | 7 | 4 | 2 | 5 | 1 |  |  |  |  |  |  |
| 6 | 2 | 9 | 9 | 1 | 2 | 7 | 4 |  |  |  |  |  |
| 7 | 2 | 11 | 16 | 5 | 2 | 9 | 9 | 1 |  |  |  |  |
| 8 | 2 | 13 | 25 | 14 | 1 | 2 | 11 | 16 | 5 |  |  |  |
| 9 | 2 | 15 | 36 | 30 | 6 | 2 | 13 | 25 | 14 | 1 |  |  |
| 10 | 2 | 17 | 49 | 55 | 20 | 1 | 2 | 15 | 36 | 30 | 6 |  |
| 11 | 2 | 19 | 64 | 91 | 50 | 7 | 2 | 17 | 49 | 55 | 20 | 1 |

Table 2: Table of values of $a_{i, j}$, which are the entries of the matrix $A$ when $n=11$

| $n \backslash r$ | 0 | 1 | 2 | 3 | 4 | 5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 2 |  |  |  |  |  |
| 1 | 3 |  |  |  |  |  |
| 2 | 4 | 1 |  |  |  |  |
| 3 | 4 | 4 |  |  |  |  |
| 4 | 4 | 8 | 1 |  |  |  |
| 5 | 4 | 12 | 5 |  |  |  |
| 6 | 4 | 16 | 13 | 1 |  |  |
| 7 | 4 | 20 | 25 | 6 |  |  |
| 8 | 4 | 24 | 41 | 19 | 1 |  |
| 9 | 4 | 28 | 61 | 44 | 7 |  |
| 10 | 4 | 32 | 85 | 85 | 26 | 1 |
| 11 | 4 | 36 | 113 | 146 | 70 | 8 |

Table 3: Table of values of $\phi(n, r)$ when $n=11$

| $n \backslash k$ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 1 |  |  |  |  |  |  |  |  |  |  |  |
| 1 | 0 | 1 |  |  |  |  |  |  |  |  |  |  |
| 2 | 0 | 1 | 1 |  |  |  |  |  |  |  |  |  |
| 3 | 0 | 1 | 3 | 1 |  |  |  |  |  |  |  |  |
| 4 | 0 | 1 | 7 | 6 | 1 |  |  |  |  |  |  |  |
| 5 | 0 | 1 | 15 | 25 | 10 | 1 |  |  |  |  |  |  |
| 6 | 0 | 1 | 31 | 90 | 65 | 15 | 1 |  |  |  |  |  |
| 7 | 0 | 1 | 63 | 301 | 350 | 140 | 21 | 1 |  |  |  |  |
| 8 | 0 | 1 | 127 | 966 | 1701 | 1050 | 266 | 28 | 1 |  |  |  |
| 9 | 0 | 1 | 255 | 3025 | 7770 | 6951 | 2646 | 462 | 36 | 1 |  |  |
| 10 | 0 | 1 | 511 | 9330 | 34105 | 42525 | 22827 | 5880 | 750 | 45 | 1 |  |
| 11 | 0 | 1 | 1023 | 2850 | 145750 | 246730 | 179487 | 63987 | 11880 | 1155 | 55 | 1 |

Table 4: Table of values of $\left\{\begin{array}{l}n \\ k\end{array}\right\}$ when $n=11$

## References

[1] J. Allagan and D. Slutzky, Chromatic Polynomials of Mixed Hypergraphs, Australas. J. Combin. 58(1) (2014), 197-213.
[2] M. Axenovich and J. Choi, A note on monotonicity of mixed Ramsey numbers, Discrete Math. 311 (2011), 2020-2023.
[3] M. Axenovich and P. Iverson, Edge-colorings avoiding rainbow and monochromatic subgraphs, Discrete Math. 308 (2008), no. 20, 4710-4723.
[4] M. Borowiecki and E. Łazuka, Chromatic polynomials of hypergraphs, Discuss. Math., Graph Theory 20 (2) (2000), 293-301.
[5] C. Bujtàs and Zs. Tuza, Uniform mixed hypergraphs: the possible numbers of colors, Graphs Combin. 24 (2008), 1-12.
[6] K. Diao, K. Wang and P. Zhao, The chromatic spectrum of 3-uniform bi-hypergraphs, Discrete Math. 3(11) (2011), 650-656.
[7] F.M. Dong, K.M. Koh and K.L. Teo, Chromatic polynomials and chromaticity of graphs, Singapore: World Scientific Publishing. xxvii, 2005.
[8] P. Erdős, M. Simonovits and V.T. Sòs, Anti-Ramsey theorems, Infinite and finite sets (Colloq., Keszthely, 1973; dedicated to P. Erdös on his 60th birthday), Vol. II, pp. 633643. Colloq. Math. Soc. Janos Bolyai, Vol. 10, North-Holland, Amsterdam, 1975.
[9] A.M. Farley, Networks Immune to Isolated Failures, Networks 11 (1981), 225-268.
[10] R.L. Graham, D.E. Knuth and O. Patashnik, Concrete Mathematics, Addison-Wesley Publishing, 1994, pp. 264-265.
[11] A. Jaffe, T. Moscibroda and S. Sen, On the price of equivocation in Byzantine agreement, Proc. $31^{\text {st }}$ Principles of Distributed Computing (PODC), 2012.
[12] T. Jiang, D. Mubayi, Zs. Tuza, V. Voloshin and D. West, The Chromatic Spectrum of Mixed Hypergraphs, Graphs Combin. 18 (2002), 309-318.
[13] D. Kràl, On Feasible Sets of Mixed Hypergraphs, Electr. J. Combin. 11 (1) (2004), R19.
[14] F.P. Ramsey, On a Problem of Formal Logic, Proc. London Math. Soc. 30 (1930), 264-286.
[15] I. Tomescu, Chromatic coefficients of linear uniform hypergraphs, J. Combin. Theory Ser. B 72 (1998), 229-235.
[16] V.I. Voloshin, Coloring Mixed Hypergraphs: Theory, Algorithms and Applications, Fields Institute Monographs, 17. Amer. Math. Soc., Providence, RI, 2002. xiv+181 pp.
[17] D. West, Introduction to Graph Theory, Prentice Hall, 2001.

