Pebbling numbers of the Cartesian product of cycles and graphs*

Zheng-Jiang Xia Yong-Liang Pan ${ }^{\dagger}$ Jun-Ming Xu
School of Mathematical Sciences
University of Science and Technology of China
Hefei, Anhui, 230026
P. R. China

Abstract

The pebbling number $f(G)$ of a graph G is the least p such that, no matter how p pebbles are placed on the vertices of G, we can move a pebble to any vertex by a sequence of moves, each move taking two pebbles off one vertex and placing one on an adjacent vertex. It is conjectured that for all graphs G and H, we have $f(G \times H) \leq f(G) f(H)$. If the graph G satisfies the odd 2-pebbling property, we will prove that $f\left(C_{4 k+3} \times G\right) \leq$ $f\left(C_{4 k+3}\right) f(G)$ and $f\left(M\left(C_{2 n}\right) \times G\right) \leq f\left(M\left(C_{2 n}\right)\right) f(G)$, where $C_{4 k+3}$ is the odd cycle of order $4 k+3$ and $M\left(C_{2 n}\right)$ is the middle graph of the even cycle $C_{2 n}$.

1 Introduction

Pebbling in graphs was first introduced by Chung ([2]). Consider a connected graph with a fixed number of pebbles distributed on its vertices. A pebbling move consists of the removal of two pebbles from a vertex and the placement of one pebble on an adjacent vertex. The pebbling number of a vertex v, the target vertex, in a graph G is the smallest number $f(G, v)$ with the property that, from every placement of $f(G, v)$ pebbles on G, it is possible to move one pebble to v by a sequence of pebbling moves. The t-pebbling number of v in G is defined as the smallest number $f_{t}(G, v)$ such that from every placement of $f_{t}(G, v)$ pebbles, it is possible to move t pebbles to v. Then the pebbling number and the t-pebbling number of G are the smallest numbers, $f(G)$ and $f_{t}(G)$, such that from any placement of $f(G)$ pebbles or $f_{t}(G)$ pebbles, respectively, it is possible to move one or t pebbles, respectively, to any

[^0]specified target vertex by a sequence of pebbling moves. Thus, $f(G)$ and $f_{t}(G)$ are the maximum values of $f(G, v)$ and $f_{t}(G, v)$ over all vertices v.

Chung ([2]) defined the 2-pebbling property of a graph, and Wang ([9]) extended her definition to the odd 2-pebbling property as follows.

Suppose p pebbles are located on G. Let l be the number of occupied vertices (vertices with at least one pebble), and r be the number of vertices with an odd number of pebbles. Then to say G satisfies the 2-pebbling property means that two pebbles can be moved to any vertex of G whenever $p>2 f(G)-l$, and the odd 2-pebbling property means two pebbles can be moved to any vertex of G whenever $p>2 f(G)-r$. It is clear that any graph which satisfies the 2 -pebbling property also satisfies the odd 2-pebbling property. It is known that both trees and cycles have the 2 -pebbling property ($[7,8]$). The graph L, called Lemke graph ([9]), is the minimal graph that does not satisfy the 2 -pebbling property; this is shown in Figure 1. It is not hard to see that the pebbling number of this Lemke graph is $f(L)=8$. If we place 13 pebbles on the vertices of L as shown in Figurer 1, then we have $p+l=13+5>16=2 f(L)$, but we cannot move two pebbles to v_{0}.

Figure 1: Lemke graph (L)
The middle graph of a graph G, denoted by $M(G)$, is obtained from G by inserting a new vertex into each edge of G, and joining the new vertices by an edge if the two corresponding edges share the same vertex of G. For any two graphs G and H, we define the Cartesian product $G \times H$ to be the graph with vertex set $V(G) \times V(H)$ and edge set the union of $\{((a, v),(b, v)) \mid(a, b) \in E(G), v \in V(H)\}$ and $\{((u, x),(u, y)) \mid u \in V(G),(x, y) \in E(H)\}$.

The following conjecture ([2]), by Ronald Graham, suggests a constraint on the pebbling number of the product of two graphs.

Conjecture 1.1 (Graham) For any two graphs G and $H, f(G \times H) \leq f(G) f(H)$.

While this conjecture is still open, many successful results in support have appeared. It has been proven that $f(G \times H) \leq f(G) f(H)$ for the following cases:
(1) G is a tree and H is a graph with the odd 2-pebbling property ([6]), (and in particlar, H is a tree);
(2) G is an even cycle and H is a graph with the odd 2-pebbling property;
(3) both G and H are cycles ([5]);
(4) G is a complete or complete bipartite graph and H is a graph with the 2 pebbling property ([2, 3]);
(5) both G and H are fan graphs ([4]);
(6) both G and H are wheel graphs ([4]);
(7) G is a thorn graph of the complete graph with every $p_{i}>1$ and H is a graph with the 2-pebbling property ([10]);
(8) G is the middle graph of an odd cycle and H is the middle graph of a cycle ([11]).

In Section 2, we show that Graham's conjecture holds for the product of the odd cycle $C_{4 k+3}$ with a graph with the odd 2-pebbling property.

In Section 3, we show that Graham's conjecture holds for the product of the middle graph of an even cycle with a graph with the odd 2-pebbling property.

Given a distribution of pebbles on G, let $p(K)$ be the number of pebbles on a subgraph K of $G, p(v)$ be the number of pebbles on vertex v of G and $l(K)(r(K))$ to be the number of vertices of K with at least one pebble (with an odd number of pebbles). Moreover, denote by $\tilde{p}(K)$ and $\tilde{p}(v)$ the number of pebbles on K and v after some sequence of pebbling moves, respectively.

Let T be a tree and let v be a vertex of T. Let \vec{T}_{v} be the rooted tree obtained from T by directing all edges towards v, which becomes the root. A path-partition is a set of non-overlapping directed paths the union of which is \vec{T}_{v}. The path-size sequence of a path-partition P_{1}, \ldots, P_{n}, is an n-tuple $\left(a_{1}, \ldots, a_{n}\right)$, where a_{i} is the length of P_{i} (i.e., the number of edges in it), with $a_{1} \geq a_{2} \geq \ldots \geq a_{n}$. A path-partition is said to majorize another if the nonincreasing sequence of its path size majorizes that of the other. That is, $\left(a_{1}, a_{2}, \ldots, a_{r}\right)>\left(b_{1}, b_{2}, \ldots, b_{t}\right)$ if and only if $a_{i}>b_{i}$ where $i=\min \left\{j: a_{j} \neq b_{j}\right\}$. A path-partition of a tree T is said to be maximum if it majorizes all other path-partitions.

The following two lemmas will be the key tools in the next sections.
Lemma $1.2([2])$ The pebbling number $f_{t}(T, v)$ for a vertex v in a tree T is $t 2^{a_{1}}+$ $2^{a_{2}}+\cdots+2^{a_{r}}-r+1$, where $a_{1}, a_{2}, \ldots, a_{r}$ is the sequence of the path sizes in a maximum path-partition of \vec{T}_{v}.

Lemma 1.3 ([6]) If T is a tree, and G satisfies the odd 2-pebbling property, then $f(T \times G,(x, g)) \leq f(T, x) f(G)$ for every vertex g in G. In particular, if $P_{m}=$ $x_{1} x_{2} \ldots x_{m}$ is a path, then

$$
f\left(P_{m} \times G,\left(x_{i}, g\right)\right) \leq f\left(P_{m}, x_{i}\right) f(G)=\left(2^{i-1}+2^{m-i}-1\right) f(G) \leq 2^{m-1} f(G)
$$

2 The case $C_{4 k+3} \times G$

In 2003, Herscovici [5] proved the following two theorems about cycles.
Theorem 2.1 ([5]) If G satisfies the odd 2-pebbling property, then

$$
f\left(C_{2 n} \times G\right) \leq f\left(C_{2 n}\right) f(G)=2^{n} f(G)
$$

Theorem 2.2 ([5]) Suppose G is a graph with $m \geq 5$ vertices which satisfies the odd 2-pebbling property and the following inequality

$$
\begin{equation*}
4 f_{4}(G)<14 f(G)-2(m-5) \tag{2.1}
\end{equation*}
$$

Then $f\left(C_{2 n+1} \times G\right) \leq f\left(C_{2 n+1}\right) f(G)$ for $n \geq 3$.
The inequality (2.1) holds for all odd cycles, but does not hold for paths or even cycles. In this section, we show the following theorem.

Theorem 2.3 If G satisfies the odd 2-pebbling property, then

$$
f\left(C_{4 k+3} \times G\right) \leq f\left(C_{4 k+3}\right) f(G)
$$

Throughout this section, we use the following notation. Let the vertices of $C_{4 k+3}$ be $\left\{v_{0}, v_{1}, \ldots, v_{4 k+1}, v_{4 k+2}\right\}$ in order. We define the vertex subsets A and B of $C_{4 k+3}$ by

$$
A=\left\{v_{1}, v_{2}, \ldots, v_{2 k}\right\}, B=\left\{v_{2 k+3}, v_{2 k+4}, \ldots, v_{4 k+2}\right\}
$$

For simplicity, among $C_{4 k+3} \times G$, let $p_{i}=p\left(v_{i} \times G\right), r_{i}=r\left(v_{i} \times G\right), p(A)=$ $p(A \times G), p(B)=p(B \times G)$. Thus, the number of pebbles in a distribution on $C_{4 k+3} \times G$ is given by $p_{0}+p(A)+p(B)+p_{2 k+1}+p_{2 k+2}$.

Lemma 2.4 ([7]) The pebbling numbers of the odd cycles $C_{4 k+1}$ and $C_{4 k+3}$ are

$$
\begin{aligned}
& f\left(C_{4 k+1}\right)=\frac{2^{2 k+2}-1}{3}=1+2^{2}+2^{4}+\cdots+2^{2 k} \\
& f\left(C_{4 k+3}\right)=\frac{2^{2 k+3}+1}{3}=1+2^{1}+2^{3}+\cdots+2^{2 k+1}
\end{aligned}
$$

Lemma 2.5 Let $P_{2 k}=x_{1} x_{2} \ldots x_{2 k}$ be a path with length $2 k-1$, and let g be some vertex in a graph G which satisfies the odd 2-pebbling property. Then, from any arrangement of $\left(2^{1}+2^{3}+\cdots+2^{2 k-1}\right) f(G)$ pebbles on $P_{2 k} \times G$, it is possible to put a pebble on every $\left(x_{i}, g\right)$ at once, where $i=1,3, \ldots, 2 k-1$.

Proof. We use induction on k, where the case $k=1$ is trivial.
Suppose that there are $\left(2^{1}+2^{3}+\cdots+2^{2 k-1}\right) f(G)$ pebbles on $P_{2 k} \times G$. Then there are at least $\left(2^{1}+2^{3}+\cdots+2^{2 k-3}\right) f(G)$ pebbles on $\left\{x_{3}, x_{4}, \ldots, x_{2 k}\right\} \times G$ (or on $\left.\left\{x_{1}, x_{2}, \ldots, x_{2 k-2}\right\} \times G\right)$. By induction, we can use these pebbles to put one pebble to each of these vertices $\left\{\left(x_{3}, g\right),\left(x_{5}, g\right), \ldots,\left(x_{2 k-1}, g\right)\right\}$ (or $\left\{\left(x_{1}, g\right),\left(x_{3}, g\right), \ldots\right.$, $\left.\left.\left(x_{2 k-3}, g\right)\right\}\right)$. By Lemma 1.2, $f\left(P_{2 k}, x_{1}\right)=2^{2 k-1}, f\left(P_{2 k}, x_{2 k-1}\right)=2^{2 k-2}+1 \leq 2^{2 k-1}$. By Lemma 1.3, with the remaining $2^{2 k-1} f(G)$ pebbles, one pebble can be moved to $\left(x_{1}, g\right)$ (or $\left(x_{2 k-1}, g\right)$), and we are done.

Similarly, we can obtain the following lemma.
Lemma 2.6 Let $P_{2 k+1}=x_{1} x_{2} \ldots x_{2 k+1}$ be a path with length $2 k$, and let g be some vertex in a graph G which satisfies the odd 2-pebbling property. Then, from any arrangement of $\left(2^{2}+2^{4}+\cdots+2^{2 k}\right) f(G)$ pebbles on $P_{2 k+1} \times G$, it is possible to put a pebble on every $\left(x_{i}, g\right)$ at once, where $i=1,3, \ldots, 2 k-1$.

From the proof of Theorem 3.2 in [5], it follows that:
Lemma 2.7 ([5]) If $p(A) \geq 2^{2 k-1} f(G)$, then with $f\left(C_{4 k+3}\right) f(G)$ pebbles on $C_{4 k+3} \times$ G, one pebble can be moved to $\left(v_{0}, g\right)$.

Proof of Theorem 2.3:

Suppose that there are $f\left(C_{4 k+3}\right) f(G)$ pebbles located on $C_{4 k+3} \times G$. Then

$$
\begin{equation*}
p_{0}+p_{2 k+1}+p_{2 k+2}+p(A)+p(B)=\left(1+2^{1}+2^{3}+\cdots+2^{2 k+1}\right) f(G) . \tag{2.2}
\end{equation*}
$$

Without loss of generality, we may assume that $p(A) \geq p(B)$ and the target vertex is $\left(v_{0}, g\right)$. The case $k=0$ is trivial, so we assume that $k \geq 1$.

Note that the vertices of $B \cup\left\{v_{2 k+2}\right\} \cup\left\{v_{0}\right\}$ form a path isomorphic to $P_{2 k+2}$. It follows from Lemma 1.3 that if we move as many pebbles as possible from $v_{2 k+1} \times G$ to $v_{2 k+2} \times G$, then one pebble could be moved to $\left(v_{0}, g\right)$ unless

$$
\begin{equation*}
\frac{p_{2 k+1}-r_{2 k+1}}{2}+p_{2 k+2}+p(B)+p_{0}<2^{2 k+1} f(G) . \tag{2.3}
\end{equation*}
$$

From Lemma 2.7, we could move one pebble to $\left(v_{0}, g\right)$ unless

$$
\begin{equation*}
p(A)<2^{2 k-1} f(G) \tag{2.4}
\end{equation*}
$$

If (2.2) and (2.3) hold, then

$$
\begin{equation*}
\frac{p_{2 k+1}+r_{2 k+1}}{2}+p(A)>\left(1+2^{1}+2^{3}+\cdots+2^{2 k-1}\right) f(G) . \tag{2.5}
\end{equation*}
$$

From (2.4) and (2.5), we obtain $p_{2 k+1}+r_{2 k+1}>2 f(G)$, and

$$
\frac{p_{2 k+1}-\left(2 f(G)-r_{2 k+1}+2\right)}{2}+p(A) \geq\left(2^{1}+2^{3}+\cdots+2^{2 k-1}\right) f(G)
$$

This implies that we can move enough pebbles from $v_{2 k+1} \times G$ to $A \times G$ so that the number of the pebbles on $A \times G$ will reach $\left(2^{1}+2^{3}+\cdots+2^{2 k-1}\right) f(G)$, and at the same time, $h_{2 k+1}$ pebbles are kept on $v_{2 k+1} \times G$, where

$$
h_{2 k+1}= \begin{cases}2 f(G)-r_{2 k+1}+2, & \text { if } r_{2 k+1} \geq 2, \\ 2 f(G), & \text { if } r_{2 k+1} \leq 1\end{cases}
$$

Assume that $2 x$ pebbles are taken away from $v_{2 k+1} \times G$ such that there are x pebbles that reach $A \times G$, i.e.,

$$
\begin{equation*}
x+p(A)=\left(2^{1}+2^{3}+\cdots+2^{2 k-1}\right) f(G) \tag{2.6}
\end{equation*}
$$

Step 1. With the $h_{2 k+1}$ pebbles on $v_{2 k+1} \times G$, we can move one pebble to $\left(v_{2 k}, g\right)$.
Now there are at least $p_{2 k+1}-2 x-h_{2 k+1}$ pebbles on $v_{2 k+1} \times G$, that is,

$$
\begin{aligned}
\tilde{p}_{2 k+1} & =p_{2 k+1}-2 x-h_{2 k+1} \\
& =p_{2 k+1}+2 p(A)-\left(2^{2}+\cdots+2^{2 k}\right) f(G)-h_{2 k+1} .
\end{aligned}
$$

So the remaining pebbles on $\left\{v_{0}, v_{2 k+1}, v_{2 k+2}\right\} \times G$ are

$$
\begin{aligned}
& p_{0}+p_{2 k+2}+\tilde{p}_{2 k+1} \\
& =p_{0}+p_{2 k+2}+p_{2 k+1}+2 p(A)-\left(2^{2}+\cdots+2^{2 k}\right) f(G)-h_{2 k+1} \\
& \geq p_{0}+p_{2 k+2}+p_{2 k+1}+p(A)+p(B)-\left(2^{2}+\cdots+2^{2 k}\right) f(G)-h_{2 k+1} \\
& \geq\left(1+2^{2}+2^{4}+\cdots+2^{2 k}\right) f(G)
\end{aligned}
$$

Now $p_{0}<f(G)$ (otherwise one pebble can be moved to (v_{0}, g), and we are done), so

$$
\begin{equation*}
p_{2 k+2}+\tilde{p}_{2 k+1} \geq\left(2^{2}+2^{4}+\cdots+2^{2 k}\right) f(G) \tag{2.7}
\end{equation*}
$$

Step 2. It follows from (2.6) and Lemma 2.5 that with $\left(2^{1}+2^{3}+\cdots+2^{2 k-1}\right) f(G)$ pebbles on $A \times G$, we can put one pebble to each vertex of $\left\{\left(v_{1}, g\right),\left(v_{3}, g\right), \ldots,\left(v_{2 k-1}, g\right)\right\}$.
Step 3. From the inequality (2.7) and Lemma 2.6, it follows that, with $\left(2^{2}+2^{4}+\right.$ $\left.\cdots+2^{2 k}\right) f(G)$ pebbles on $\left\{v_{2 k+1}, v_{2 k+2}\right\} \times G$, we can put one pebble to each vertex of $\left\{\left(v_{2}, g\right),\left(v_{4}, g\right), \ldots,\left(v_{2 k}, g\right)\right\}$.

The above three steps imply that at least one pebble can be moved to $\left(v_{0}, g\right)$.

3 The case $M\left(C_{2 n}\right) \times G$

Throughout this section, we will use the following notation (see Figure 2).
Let $C_{2 n}=v_{0} v_{1} \ldots v_{2 n-1} v_{0}$. The middle graph of $C_{2 n}$, denoted by $M\left(C_{2 n}\right)$, is obtained from $C_{2 n}$ by inserting u_{i} into $v_{i} v_{(i+1)} \bmod (2 n)$, and connecting $u_{i} u_{(i+1)} \bmod (2 n)$ $(0 \leq i \leq 2 n-1)$. The graph $M^{*}\left(C_{2 n}\right)$ is obtained from $M\left(C_{2 n}\right)$ by removing the edges $v_{i} u_{i}$ for $1 \leq i \leq n-1, u_{n-1} u_{n}, u_{j} v_{j+1}$ for $n \leq j \leq 2 n-2$ and $u_{0} u_{2 n-1}$.

We define the vertex subsets A and B of $V\left(M^{*}\left(C_{2 n}\right)\right)$ by

$$
\begin{gathered}
A=\left\{v_{1}, v_{2}, \ldots, v_{n-1}, u_{0}, u_{1}, \ldots, u_{n-1}\right\} \\
B=\left\{v_{n+1}, v_{n+2}, \ldots, v_{2 n-1}, u_{n}, u_{n+1}, \ldots, u_{2 n-1}\right\} .
\end{gathered}
$$

For simplicity, among $M\left(C_{2 n}\right) \times G\left(\right.$ or $\left.M^{*}\left(C_{2 n}\right) \times G\right)$, let $p_{i}=p\left(v_{i} \times G\right), r_{i}=$ $r\left(v_{i} \times G\right), q_{i}=p\left(u_{i} \times G\right), s_{i}=r\left(u_{i} \times G\right), p(A)=p(A \times G), p(B)=p(B \times G)$.

$M\left(C_{6}\right)$

$M^{*}\left(C_{6}\right)$

Figure 2: The graphs $M\left(C_{6}\right)$ and $M^{*}\left(C_{6}\right)$.

Lemma 3.1 ([6]) Trees satisfy the 2-pebbling property.
Lemma 3.2 ([11]) If $n \geq 2$, then $f\left(M\left(C_{2 n}\right)\right)=2^{n+1}+2 n-2$.
From Lemma 1.2 and the proof of Lemma 3.2, it is not hard to obtain the following.

Lemma 3.3 If $n \geq 2$, then $f\left(M^{*}\left(C_{2 n}\right), v_{0}\right)=2^{n+1}+2 n-2$.

Proposition 3.4 $M\left(C_{2 n}\right)$ satisfies the 2-pebbling property.

Proof. By symmetry, it is clear that

$$
f\left(M\left(C_{2 n}\right)\right)=\max \left\{f\left(M\left(C_{2 n}\right), v_{0}\right), f\left(M\left(C_{2 n}\right), u_{0}\right)\right\}
$$

Assume that the target vertex is v_{0}, and $p+l \geq 2 f\left(M\left(C_{2 n}\right)\right)+1$. Since $l \leq 4 n \leq$ $f\left(M\left(C_{2 n}\right)\right)$, we have $p \geq f\left(M\left(C_{2 n}\right)\right)+1$. Thus if there is one pebble located on v_{0}, then with the remaining $f\left(M\left(C_{2 n}\right)\right)$ pebbles, a second pebble can be moved to v_{0}.

Now, suppose that $p\left(v_{0}\right)=0$. We will prove that with the same arrangement of pebbles on $M^{*}\left(C_{2 n}\right)$, two pebbles can be moved to v_{0}.

Let $H=M^{*}\left(C_{2 n}\right), C=H\left[A \backslash v_{1}\right]$, and $D=H\left[B \backslash v_{2 n-1}\right]$. Then by Lemma 1.2,

$$
\begin{aligned}
f(C) & =f(D)=1^{n-1}+n-2, \\
f\left(C \cup\left\{v_{0}\right\}\right) & =f\left(D \cup\left\{v_{0}\right\}\right)=2^{n}+n-2, \\
f\left(C \cup\left\{v_{n}\right\}\right) & =f\left(D \cup\left\{v_{n}\right\}\right)=2^{n}+n-2 .
\end{aligned}
$$

We consider the worst case, which is $p\left(v_{1}\right)=l\left(v_{1}\right)=p\left(v_{2 n-1}\right)=l\left(v_{2 n-1}\right)=1$ (where $l\left(v_{i}\right)=1$ if there is at least one pebble located on v_{i} and 0 otherwise), then

$$
p(C)+l(C)+p(D)+l(D)+p_{n}+l_{n}+4 \geq 2^{n+2}+4 n-3
$$

where $p_{n}=p\left(v_{n}\right), l_{n}=l\left(v_{n}\right)$.
If $p(C)+l(C)>2^{n+1}+2 n-4$, then by Lemma 3.1, two pebbles can be moved to v_{0}. Thus we may assume that $p(C)+l(C) \leq 2^{n+1}+2 n-4$ and $p(D)+l(D) \leq 2^{n+1}+2 n-4$. We will show that both u_{0} and $u_{2 n-1}$ will get at least two pebbles by a sequece of pebbling moves.

Let $p_{n}^{\prime}=2^{n+1}+2 n-4-p(C)-l(C) \geq 0$, and paint all the pebbles on C red along with the p_{n}^{\prime} pebbles on v_{n}. Similarly, paint the pebbles on D black, along with $p_{n}^{\prime \prime}=2^{n+1}+2 n-4-p(D)-l(D)$ pebbles on v_{n}. Since $p_{n} \geq p_{n}^{\prime}+p_{n}^{\prime \prime}$, there are enough pebbles on v_{n} to do this.

Now either $p(C)+l(C)=2^{n+1}+2 n-4$ or there are red pebbles on v_{n}. If equality holds, then $p(C) \geq 2^{n}+n-2$, then two red pebbles can be moved to u_{0}. If there are red pebbles on v_{n}, then $l_{n}^{\prime}=1$, and the red pebbles satisfy

$$
p(C)+l(C)+p_{n}^{\prime}+l_{n}^{\prime}=2^{n+1}+2 n-3
$$

and again two red pebbles can be moved to u_{0}. Similarly, two black pebbles can be moved to $u_{2 n-1}$, so we can move one red pebble and one black pebble to v_{0}.

If the target vertex is u_{0}, then a similar argument can show that there are at least two pebbles which can be moved to u_{0}.

Lemma 3.5 ([5]) Let $P_{k}=x_{1} x_{2} \ldots x_{k}$ be a path, and let g be some vertex in a graph G which satisfies the odd 2 -pebbling property. Then, from any arrangement of $\left(2^{k}-1\right) f(G)$ pebbles on $P_{k} \times G$, it is possible to put a pebble on every $\left(x_{i}, g\right)$ at once $(1 \leq i \leq k)$.

Lemma 3.6 Let $P_{k}=x_{1} x_{2} \ldots x_{k}$ be a path $(k \geq 2)$, and g be some vertex in a graph G which satisfies the odd 2-pebbling property. Then from any arrangement of $\left(2^{k}-2\right) f(G)$ pebbles on $x_{k} \times G$, it is possible to put a pebble on every $\left(x_{i}, g\right)$ at once ($1 \leq i \leq k-1$).

Proof. We use induction on k, where the case $k=2$ is trivial. If it is true for $k-1$, suppose there are $\left(2^{k}-2\right) f(G)$ pebbles on $x_{k} \times G$, we use $\left(2^{k-1}-2\right) f(G)$ pebbles to put a pebble on every $\left(x_{i}, g\right)$ at once $(2 \leq i \leq k-1)$, and with the remaining $2^{k-1} f(G)$ pebbles we can put one pebble on $\left(x_{1}, g\right)$.

Lemma 3.7 Let T_{k} be the graph obtained from P_{k} by joining x_{i} to a new vertex y_{i} $(1 \leq i \leq k-1)$, where $P_{k}=x_{1} x_{2} \ldots x_{k}$ is a path $(k \geq 2)$. Let g be some vertex in a graph G which satisfies the odd 2-pebbling property. Then for any arrangement of $\left(2^{k}+k-3\right) f(G)$ pebbles on $T_{k} \times G$, one of the following will occur
(1) we can put a pebble on every $\left(x_{i}, g\right)$ at once $(1 \leq i \leq k-1)$;
(2) we can put two pebbles on $\left(x_{1}, g\right)$.

Figure 3: The graph T_{k} in Lemma 3.7.

Proof. When $k=2$, by Lemma 1.2 and Lemma 1.3, with $3 f(G)$ pebbles on $T_{2} \times G$, one pebble can be moved to the vertex $\left(x_{1}, g\right)$.

Suppose that there are $\left(2^{k}+k-3\right) f(G)$ pebbles on $T_{k} \times G$ for $k \geq 3$. Let $T_{k}^{\prime}=T_{k} \backslash\left\{x_{1}, y_{1}\right\}$. Clearly, $T_{k}^{\prime} \cong T_{k-1}$.

If $p\left(T_{k}^{\prime} \times G\right)<\left(2^{k-1}+k-4\right) f(G)$, then $p\left(P_{x_{1} y_{1}} \times G\right) \geq\left(2^{k-1}+1\right) f(G) \geq 5 f(G)$. Then clearly, we can move two pebbles to $\left(x_{1}, g\right)$.

Suppose $p\left(T_{k}^{\prime} \times G\right) \geq\left(2^{k-1}+k-4\right) f(G)$, and $p_{k} \geq\left(2^{k-1}-2\right) f(G)$. By Lemma 3.6, using $\left(2^{k-1}-2\right) f(G)$ pebbles on $x_{k} \times G$, we can put a pebble on every $\left(x_{i}, g\right)$ for $2 \leq i \leq k-1$. With the remaining $\left(2^{k-1}+k-1\right) f(G)$ pebbles, by Lemma 1.2 and Lemma 1.3, we can put one pebble on $\left(x_{1}, g\right)$ for $f\left(T_{k} \times G,\left(x_{1}, g\right)\right) \leq f\left(T_{k}, x_{1}\right) f(G)=$ $\left(2^{k-1}+k-1\right) f(G)$.

Suppose $p\left(T_{k}^{\prime} \times G\right) \geq\left(2^{k-1}+k-4\right) f(G)$, and $p_{k}<\left(2^{k-1}-2\right) f(G)$. We use induction in this case, while the case $k=2$ holds.

Let r_{y} be the number of vertices with an odd number of pebbles in $\left\{y_{2}, y_{3}, \ldots\right.$, $\left.y_{k-1}\right\} \times G$. We only need to take off r_{y} pebbles from $\left\{y_{2}, y_{3}, \ldots, y_{k-1}\right\} \times G$ so that each vertex in it has an even number of pebbles. It is clear that $r_{y} \leq(k-2)|V(G)| \leq$ $(k-2) f(G)$, so $r_{y}+p_{k}<\left(2^{k-1}+k-4\right) f(G)$. So we can choose $\left(2^{k-1}+k-4\right) f(G)$ pebbles from $T_{k}^{\prime} \times G$ which contains all pebbles on $x_{k} \times G$, so that the number of the
remaining pebbles on each vertex of $\left\{y_{2}, y_{3}, \ldots, y_{k-1}\right\} \times G$ is even except at most one vertex. By induction, with these $\left(2^{k-1}+k-4\right) f(G)$ pebbles we can put one pebble on every $\left(x_{i}, g\right)$ at once for $2 \leq i \leq k-1$ or move two pebbles to $\left(x_{2}, g\right)$ and then at least one pebble can be moved to $\left(x_{1}, g\right)$.

Now we prove that with the remaining $\left(2^{k-1}+1\right) f(G)$ pebbles, one pebble can be moved to $\left(x_{1}, g\right)$.

Let $\tilde{p}_{y}=\sum_{i=2}^{k-1} \tilde{p}\left(y_{i} \times G\right)$. Let P^{\prime} denote the path $y_{1} x_{1} x_{2} \ldots x_{k-1}$, and $P^{\prime \prime}$ denote the path $x_{1} x_{2} \ldots x_{k-1}$.

Since the number of the remaining pebbles on each vertex of $\left\{y_{2}, y_{3}, \ldots, y_{k-1}\right\} \times G$ is even except at most one vertex, then we can move $\left\lfloor\frac{1}{2} \tilde{p}_{y}\right\rfloor$ pebbles from the vertices of $\left\{y_{2}, y_{3}, \ldots, y_{k-1}\right\} \times G$ to $\left\{x_{2}, x_{3}, \ldots, x_{k-1}\right\} \times G$.
Case 1. $\tilde{p}_{y} \leq 2^{k-1} f(G)-1$. Then

$$
\tilde{p}\left(P^{\prime} \times G\right)=\left(2^{k-1}+1\right) f(G)-\tilde{p}_{y}+\left\lfloor\frac{1}{2} \tilde{p}_{y}\right\rfloor \geq\left(2^{k-2}+1\right) f(G) .
$$

By Lemma 1.3, $f\left(P^{\prime} \times G,\left(x_{1}, g\right)\right) \leq f\left(P^{\prime}, x_{1}\right) f(G)=\left(2^{k-2}+1\right) f(G)$, so one pebble can be moved to $\left(x_{1}, g\right)$.
Case 2. $\tilde{p}_{y} \geq 2^{k-1} f(G)$. Then

$$
\tilde{p}\left(P^{\prime \prime} \times G\right) \geq\left\lfloor\frac{1}{2} \tilde{p}_{y}\right\rfloor \geq 2^{k-2} f(G)
$$

By Lemma 1.3, $f\left(P^{\prime \prime} \times G,\left(x_{1}, g\right)\right) \leq f\left(P^{\prime \prime}, x_{1}\right) f(G)=2^{k-2} f(G)$, so one pebble can be moved to $\left(x_{1}, g\right)$.

Theorem 3.8 If G satisfies the odd 2-pebbling property, then

$$
f\left(M\left(C_{2 n}\right) \times G\right) \leq f\left(M\left(C_{2 n}\right)\right) f(G)=\left(2^{n+1}+2 n-2\right) f(G) .
$$

Proof. Suppose that there are $\left(2^{n+1}+2 n-2\right) f(G)$ pebbles placed on the vertices of $M\left(C_{2 n}\right) \times G$. We will show that at least one pebble can be moved to the target vertex.

By symmetry, it is clear that

$$
f\left(M\left(C_{2 n}\right) \times G\right)=\max \left\{f\left(M\left(C_{2 n}\right) \times G,\left(v_{0}, g\right)\right), f\left(M\left(C_{2 n}\right) \times G,\left(u_{0}, g\right)\right)\right\}
$$

So we only need to distinguish two cases.
Case 1. The target vertex is $\left(v_{0}, g\right)$.
Subcase 1.1. $p_{n}+r_{n} \leq 2 f(G)$.
We remove all the pebbles off $v_{n} \times G$ such that

$$
\begin{aligned}
\tilde{p}\left(\left(M^{*}\left(C_{2 n}\right) \backslash v_{n}\right) \times G\right) & =\frac{p_{n}-r_{n}}{2}+p(A)+p(B)+p_{0} \\
& =-\frac{1}{2}\left(p_{n}+r_{n}\right)+p_{n}+p(A)+p(B)+p_{0} \\
& \geq\left(2^{n+1}+2 n-3\right) f(G) .
\end{aligned}
$$

By Lemma 1.2, $f\left(M^{*}\left(C_{2 n}\right) \backslash v_{n}, v_{0}\right)=2^{n+1}+2 n-3$. According to Lemma 1.3, one pebble can be moved to $\left(v_{0}, g\right)$.
Subcase 1.2. $p_{n}+r_{n}>2 f(G)$.
Then we can move two pebbles to $\left(v_{n}, g\right)$. Note that p_{n} and r_{n} are of the sameparity, we keep $2 f(G)-r_{n}+2$ pebbles on $v_{n} \times G$ so that at least two pebbles still can be moved to (v_{n}, g), and move the rest pebbles to $A \times G$. So

$$
\begin{equation*}
\tilde{p}(A \times G)=\frac{1}{2}\left(p_{n}-\left(2 f(G)-r_{n}+2\right)\right)+p(A)=\frac{p_{n}+r_{n}}{2}-f(G)-1+p(A) . \tag{3.1}
\end{equation*}
$$

By Lemma 1.2, $f\left(M^{*}\left(C_{2 n}\right)\left[B, v_{0}\right], v_{0}\right)=2^{n}+n-1$, so if we move as many pebbles as possible from $v_{n} \times G$ to $B \times G$, then one pebble can be moved to (v_{0}, g) unless

$$
\begin{equation*}
\frac{p_{n}-r_{n}}{2}+p(B)+p_{0} \leq\left(2^{n}+n-1\right) f(G)-1 . \tag{3.2}
\end{equation*}
$$

If (3.2) holds, then

$$
\begin{align*}
\tilde{p}(A \times G) & =\frac{1}{2}\left(p_{n}+r_{n}\right)-f(G)-1+p(A) \\
& \geq p_{n}+p(A)+p(B)+p_{0}-f(G)-\left(2^{n}+n-1\right) f(G) \\
& =\left(2^{n+1}+2 n-2\right) f(G)-\left(2^{n}+n\right) f(G) \tag{3.3}\\
& =\left(2^{n}+n-2\right) f(G) .
\end{align*}
$$

It follows from Lemma 1.2 that

$$
f\left(M^{*}\left(C_{2 n}\right) \backslash\left\{v_{n}, u_{n-1}, v_{n-1}\right\}, v_{0}\right)=3 \cdot 2^{n-1}+2 n-4
$$

Thus if we move as many pebbles as possible from $v_{n} \times G$ to $u_{n} \times G$, and from $v_{n-1} \times G$ to $u_{n-2} \times G$, then one pebble can be moved to $\left(v_{0}, g\right)$ unless

$$
\begin{gather*}
\frac{1}{2}\left(p_{n}-r_{n}\right)+\frac{1}{2}\left(p_{n-1}-r_{n-1}\right)+p(B)+p_{0}+\left(p(A)-p_{n-1}-q_{n-1}\right) \tag{3.4}\\
\leq\left(3 \cdot 2^{n-1}+2 n-4\right) f(G)-1
\end{gather*}
$$

If (3.4) holds, then $\frac{1}{2}\left(p_{n}+r_{n}\right)+\frac{1}{2}\left(p_{n-1}+r_{n-1}\right)+q_{n-1} \geq\left(2^{n-1}+2\right) f(G)+1$. Thus

$$
\begin{equation*}
\left(\frac{1}{2}\left(p_{n}+r_{n}\right)-f(G)-1+q_{n-1}\right)+\left(\frac{1}{2}\left(p_{n-1}+r_{n-1}\right)-f(G)-1\right) \geq 2^{n-1} f(G)-1 \tag{3.5}
\end{equation*}
$$

Subcase 1.2.1. $\frac{1}{2}\left(p_{n}+r_{n}\right)-f(G)-1+q_{n-1} \geq f(G)$.
Then from (3.3) it follows that, with $f(G)$ pebbles on $u_{n-1} \times G$, one pebble can be moved to $\left(u_{n-1}, g\right)$; and from Lemma 3.7 it follows that, with the remaining $\left(2^{n}+n-3\right) f(G)$ pebbles, we can put one pebble to each $\left(u_{i}, g\right)$ for $0 \leq i \leq n-2$ or put two pebbles to $\left(u_{0}, g\right)$, we can move one more pebble to $\left(u_{n-1}, g\right)$ with $2 f(G)-r_{n}+2$ pebbles on $v_{n} \times G$, so one pebble can be moved to $\left(v_{0}, g\right)$.
Subcase 1.2.2. $\frac{1}{2}\left(p_{n}+r_{n}\right)-f(G)-1+q_{n-1}<f(G)$.

Then from (3.5), we have

$$
\begin{equation*}
\frac{p_{n-1}+r_{n-1}}{2}-f(G)-1 \geq\left(2^{n-1}-1\right) f(G) \tag{3.6}
\end{equation*}
$$

So we can keep $2 f(G)-r_{n-1}+2$ pebbles on $v_{n-1} \times G$, so that one pebble can be moved to $\left(u_{n-2}, g\right)$, and moving no less than $\left(2^{n-1}-1\right) f(G)$ pebbles to $u_{n-2} \times G$. With these pebbles, by Lemma 3.5, we can put one pebble to every $\left(u_{i}, g\right)$ at once $(0 \leq i \leq n-2)$. So one pebble can be moved to $\left(v_{0}, g\right)$.

Case 2. The target vertex is $\left(u_{0}, g\right)$.
Let $M^{\prime}\left(C_{2 n}\right)$ be the graph obtained from $M\left(C_{2 n}\right)$ by removing the edges $u_{i} v_{i+1}$ for $0 \leq i \leq n-2$ and $u_{j} v_{j}$ for $n+2 \leq j \leq 2 n-1$ and $u_{n} v_{n}, u_{n} v_{n+1}, u_{0} v_{0}$.

Let $A^{\prime}=\left\{u_{1}, u_{2}, \ldots, u_{n-1}, v_{1}, v_{2}, \ldots, v_{n}\right\}$ and $B^{\prime}=\left\{u_{n+1}, u_{n+2}, \ldots, u_{2 n-1}, v_{n+1}\right.$, $\left.v_{n+2}, \ldots, v_{2 n-1}, v_{0}\right\}$.

It is clear that $M^{\prime}\left(C_{2 n}\right)\left[A^{\prime}\right] \cong M^{*}\left(C_{2 n}\right)[A]$, and $M^{\prime}\left(C_{2 n}\right)\left[B^{\prime}, u_{0}\right] \cong M^{*}\left(C_{2 n}\right)\left[B, v_{0}\right]$. We only need to prove that one pebble can be moved from $M^{\prime}\left(C_{2 n}\right) \times G$ to $\left(u_{0}, g\right)$.
Subcase 2.1. $q_{n}+s_{n} \leq 2 f(G)$. By a similar process as before, one pebble can be moved to $\left(u_{0}, g\right)$.
Subcase 2.2. $q_{n}+s_{n}>2 f(G)$.
Then by a similar process as before, we can keep $2 f(G)-s_{n}+2$ pebbles on $u_{n} \times G$ so that two pebbles can be moved to (u_{n}, g), and move the remaining pebbles to $A^{\prime} \times G$. So

$$
\begin{aligned}
\tilde{p}\left(A^{\prime} \times G\right) & =\frac{q_{n}-\left(2 f(G)-s_{n}+2\right)}{2}+p\left(A^{\prime}\right) \\
& =\frac{q_{n}+s_{n}}{2}-f(G)-1+p\left(A^{\prime}\right)
\end{aligned}
$$

Similarly, if we move as many as possible pebbles from $u_{n} \times G$ to $B^{\prime} \times G$, then one pebble can be moved from $B^{\prime} \times G$ to $\left(u_{0}, g\right)$, unless

$$
\tilde{p}\left(A^{\prime} \times G\right) \geq\left(2^{n}+n-2\right) f(G)
$$

According to Lemma 3.7, we can put one pebble on $\left(u_{i}, g\right)$ at once for $1 \leq i \leq n-1$ or put two pebbles on $\left(u_{1}, g\right)$. With $2 f(G)-s_{n}+2$ pebbles on $u_{n} \times G$, one more pebble can be moved to $\left(u_{n-1}, g\right)$. So one pebble can be moved to $\left(u_{0}, g\right)$.

Acknowledgements

Many thanks to the referees for their many helpful comments and suggestions, which have considerably improved the presentation of this paper.

References

[1] J. Akiyama, T. Hamada and I. Yoshimura, Miscellaneous properties of middle graphs, TRU Math 10 (1974), 41-53.
[2] F. R. K. Chung, Pebbling in hypercubes, SIAM J. Discrete Math. 2(4) (1989), 467-472.
[3] R. Feng and J. Y. Kim, Graham's pebbling conjecture of production complete bipartite graph, Sci. China Ser. A 44 (2001), 817-822.
[4] R. Feng and J. Y. Kim, Pebbling numbers of some graphs, Sci. China Ser. A 45 (2002), 470-478.
[5] D. Hersovici, Graham's conjecture on products of cycles, J. Graph Theory 42 (2003), 141-154.
[6] D. Moews, Pebbling Graphs, J. Combin. Theory Ser. B 55 (1992), 244-252.
[7] L. Pachter, H.S. Snevily and B. Voxman, On pebbling graphs, Congr. Numer. 107 (1995), 65-80.
[8] H. S. Snevily and J.A. Foster, The 2-pebbling property and a conjecture of Graham's, Graphs Combin. 16 (2000), 231-244.
[9] S. S. Wang, Pebbling and Graham's conjecture, SIAM J. Discrete Math. 226 (13) (2001), 431-438.
[10] Z. ,P. Wang, Y. Zou, H. Liuxi and Z. Wang, Graham's pebbling conjecture on product of thorn graphs of complete graphs, SIAM J. Discrete Math. 309 (10) (2009), 3431-3435.
[11] Y.S. Ye, F. Liu and M. Q. Zhai, Pebbling numbers of middle graphs of cycles and Graham's conjecture, Operations Research Trans. 17 (3) (2013), 35-44.

[^0]: * Supported by "The Fundamental Research Funds for the Central Universities" and the NSF of the People's Republic of China (Grant No. 61272008, No. 11271348 and No. 10871189).
 \dagger Corresponding author: ylpan@ustc.edu.cn

