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Abstract

A set D of vertices in a graph G = (V,E) is a total dominating set if every
vertex of G is adjacent to some vertex in D. A total dominating set D
of G is said to be weak if every vertex v ∈ V −D is adjacent to a vertex
u ∈ D such that dG(v) ≥ dG(u). The weak total domination number
γwt(G) of G is the minimum cardinality of a weak total dominating set
of G. A total dominating set D of G is said to be strong if every vertex
v ∈ V −D is adjacent to a vertex u ∈ D such that dG(u) ≥ dG(v). The
strong total domination number γst(G) of G is the minimum cardinality
of a strong dominating set of G. We show that the decision problems for
these variants are NP-complete, even when restricted to bipartite graphs
and chordal graphs. We also show that the decision problem for the
strong total domination is NP-complete, even when restricted to split
graphs.

1 Introduction

For undefined terminology, the reader is referred to [7]. We consider finite, undi-
rected, simple graphs. Let G be a graph, with vertex set V and edge set E. The
open neighborhood of a vertex v ∈ V is N(v) = {u ∈ V | uv ∈ E} and the closed
neighborhood is N [v] = N(v) ∪ {v}. For a subset S ⊆ V , the open neighborhood of
S is N(S) = ∪v∈SN(v) and the closed neighborhood is N [S] = N(S) ∪ S. If v is a
vertex of V, then the degree of v, denoted by dG(v), is the cardinality of its open
neighborhood. A clique in G is a subset S of vertices such that its induced subgraph
is complete, and an independent set in G is a subset of vertices such that its induced
subgraph has no edge. A chordal graph is a graph that does not contain an induced
cycle of length greater than three. A split graph is a graph whose vertex set is the
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disjoint union of a clique and an independent set. It is well-known that a split graph
is a chordal graph.

A subset S ⊆ V is a dominating set of G if every vertex in V −S has a neighbor
in S and is a total dominating set if every vertex in V has a neighbor in S. The
domination number γ(G) (respectively, total domination number γt(G)) is the mini-
mum cardinality of a dominating set (respectively, total dominating set) of G. Total
domination was introduced by Cockayne, Dawes and Hedetniemi [2]. Sampathkumar
and Pushpa Latha [11] have introduced the concept of weak and strong domination
in graphs. A subset D ⊆ V is a weak dominating set if every vertex v ∈ V −S is ad-
jacent to a vertex u ∈ D, where dG(v) ≥ dG(u). The subset D is a strong dominating
set if every vertex v ∈ V − S is adjacent to a vertex u ∈ D, where dG(u) ≥ dG(v).
The weak (strong, respectively) domination number is the minimum cardinality of a
weak dominating set (a strong dominating set, respectively) of G. Strong and weak
domination have been studied in [3, 5, 6, 9, 10]. For more details on domination in
graphs and its variations, see the two books [7, 8].

Chellali and Jafari Rad [1] introduced the concept of weak total domination in
graphs, and proposed the study of strong total domination. A total dominating set
D of G is said to be weak if every vertex v ∈ V −D is adjacent to a vertex u ∈ D such
that dG(v) ≥ dG(u). The weak total domination number of G, denoted by γwt(G),
is the minimum cardinality of a weak total dominating set of G. Similarly, a total
dominating set D of G is said to be strong if every vertex v ∈ V − D is adjacent
to a vertex u ∈ D such that dG(v) ≤ dG(u). The strong total domination number of
G, denoted by γst(G), is the minimum cardinality of a strong total dominating set
of G. It is proved in [1] that the decision problem for the weak total domination in
NP-complete for general graphs.

Theorem 1 ([1]) The weak total dominating set is NP-complete for general graphs.

In this paper we prove that the decision problem for both weak total domination
and strong total domination are NP-complete, even when restricted to bipartite
graphs, and chordal graphs. We also show that the decision problem for strong total
domination is NP-complete, even when restricted to split graphs. In each variant we
will state the corresponding decision problem in the standard form [4] and indicate
the polynomial-time reduction used to prove that it is NP-complete.

2 Results

We first prove the complexity of strong total domination. Consider the following
decision problem.

STRONG TOTAL DOMINATING SET (STDS).
Instance: Graph G = (V,E), positive integer k ≤ |V |.
Question: Does G have a strong total dominating set of cardinality at
most k?
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We show that this problem is NP-complete by reducing the well-known NP-
complete problem, VERTEX COVER, to strong total dominating set problem.

VERTEX-COVER
Instance: A graph G = (V,E) and a positive integer k ≤ |V |.
Question: Is there a subset C ⊆ V of size at most k such that for each
edge xy ∈ E either x ∈ C or y ∈ C?

Theorem 2 The strong total dominating set problem is NP-complete for bipartite
graphs.

Proof. Clearly, the strong total dominating set problem is in NP, since it is easy
to verify that a given set of vertices is a STDS in polynomial time. Now let us
show how to transform the vertex cover problem to the strong total dominating set
problem. Let G = (V,E) be a graph with |V | = n and |E| = m. Let H be a graph
with V (H) = V ∪ {y, xi : 1 ≤ i ≤ m + n} ∪ {ei : e ∈ E, 1 ≤ i ≤ n + 1}, and
E(H) = {yxi : 1 ≤ i ≤ m + n} ∪ {yv : v ∈ V } ∪ {vei : v ∈ e, e ∈ E, 1 ≤ i ≤ n + 1.
Figure 1. shows the graphs G = P3 and H .
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Figure 1. The graphs G = P3 and H .

Clearly H is a bipartite graph. We show that G has a vertex cover of size at most
k if and only if H has a strong total dominating set of cardinality at most k + 1.
If G has a vertex cover S of size at most k then clearly S ∪ {y} is a strong total
dominating set for H . Let D be a strong total dominating set for H of cardinality
at most k + 1. Clearly y ∈ D. Assume that there is an edge e = uv ∈ E such that
{u, v} ∩ D = ∅. Since ei is dominated by D, for i = 1, 2, . . . , n + 1, we obtain that
ei ∈ D for i = 1, 2, . . . , n+1. This implies that |D| ≥ n+2 > k+1, a contradiction.
Thus for any e = uv ∈ E, we have u ∈ D or v ∈ D. Consequently, D ∩ V is a vertex
cover for G of size at most k, as desired.

Theorem 3 The strong total dominating set problem is NP-complete for split graphs.

Proof. Let H be the graph in the proof of Theorem 2. We add edges between any
pair of vertices of V , and then, if necessary, add pendant edges to y such that in
the resulting graph y has maximum degree. Notice that the resulting graph is split,
since V ∪ {y} forms a clique and the remaining vertices form an independent set.
Now continuing the proof of Theorem 2 yields the desired result.

Since any split graph is chordal, we have the following.
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Corollary 4 The strong total dominating set problem is NP-complete for chordal
graphs.

We next consider the complexity of weak total domination and improve Theo-
rem 1.

WEAK TOTAL DOMINATING SET (WTDS)
Instance: Graph G = (V,E), positive integer k ≤ |V |.
Question: Does G have a weak total dominating set of cardinality at
most k?

We show that this problem is NP-complete by reducing the well-known NP-
complete problem, Exact-3-Cover (X3C), to weak total dominating set problem.

EXACT 3-COVER (X3C)
Instance: A finite set X with |X| = 3q and a collection C of 3-element
subsets of X.
Question: Is there a subcollection C ′ of C such that every element of X
appears in exactly one element of C ′?

Theorem 5 The weak total dominating set problem is NP-complete even when re-
stricted to bipartite graphs.

Proof. Clearly, the weak total dominating set problem is in NP, since it is easy to
verify that a given set of vertices is a WTDS in polynomial time. Now let us show how
to transform any instance X,C of X3C into an instance G of WTDS so that one of
them has a solution if and only if the other has a solution. Let X = {x1, x2, . . . , x3q}
and C = {C1, C2, ..., Cm} be an arbitrary instance of X3C. For i = 1, 2, . . . , m, let G′

i

be the 6-vertex path cidieifigihi (with consecutive vertices ci, di, ei, fi, gi, hi), and let
Gi be obtained from G′

i by adding a vertex bi and joining bi to di, and also adding a
3-vertex path f ′

ig
′
ih

′
i and joining f ′

i to fi. For i = 1, 2, . . . , 3q, let H ′
i be the 7-vertex

path wiziyixiy
′
iz

′
iw

′
i, and let Hi be obtained fromH ′

i by adding a 3-vertex path y′′i z
′′
i w

′′
i

and join y′′i to xi. Figure 2 shows the graphs Gi and Hi.
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Figure 2. The graphs Gi and Hi.
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Corresponding to each variable xi, we associate the graph Hi, and corresponding
to each set Cj we associate the graph Gj. The construction of G is completed by
joining xi and cj if and only if the variable xi occurs in the set Cj. Clearly G is
bipartite. Set k = 19q + 7m.
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Suppose that the instance X,C of X3C has a solution C ′. It is easily verified that
D =

⋃3q
i=1{wi, zi, w

′
i, z

′
i, w

′′
i , z

′′
i } ∪

⋃m
j=1{hj , gj, h

′
j, g

′
j, dj, bj , ej} ∪

⋃
Cj∈C′{cj} is a weak

total dominating set for G of cardinality k.

Conversely, suppose that G has a weak total dominating set S with |S| ≤ 19q +
7m = k. An easy observation in [1] assures that S contains every leaf and every
support vertex, i.e.,

3q⋃

i=1

{wi, zi, w
′
i, z

′
i, w

′′
i , z

′′
i } ∪

m⋃

j=1

{hj , gj, dj, bj, h
′
j , g

′
j} ⊆ S.

Furthermore, ej ∈ S for j = 1, 2, . . . , m. To dominate xi for all i = 1, 2, . . . , 3q, with
|S| ≤ 19q + 7m, it forces that the rest q elements in S are contained in {cj : j =
1, 2, . . . , m}, since at most three x′

is can be dominated by one vertex and each of
them must be some of {cj}. This implies that C ′ = {Cj : cj ∈ S} is an exact cover
for C, as desired.

Theorem 6 The weak total dominating set is NP-complete even when restricted to
chordal graphs.

Proof. Let G be the graph in the proof of Theorem 6. We add edges between any
pair ci, cj for i, j ∈ {1, 2, . . . , m}. Then for each i = 1, 2, . . . , 3q, add m(m−1)

2
3-vertex

paths and join xi to a leaf of each path. Let G∗ be the resulting graph. Notice that
G∗ is chordal. Now continuing the proof of Theorem 6 yields the desired result.

We end the paper with a remark on the proof of Theorem 24 of [3]. In the
proof of Theorem 24 of [3] the reduction is from X3C with the additional assumption
that each variable appears in at least two subsets. However without such additional
assumption, for each i = 1, 2, . . . , 3q, one can add a 2-vertex path and join one of its
leaves to xi, set � = 2m+ 10q, and continue the proof.
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