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Abstract

For a word v in variables x and y, Chebikin and Ehrenborg found that
the number of faces of the descent polytope DPv equals the number of
factorizations of v using subfactors of the form xiy and yix with some
additional constraints. They also showed the number of faces of DPv

equals the number of alternating subwords of v and raised the problem
of finding a bijective proof between these two enumerative results. In this
paper, we provide an algorithmically defined combinatorial proof, which
also gives a correspondence between factorizations of an xy-word and its
reverse. For the alternating descent polytope, we show the faces of the
descent polytope are in bijection with certain weighted compositions of
n and a class of lattice paths of length n + 1 contained in the region
−2 ≤ y ≤ 2.

1 Introduction

Given a set S ⊆ [n − 1] := {1, 2, . . . , n− 1}, we define the descent polytope DPS as
the set of points (x1, . . . , xn) ∈ R

n with xi ∈ [0, 1] such that xi ≥ xi+1 if i ∈ S and
xi ≤ xi+1 otherwise. Thus DPS is the order polytope of the ribbon poset; for more
details see [5]. We denote by fi the number of i-dimensional faces in the polytope,
and the f -polynomial of an n-dimensional descent polytope DPS is defined as

FS(t) :=

n∑
i=0

fi · ti.

For two letters x and y, let vS = v1v2 · · ·vn−1 with vi = x if i �∈ S and vi = y
otherwise. Let v∗ = vn−1 · · ·v2v1 denote the reverse of v, and denote by vT =
vj1vj2 · · ·vjk for the subset T = {j1, j2, . . . , jk} ⊆ [n − 1] with j1 < j2 < · · · < jk.
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In particular, we denote the empty word by 1 and vT = 1 for T = ∅. For more
information on the combinatorial properties of words, see [2, 3].

We further denote FS(t) (respectively, DPS) by Fv(t) (respectively, DPv) since
v = vS encodes both S ⊆ [n − 1] and the dimension. Chebikin and Ehrenborg [1,
Theorem 2.2] expressed the f -polynomial Fv(t) as

Fv(t) = 1 +
∑

T⊆[n−1]

(
t + 1

t

)κ(vT )

· t|T |+1, (1.1)

where κ(1) = 1 for v = 1; otherwise, κ(v) = 2 + |{i : vi �= vi+1}|.
An xy-word v = v1v2 · · ·vk is said to be alternating if vi �= vi+1 for all 1 ≤ i ≤

k−1. From Eq. (1.1), Chebikin and Ehrenborg [1, Corollary 2.3] noticed that for an
xy-word v of length n−1, the number of vertices of the descent polytope DPv is one
greater than the number of subsets T ⊆ [n−1] for which the word vT is alternating.

Chebikin and Ehrenborg [1, Theorem 3.2] further studied the non-commutative
rational generating function Φ(x,y) =

∑
v Fv ·v for the f -polynomial Fv. They then

specialized it to obtain a more concise expression [1, Corollary 3.3] for Fv, that is

Fv(t) = 1 +
∑

(u1,...,uk−1,uk)

(t+ 1)k, (1.2)

where the sum ranges over factorizations of the xy-word v = u1 · · ·uk−1 · uk such
that the factors u1, . . . ,uk−1 are of the form xiy or yix for i ≥ 0, and where the
last factor uk does not have any constraint. Note that uk = 1 is allowed for the last
factor. By combining Eqs. (1.1) and (1.2), Chebikin and Ehrenborg observed the
following.

Proposition 1.1. The number of factorizations of an xy-word v is equal to the
number of alternating subwords of v.

Let zn be the alternating word of length n with initial letter x, i.e., zn =
xyxyx · · · . Substituting zn−1 for v in formula (1.2), Chebikin and Ehrenborg [1,
Corollary 3.5] found that

Fzn−1(t) = 1 +
∑

(c1,c2,...,ck)

(t+ 1)k, (1.3)

where the sum ranges over all compositions (c1, c2, . . . , ck) of n such that c1, . . . , ck−1 ∈
{1, 2}. By setting t = 1 in formula (1.3), Chebikin and Ehrenborg derived the se-
quence

{Fzn−1(1)}n≥1 = {3, 7, 19, 51, 139, . . .}.
A different combinatorial interpretation for this sequence is given in [4] (A052948),

as the number of paths from (0, 0) to (n + 1, 0) with allowed steps (1, 1), (1, 0) and
(1,−1) contained within the region −2 ≤ y ≤ 2. Therefore, Chebikin and Ehrenborg
obtained the following.
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Proposition 1.2. The sequence A052948 in [4] counts both the number of faces of
the descent polytope DPzn−1 and the number of those paths described above.

Chebikin and Ehrenborg [1] derived Propositions 1.1 and 1.2 from the generating
function point of view and left the open problems whether there exist combinatorial
proofs. This paper aims to present relevant proofs. Our bijection in the proof of
Proposition 1.1 leads to an algorithmic correspondence between the factorizations of
v and v∗ as well.

2 Bijective proof of Proposition 1.1

In this section, we will construct a bijection between F(v), the set of factorizations
of v, and A(v), the set of alternating subwords of v. We begin with some notations
for simplicity. For a word w = w1w2 · · ·wk, we denote by F(w) := w1 and L(w) := wk

the first and last letter of w, respectively, and let w + wk+1 := w1w2 · · ·wkwk+1.

Theorem 2.1. For an xy-word v, the following map η is a bijection between the set
F(v) and set A(v).

Proof. Let v = u1 · u2 · · ·uk−1 · uk be a factorization of v with k factors. For k = 1,
we define η(v) = 1, i.e., an empty word. For k ≥ 2, we will construct a subword w
as follows:

1) We initialize w := L(uk−1) and j := k − 2;

2) This process stops for j = 0; otherwise, let a := L(w) and b := L(uj);

3) For a �= b, we set w := w + b and j := j − 1, and go to step 2);

4) For a = b, we consider the following two cases:

i) For |uj | > 1, uj is of the form either yix or xiy (i ≥ 1). We set w :=
w + F(uj), j := j − 1 and go to step 2);

ii) For |uj| = 1, we stop if |u1| = · · · = |uj| = 1; otherwise, we find the
largest l such that l < j and |ul| > 1. Set j := l and then go to step 2).

Therefore, we get an alternating subword w of v, and finally set η(v) = w∗.

For the converse, we could get the map from an alternating subword vT to one
factorization of v by reversing the above procedure. Given a word v = v1v2 · · ·vn and
an alternating subword vT , if vT = 1, then v itself is a factor; if vT = vj1vj2 · · ·vjk ,
then vjk+1 · · ·vn is the last factor of v, since there is no constraint on the last factor.
We can recover the factorization of v from right to left by the above rules and using
the requirements that other factors are in the form yix or xiy (i ≥ 0). Thus, the
map η is a bijection.

Let us give an example to illustrate the bijection η. For v = yyx · yx · x · x ·
yyyx · yx · 1, we label the letters x and y from left to right in natural order so as to
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distinguish them. Say v = u1 ·u2 ·u3 ·u4 ·u5 ·u6 ·u7, where u1 = y1y2x1, u2 = y3x2,
u3 = x3, u4 = x4, u5 = y4y5y6x5, u6 = y7x6, u7 = 1.

According to the bijection η, the corresponding alternating subword is determined
by the following steps. We initialize w := L(u6) = x6. For j = 5, we have L(u5) =
L(w) and w := w + F(u5) = x6y4 since |u5| > 1. For j = 4, we have L(u4) �= L(w),
and we set w := x6y4x4. For j = 3, we have L(u3) = L(w), and skip this factor from
|u3| = 1. Similar analysis can be applied to determine the remaining elements of w,
and finally we have w := x6y4x4y3x1, thereby η(v) = x1y3x4y4x6.

Table 1 gives an illustration of the correspondence between all the eighteen fac-
torizations of v = yxxyx and the alternating subwords of v.

v vT v vT

y1x1x2y2x3 1 y1 · x1x2y2 · x3 · 1 y2x3

y1 · x1x2y2x3 y1 y1x1 · x2 · y2 · x3 y1x2y2

y1x1 · x2y2x3 x1 y1x1 · x2y2 · x3 · 1 x1y2x3

y1 · x1 · x2y2x3 y1x1 y1x1 · x2 · y2x3 · 1 y1x3

y1 · x1x2y2 · x3 y2 y1 · x1 · x2 · y2 · x3 x2y2

y1x1 · x2 · y2x3 y1x2 y1 · x1 · x2y2 · x3 · 1 y1x1y2x3

y1x1 · x2y2 · x3 x1y2 y1x1 · x2 · y2 · x3 · 1 y1x2y2x3

y1 · x1 · x2 · y2x3 x2 y1 · x1 · x2 · y2x3 · 1 x3

y1 · x1 · x2y2 · x3 y1x1y2 y1 · x1 · x2 · y2 · x3 · 1 x2y2x3

Table 1: The correspondence between F(v) and A(v) for v = yxxyx.

It is noteworthy that DPv and DPv∗ yield the same descent polytope up to
an affine transformation, and therefore their f -polynomials agree, i.e., Fv = Fv∗ .
However, their f -polynomials are quite different from Eq. (1.2), and Chebikin and
Ehrenborg [1] asked for a bijection between the factorizations of v and v∗. We could
easily obtain the desired bijection by using our bijection η.

Corollary 2.1. For an xy-word v, there is a bijection θ between the factorizations
of v and v∗.

Proof. Given a factorization of the word v, define θ(v) := η−1(η(v)∗). Since η(v)
is an alternating subword of v, we find that η(v)∗ is an alternating subword of v∗.
Therefore, θ is the desired bijection from the properties of η.

An illustrative example is given in Table 2, which shows how the bijection θ works
between the factorizations of v = xyxx and v∗ = xxyx.

3 Bijective proof of Proposition 1.2

Let Ln denote the set of paths from (0, 0) to (n + 1, 0) with allowable up steps
u = (1, 1), down steps d = (1,−1) and horizontal steps h = (1, 0) contained within
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v vT (vT )∗ v∗

x1y1x2x3 1 1 x3x2y1x1

x1 · y1x2x3 x1 x1 x3 · x2 · y1x1 · 1
x1y1 · x2x3 y1 y1 x3x2y1 · x1

x1 · y1x2 · x3 x2 x2 x3 · x2 · y1x1

x1 · y1 · x2 · x3 · 1 x3 x3 x3 · x2y1x1

x1 · y1 · x2x3 x1y1 y1x1 x3x2y1 · x1 · 1
x1y1 · x2 · x3 y1x2 x2y1 x3 · x2 · y1 · x1

x1y1 · x2 · x3 · 1 y1x3 x3y1 x3 · x2y1 · x1

x1 · y1 · x2 · x3 x1y1x2 x2y1x1 x3 · x2 · y1 · x1 · 1
x1 · y1x2 · x3 · 1 x1y1x3 x3y1x1 x3 · x2y1 · x1 · 1

Table 2: The correspondence between factorizations of v and v∗ for v = xyxx.

the region −2 ≤ y ≤ 2. A path in Ln is called a positive (respectively, negative) path
if all the steps of the path are on or above (respectively, on or below) the x-axis.
A point of a path with y-coordinate k is said to be at level k. The level of a step
(or a path) is the level of its endpoint. By a return step we mean a d step or a u
step at level 0. A primitive path is a path with just one return step, and we define
a positive (respectively, negative) primitive path similarly. Denote by P(n) the set
of primitive paths in Ln, and we have

Lemma 3.1. For k ≥ 1, |P(k)| = 2k.

Proof. Given a positive primitive path in P(k), there is only one down step from
level 1 to level 0, namely the last step. Assume we leave the x-axis at position x = j,
and note that 0 ≤ j ≤ k − 1. For j �= k − 1, we claim the remaining k − j − 2
steps each having two choices. Namely, if you are currently at level 1 then your next
step is either a horizontal step h or an up step u, whereas if you are currently at
level 2 then your next step is either a horizontal step h or a down step d. Hence
for 0 ≤ j < k − 1, we have 2k−j−2 possible paths. When j = k − 1, there is only
one path, namely the path consisting of the initial k− 2 horizontal steps followed by
one up step u and one down step d. The total number of positive primitive paths in
P(k) is thus 1 +

∑k−2
j=0 2

k−j−2 = 2k−1.

We can obtain all the negative primitive paths in P(k) by reflecting the positive
primitive paths in P(k) over the x-axis. Thus the total number of primitive paths
in P(k) is |P(k)| = 2 · 2k−1 = 2k as claimed.

A composition of a positive integer n is a finite sequence of positive integers
c1, c2, . . . , ck such that c1 + c2 + · · ·+ ck = n, and we say that this composition has k
parts if there are exactly k summands appeared in it. A composition of n can also be
represented as a line of n dots in which there is at most one vertical bar in between
each of the n− 1 spaces determined by these points. For example, the composition
10 = 4 + 1 + 3 + 2 can be represented as
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� � � � � � � � � �

A weighted composition is one where each part is assigned a given weight. Let
W1(n) be the set of weighted compositions of n such that each part has one dot
and the weight of each part is given by 1 or t. Let W2(n) be the set of weighted
compositions of n such that there are at most two dots in each part except the last
one, and each part is given by the weight 1 or t.

From Eq. (1.3), we can identify a face of the descent polytope DPzn−1 as some
weighted composition. In order to give a correspondence between paths in Ln and
faces in descent polytope DPzn−1 , it suffices to provide a bijection between paths in
Ln and weighted compositions in W2(n).

It is easy to see that the number of weighted compositions in W1(n) is 2
n since

every part has two different weight assignment, and this gives |P(n)| = |W1(n)| from
Lemma 3.1. It motivates us to first consider a bijection between primitive paths of
length n+ 1 and the set W1(n).

Lemma 3.2. There is a bijection ϕ between the set P(n) and set W1(n).

Proof. Given a weighted composition in W1(n), it is uniquely determined by the
weight of the n parts, and thus we encode such a composition by a sequence c =
c1c2 · · · cn, where ci is the weight of the i-th part of the composition with ci = 1 or t.

Let P = p1p2 · · · pn+1 be a primitive path in P(n), where pi (1 ≤ i ≤ n+1) equals
u, d or h. To establish the correspondence ϕ(P ), it suffices to determine a sequence
c = c1c2 · · · cn. We first define cn = t for positive path P ; otherwise cn = 1, and this
distinguishes positive primitive paths from negative primitive paths. We claim that
c1, c2, . . . , cn−1 are determined by the first n−1 steps p1, p2, . . . , pn−1 of P as follows.

For 1 ≤ i ≤ n− 1 and cn = t, if pi is a first up step of P or an up step at level 2
or a horizontal step at level 2, then ci = t; otherwise ci = 1. For 1 ≤ i ≤ n− 1 and
cn = 1, if pi is a first down step of P or a down step at level −2 or a horizontal step
at level −2, then ci = t; otherwise ci = 1. Apparently, ϕ(P ) is an element of W1(n).

To show that ϕ is a bijection, it remains to construct the inverse map ϕ−1 from
W1(n) to P(n). Let c = c1c2 · · · cn be a weighted composition in W1(n), and suppose
P = ϕ−1(c). If cn = t, then P is positive, and if cn = 1, then P is negative. Without
loss of generality, we assume that cn = t, and the path P can be generated recursively
as follows:

1. Set P0 = ∅ be the empty path, and the level of P0 is 0.

2. For 1 ≤ i ≤ n − 1, the path Pi is obtained from Pi−1 by adding one step as
follows:

(i) For the path Pi−1 at level 0 or 1, we add a horizontal step after Pi−1 if
ci = 1; otherwise, we add an up step after Pi−1.

(ii) For the path Pi−1 at level 2, we add a down step after Pi−1 if ci = 1;
otherwise, we add a horizontal step after Pi−1.
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3. The path P is obtained from Pn−1 by setting P := Pn−1ud if the path Pn−1 is
at level 0; P := Pn−1hd if the path Pn−1 is at level 1; and P := Pn−1dd if the
path Pn−1 is at level 2.

From the previous construction, we can easily see that P is primitive and lies in the
region 0 ≤ y ≤ 2, and the negative path P can be constructed similarly for cn = 1.
Thus we obtain the desired bijection between the set P(n) and set W1(n).

Now we are in the position to give a combinatorial proof of Proposition 1.2.

Theorem 3.1. There exists a bijection ψ between the set Ln and set W2(n).

Proof. For a path P ∈ Ln, we first decompose it into the form P = P1P2 · · ·Pkh
m

(m ≥ 0), where each Pi (1 ≤ i ≤ k) is a primitive path. The weighted composition
ψ(P ) can be defined as follows.

For each primitive path Pi (1 ≤ i ≤ k − 1), let Ci be the weighted composition
obtained from ϕ(Pi) by adding one dot in the last of its part. For the last primitive
path Pk, let Ck be the weighted composition obtained from ϕ(Pk) by adding m dots
in the last of its part if there are m horizontal steps after the path Pk in P . Then
the desired composition ψ(P ) is C1C2 · · ·Ck. Since the length of the composition Ci

(1 ≤ i ≤ k − 1) equals the length of the path Pi, and the length of the composition
Ck equals the length of the path Pk plus m − 1. Thus, ψ(P ) is a composition of
W2(n).

It is routine to verify that for any weighted composition of n, one may reverse
every step of the map ψ to obtain a path in Ln. Thus the map ψ is the desired
bijection.

In Figure 1, we give an example for a path in L19, where the vertical lines are
used to indicate the primitive path decomposition and the labels on the parts of
weight 1 are omitted.

P1 P2 P3 P4

� �

�

�

� �

�

�

�

�

�

�

�

�

� �

�

� � � � −→ � � � � � � � � � � � � � � � � � � �

t t t t t t t t t

C1 C2 C3 C4

Figure 1: An illustration of the bijection ψ on a path in L19.

For completeness, Figure 2 shows the correspondence between all the paths in Ln

and weighted compositions in W2(n) for n = 3.
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Figure 2: The correspondence between L3 and W2(3).
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