Covering a subset with two cycles

Hong Wang
Department of Mathematics
The University of Idaho
Moscow, Idaho 83844
U.S.A.

Abstract

Let G be a graph of order n. Let W be a subset of $V(G)$ with $|W| \geq 6$. We show that if $d(x) \geq 2 n / 3$ for each $x \in W$, then for any partition $|W|=n_{1}+n_{2}$ with $n_{1} \geq 3$ and $n_{2} \geq 3, G$ contains two vertex-disjoint cycles C_{1} and C_{2} such that C_{1} contains n_{1} vertices of W and C_{2} contains n_{2} vertices of W.

1 Introduction

Let G be a graph of order n. A set of subgraphs of G is said to be independent if no two of them have any common vertex in G. Corrádi and Hajnal [3] investigated the maximum number of independent cycles in a graph. They proved that if G is a graph of order at least $3 k$ with minimum degree at least $2 k$, then G contains k independent cycles. In particular, when the order of G is exactly $3 k$, then G contains k independent triangles. El-Zahar [4] proved that if G is a graph of order $n_{1}+n_{2}$ with $n_{1} \geq 3$ and $n_{2} \geq 3$ and the minimum degree of G is at least $\left\lceil n_{1} / 2\right\rceil+\left\lceil n_{2} / 2\right\rceil$, then G contains two independent cycles of orders n_{1} and n_{2}, respectively. Sauer and Spencer in their work [5] conjectured that if the minimum degree of G is at least $2 n / 3$ then G contains every graph of order n with maximum degree of at most 2. This conjecture was proved by Aigner and Brandt [1]. In [7], we proposed the following conjecture:

Conjecture [7] Let G be a graph of order $n \geq 3$. Let W be a subset of $V(G)$ with $|W| \geq 3 k$ where k is a positive integer. Suppose that $d(x) \geq 2 n / 3$ for each $x \in W$. Then for any integer partition $|W|=n_{1}+\cdots+n_{k}$ with $n_{i} \geq 3(1 \leq i \leq k)$, G contains k independent cycles C_{1}, \ldots, C_{k} such that $\left|V\left(C_{i}\right) \cap W\right|=n_{i}$ for all $1 \leq i \leq k$.

This conjecture is supported by the following theorem:
Theorem A [7] Let G be a graph of order $n \geq 3$. Let W be a subset of $V(G)$ with $|W| \geq 3 k$ where k is a positive integer. Suppose that $d(x) \geq 2 n / 3$ for each $x \in W$. Then G contains k independent cycles such that each of the k cycles contains at least three vertices of W.

Our work is also motivated by the work of Ronghua Shi [6], who showed that if G is 2 -connected and $d(x) \geq n / 2$ for each $x \in U$ then G contains a cycle passing through all the vertices of U, where U is a subset of $V(G)$.

In this paper, we prove the following:
Theorem B Let G be a graph of order n. Let W be a subset of $V(G)$ with $|W| \geq 6$. If $d(x) \geq 2 n / 3$ for each $x \in W$, then for any partition $|W|=n_{1}+n_{2}$ with $n_{1} \geq 3$ and $n_{2} \geq 3, G$ contains two independent cycles C_{1} and C_{2} such that C_{1} contains n_{1} vertices of W and C_{2} contains n_{2} of W.

We discuss only finite simple graphs and use standard terminology and notation from [2] except as indicated. Let G be a graph and u be a vertex of G. If H is a subgraph of G or a subset of $V(G)$ or a sequence of vertices of G, we define $N(u, H)$ to be the set of neighbors of u contained in H. Let $e(u, H)=|N(u, H)|$. Thus $e(u, G)$ is the degree of u in G. If each of X_{1}, \ldots, X_{k} is a subgraph of G or a subset of $V(G)$ or a sequence of vertices of G, we use $\left[X_{1}, X_{2}, \ldots, X_{k}\right]$ to denote the subgraph of G induced by the set of all the vertices x i that belongs to some of $X_{1}, X_{2}, \ldots, X_{k}$. If each of X and Y is a subgraph of G or a subset of $V(G)$ or a sequence of vertices of G, we define $e(X, Y)=\sum_{x} e(x, Y)$ where x runs over X. The length of a cycle or a path L is denoted by $l(L)$. If W is a subset of $V(G)$, then the W-length of L is the number of vertices of L that are contained in W. We denote the W-length of L by $l_{W}(L)$. i If we list $V(L)=\left\{u_{1}, u_{2}, \ldots, u_{k}\right\}$, then operations in the subscripts of u_{i} 's will be taken modulo k in $\{1,2, \ldots, k\}$.

A chord of a cycle C in G is an edge of $G-E(C)$ that joins two vertices of C. If we write $C=x_{1} x_{2} \ldots x_{m} x_{1}$, we assume that an orientation of C is given such that x_{2} is the successor of x_{1}. Moreover, we use x_{i}^{+}and x_{i}^{-}to denote the successor and predecessor of x_{i}, respectively. We use $C\left[x_{i}, x_{j}\right]$ to represent the path of C from x_{i} to x_{j} along the orientation of C. We adopt the notation $C\left(x_{i}, x_{j}\right]=C\left[x_{i}, x_{j}\right]-x_{i}$, $C\left[x_{i}, x_{j}\right)=C\left[x_{i}, x_{j}\right]-x_{j}$ and $C\left(x_{i}, x_{j}\right)=C\left[x_{i}, x_{j}\right]-x_{i}-x_{j}$. We use C^{-}to denote the cycle C with its opposite orientation.

If x and y are two vertices of G and H is a subgraph of G or a subset of V, we define $I(x y, H)=N(x, H) \cap N(y, H)$. Let $i(x y, H)=|I(x y, H)|$. For a subset W of V, let $\delta_{W}(G)=\min \{e(x, G) \mid x \in W\}$.

2 Lemmas

Let $G=(V, E)$ be a graph of order n and W a subset of V. Lemma 2.1 is an easy observation.

Lemma 2.1 If $P=x_{1} \ldots x_{k}$ is a path of G and u is a vertex in $V-V(P)$ such that $e(u, P) \geq(k+1) / 2$, then $[P, u]$ has a hamiltonian path from x_{1} to x_{k} or k is odd and $N(u, P)=\left\{x_{1}, x_{3}, x_{5}, \ldots, x_{k}\right\}$.

Lemma 2.2 If $P=x_{1} \ldots x_{k}$ is a path of G and u is a vertex in $V-V(P)$ such that $e\left(u x_{k}, P\right) \geq k+1$, then $[P, u]$ has a hamiltonian path from x_{1} to u.

Proof. The condition implies that for some $i \in\{1, \ldots, k-1\},\left\{x_{k} x_{i}, u x_{i+1}\right\} \subseteq E$ and so $x_{1} \ldots x_{i} x_{k} x_{k-1} \ldots x_{i+1} u$ is a required path.

Lemma 2.3 If $P=x_{1} \ldots x_{k}$ is a path of G and u and v are two vertices in $V-V(P)$ such that $e(u v, P) \geq k+2$, then $[P, u, v]$ has a hamiltonian path from x_{1} to x_{k} or $e(u v, P)=k+2$ and $e\left(u v, x_{1} x_{k}\right)=4$.

Proof. Let $X=\left\{x_{i+1} \mid u x_{i} \in E, 1 \leq i \leq k\right\}$ and $Y=\left\{x_{i-1} \mid u x_{i} \in E, 1 \leq i \leq k\right\}$, where $x_{k+1}=x_{1}$ and $x_{0}=x_{k}$. Then $|X|=e(u, P)$. Thus $e(u v, P)=|X|+$ $e(v, P) \geq k+2$. Therefore $N(v, P) \cap X$ contains at least two distinct vertices x_{i+1} and x_{j+1} with $i<j$. Let x_{i+1} and x_{j+1} be chosen with j minimal. If $j<k$, then $x_{1} \ldots x_{i} u x_{j} x_{j-1} \ldots x_{i+1} v x_{j+1} \ldots x_{k}$ is a required path. If $j=k$, then $|N(v, P) \cap X|=$ $2, e(u v, P)=k+2$ and $\left\{u x_{k}, v x_{1}\right\} \subseteq E$. Applying a similar argument with Y in place of X, we obtain $\left\{u x_{1}, v x_{k}\right\} \subseteq E$.

Lemma 2.4 Let C be a cycle of order k in G with a given direction and $V(C) \supseteq W$. Let x and y be two vertices on C. Let x^{\prime} be the first vertex of W that succeeds x and y^{\prime} the first vertex of W that succeeds y. If $e\left(x^{\prime} y^{\prime}, C\right) \geq k+1$, then $[C]$ contains an $x-y$ path P such that $W \subseteq V(P)$.

Proof. The condition implies that either there exists u on $C\left[x^{\prime}, y^{\prime}\right)$ such that $\left\{y^{\prime} u^{-}, x^{\prime} u\right\} \subseteq E$ or there exists v on $C\left[y^{\prime}, x^{\prime}\right)$ such that $\left\{x^{\prime} v^{-}, y^{\prime} v\right\} \subseteq E$. If $e\left(x^{\prime}, C\left(y, y^{\prime}\right]\right)>0$ or $e\left(y^{\prime}, C\left(x, x^{\prime}\right]\right)>0$, then we readily see that there is a required path. So assume that $e\left(x^{\prime}, C\left(y, y^{\prime}\right]\right)=0$ and $e\left(y^{\prime}, C\left(x, x^{\prime}\right]\right)=0$. Thus either u is on $C\left(x^{\prime}, y\right]$ or v is on $C\left(y^{\prime}, x\right]$. Say without loss of generality that the former holds. Then $x C^{-}\left[x, y^{\prime}\right] u^{-} C^{-}\left[u^{-}, x^{\prime}\right] u C[u, y] y$ is a required path.

Lemma 2.5 Let C be a cycle of order k in G with a given direction and $V(C) \supseteq W$. Let λ be a nonnegative integer. Suppose that for each pair x and y of vertices in W, if $[C]$ has an $x-y$ path containing W then $e(x y, C) \geq k+\lambda$. Then $e(u v, C) \geq k+\lambda$ for all $\{u, v\} \subseteq W$ with $u \neq v$.

Proof. On the contrary, say $e(u v, C) \leq k+\lambda-1$ for some $\{u, v\} \subseteq W$ with $u \neq v$. Let x be the first vertex of W that succeeds u and y the first vertex of W succeeds v. Then $e(x u, C) \geq k+\lambda$ and $e(y v, C) \geq k+\lambda$. Thus $e(x y, C) \geq 2(k+\lambda)-(k+\lambda-1)=$ $k+\lambda+1$. By Lemma 2.4, $[C]$ has a $u-v$ path containing W and so $e(u v, C) \geq k+\lambda$, a contradiction.

Lemma 2.6 Let W be a subset of V with $|W| \geq 3$. If $e(x, G) \geq n / 2$ for all $x \in W$, then G has a cycle C such that $V(C) \supseteq W$.

Proof. Let P be a path with its two endvertices in W such that $l_{W}(P)$ is as large as possible. Say $P=x_{1} \ldots x_{k}$. If there exists $y \in W-V(P)$, then $e\left(y x_{k}, G-V(P)\right) \leq$ $n-k-1$. This would yield that $e\left(y x_{k}, P\right) \geq n-(n-k-1)=k+1$ and so $[P, y]$ contains a hamiltonian path from x_{1} to y by Lemma 2.2, contradicting the maximality of P. Thus $V(P) \supseteq W$. The lemma holds if $I\left(x_{1} x_{k}, G-V(P)\right) \neq \emptyset$. If $I\left(x_{1} x_{k}, G-V(P)\right)=\emptyset$ then $e\left(x_{1} x_{k}, G-V(P)\right) \leq n-k$ and so $e\left(x_{1} x_{k}, P\right) \geq k$ and consequently, $[P]$ is hamiltonian.

3 Proof of the Theorem

Let $G=(V, E)$ be a graph of order n. Let W be a subset of V such that $|W| \geq 6$ and $e(x, G) \geq 2 n / 3$ for each $x \in W$. Suppose, for a contradiction, that G does not contain two independent cycles of W-lengths n_{1} and n_{2}, respectively for some partition $|W|=n_{1}+n_{2}$ with $n_{1} \geq 3$ and $n_{2} \geq 3$. Then $n_{1}+n_{2}<n$ by El-Zahar's result mentioned in the introduction and $n_{1}+n_{2} \geq 7$ by Theorem A. Thus $n \geq 8$. The degree condition is still maintained when the edges of $G-W$ are removed from G. So we may assume that $G-W$ has no edges.

We need some special terminology and notation. A W-path of G is a path with its endvertices in W. Let \mathcal{H} denote the set of all the subgraphs H such that H has a cycle C with $V(C) \supseteq V(H) \cap W$. Let \mathcal{P} denote the set of all the subgraphs H such that H has a path P with $V(P) \supseteq V(H) \cap W$.

By Lemma 2.6, $G \in \mathcal{H}$ and so G conatins two independent W-paths P_{1} and P_{2} such that

$$
\begin{equation*}
l_{W}\left(P_{1}\right)=n_{1} \text { and } l_{W}\left(P_{2}\right)=n_{2} \tag{1}
\end{equation*}
$$

Subject to (1), we choose P_{1} and P_{2} in G such that

$$
\begin{equation*}
l\left(P_{1}\right)+l\left(P_{2}\right) \text { is minimal. } \tag{2}
\end{equation*}
$$

Let $G_{1}=\left[P_{1}\right]$ and $G_{2}=\left[P_{2}\right]$. Subject to (1) and (2), choose P_{1} and P_{2} such that

$$
\begin{equation*}
e\left(G_{1}\right)+e\left(G_{2}\right) \text { is maximal. } \tag{3}
\end{equation*}
$$

Say $R=V(G)-V\left(G_{1} \cup G_{2}\right), P_{1}=x_{1} x_{2} \ldots x_{s}, P_{2}=y_{1} y_{2} \ldots y_{t}$ and $|R|=r$. Thus R is an independent set of G and $n=r+s+t$. Note that $\lceil 2 n / 3\rceil \geq\lceil n / 2\rceil+1$.

Lemma 3.1 Either $I\left(x_{1} x_{s}, R\right)=\emptyset$ or $I\left(y_{1} y_{t}, R\right)=\emptyset$.
Proof. On the contrary, say $I\left(x_{1} x_{s}, R\right) \neq \emptyset$ and $I\left(y_{1} y_{t}, R\right) \neq \emptyset$. As G does not contain two required cycles, there exists $u \in R$ such that $I\left(x_{1} x_{s}, R\right)=I\left(y_{1} y_{t}, R\right)=$ $\{u\}$. Moreover, $G_{1} \notin \mathcal{H}$ and $G_{2} \notin \mathcal{H}$. It follows that $e\left(x_{1} x_{s}, R\right) \leq r+1, e\left(y_{1} y_{t}, R\right) \leq$ $r+1, e\left(x_{1} x_{s}, G_{1}\right) \leq s-1$, and $e\left(y_{1} y_{t}, G_{2}\right) \leq t-1$. Thus $e\left(x_{1} x_{s}, G_{2}\right) \geq 4 n / 3-(r+s)=$ $t+n / 3>t+2$ and $e\left(y_{1} y_{t}, G_{1}\right) \geq 4 n / 3-(r+t)=s+n / 3>s+2$. By Lemma 2.3, $G_{1}-x_{1}-x_{s}+y_{1}+y_{t} \in \mathcal{P}$ and $G_{2}-y_{1}-y_{t}+x_{1}+x_{s} \in \mathcal{P}$. In the meantime, we have

$$
\begin{aligned}
& e\left(G_{1}-x_{1}-x_{s}+y_{1}+y_{t}\right)+e\left(G_{2}-y_{1}-y_{t}+x_{1}+x_{s}\right) \\
& =e\left(G_{1}\right)-e\left(x_{1} x_{s}, G_{1}\right)+e\left(y_{1} y_{t}, G_{1}\right)+e\left(G_{2}\right)-e\left(y_{1} y_{t}, G_{2}\right)+e\left(x_{1} x_{s}, G_{2}\right) \\
& \quad-2 e\left(x_{1} x_{s}, y_{1} y_{t}\right) \\
& \geq e\left(G_{1}\right)-(s-1)+(s+3)+e\left(G_{2}\right)-(t-1)+(t+3)-2 e\left(x_{1} x_{s}, y_{1} y_{t}\right) \\
& =e\left(G_{1}\right)+e\left(G_{2}\right)+8-2 e\left(x_{1} x_{s}, y_{1} y_{t}\right) \geq e\left(G_{1}\right)+e\left(G_{2}\right) .
\end{aligned}
$$

By (1), (2) and (3), we see the equality must holds in these inequalities and $e\left(x_{1} x_{s}, y_{1} y_{t}\right)=4$. On the other hand, we see that

$$
\begin{aligned}
& e\left(x_{1}, G_{2}\right)+e\left(y_{1}, G_{1}\right)-e\left(x_{1}, G_{1}\right)-e\left(y_{1}, G_{2}\right) \\
& \quad+e\left(x_{s}, G_{2}\right)+e\left(y_{t}, G_{1}\right)-e\left(x_{s}, G_{1}\right)-e\left(y_{t}, G_{2}\right) \geq 8 .
\end{aligned}
$$

Thus either $e\left(x_{1}, G_{2}\right)+e\left(y_{1}, G_{1}\right)-e\left(x_{1}, G_{1}\right)-e\left(y_{1}, G_{2}\right) \geq 4$ or $e\left(x_{s}, G_{2}\right)+e\left(y_{t}, G_{1}\right)-$ $e\left(x_{s}, G_{1}\right)-e\left(y_{t}, G_{2}\right) \geq 4$. Say without loss of generality that the former holds. Then

$$
\begin{aligned}
& e\left(G_{1}-x_{1}+y_{1}\right)+e\left(G_{2}-y_{1}+x_{1}\right) \\
& \quad=e\left(G_{1}\right)-e\left(x_{1}, G_{1}\right)+e\left(y_{1}, G_{1}\right)+e\left(G_{2}\right)-e\left(y_{1}, G_{2}\right)+e\left(x_{1}, G_{2}\right)-2 e\left(x_{1}, y_{1}\right) \\
& \quad \geq e\left(G_{1}\right)+e\left(G_{2}\right)+4-2 e\left(x_{1}, y_{1}\right) \geq e\left(G_{1}\right)+e\left(G_{2}\right)+2
\end{aligned}
$$

This contradicts (3) since $G_{1}-x_{1}+y_{1} \in \mathcal{P}$ and $G_{2}-y_{1}+x_{1} \in \mathcal{P}$.
Lemma 3.2 Either $G_{1} \notin \mathcal{H}$ and $I\left(x_{1} x_{s}, R\right)=\emptyset$ or $G_{2} \notin \mathcal{H}$ and $I\left(y_{1} y_{t}, R\right)=\emptyset$.
Proof. Since either $G_{1} \notin \mathcal{H}$ or $G_{2} \notin \mathcal{H}$, say without loss of generality $G_{1} \notin \mathcal{H}$. If $I\left(x_{1} x_{s}, R\right)=\emptyset$, we are done. Otherwise, $I\left(x_{1} x_{s}, R\right) \neq \emptyset$, and so $G_{2} \notin \mathcal{H}$. Moreover, by Lemma 3.1, $I\left(y_{1} y_{t}, R\right)=\emptyset$.

By Lemma 3.2, we may assume without loss of generality that $G_{1} \notin \mathcal{H}$ and $I\left(x_{1} x_{s}, R\right)=\emptyset$. Thus

$$
\begin{equation*}
e\left(x_{1} x_{s}, G_{1}+R\right) \leq s-1+r . \tag{4}
\end{equation*}
$$

Therefore $2 t \geq e\left(x_{1} x_{s}, G_{2}\right) \geq 4 n / 3-(r+s-1)=t+n / 3+1$ and this implies

$$
\begin{equation*}
t \geq\lceil n / 3\rceil+1 \tag{5}
\end{equation*}
$$

We shall divide our proof of the theorem into two parts: $r \leq\lceil n / 3\rceil-1$ or $r \geq\lceil n / 3\rceil$.
Part I: $r \leq\lceil n / 3\rceil-1$
Let $H=G-R$ and $p=|V(H)|$. Then $\delta_{W}(H) \geq\lceil 2 n / 3\rceil-r=\lceil p / 2+(p-2 r) / 6\rceil \geq$ $(p+1) / 2$. As $e\left(x_{1} x_{s}, G_{1}\right) \leq s-1$, we may assume that $e\left(x_{1}, G_{1}\right) \leq e\left(x_{s}, G_{1}\right)$. Thus $e\left(x_{1}, G_{1}\right) \leq(s-1) / 2$ and so $e\left(x_{1}, G_{2}\right) \geq\lceil(p+1) / 2\rceil-\lfloor(s-1) / 2\rfloor \geq t / 2+1$. We claim that if u is an endvertex of a hamiltonian path of G_{2}, then either $e\left(u, G_{2}\right) \geq(t+1) / 2$ or $e\left(u, G_{2}\right)=t / 2$ and $x_{1} u \in E$. To see this, say without loss of generality that $e\left(u, G_{2}\right) \leq t / 2$. Then $e\left(u, G_{1}\right) \geq\lceil(p+1) / 2\rceil-\lfloor t / 2\rfloor \geq(s+1) / 2$. By Lemma 2.1, $G_{1}-x_{1}+u \in \mathcal{P}$ and $G_{2}-u+x_{1} \in \mathcal{P}$. By (3), we have

$$
\begin{aligned}
& e\left(G_{1}\right)+e\left(G_{2}\right) \\
& \quad \geq e\left(G_{1}-x_{1}+u\right)+e\left(G_{2}-u+x_{1}\right) \\
& \quad \geq e\left(G_{1}\right)-(s-1) / 2+(s+1) / 2+e\left(G_{2}\right)-t / 2+t / 2+1-2 e\left(x_{1}, u\right) \\
& \quad=e\left(G_{1}\right)+e\left(G_{2}\right)+2-2 e\left(x_{1}, u\right) \\
& \quad \geq e\left(G_{1}\right)+e\left(G_{2}\right) .
\end{aligned}
$$

This implies that $e\left(u, G_{2}\right)=t / 2$ and $x_{1} u \in E$. Therefore the claim holds. Thus $G_{2} \in \mathcal{H}$ and so $G_{2}+x_{1} \in \mathcal{H}$ by Lemma 2.1. By (2), $n_{2}=t$. Say without loss of generality that $y_{1} y_{2} \ldots y_{t} y_{1}$ is a hamiltonian cycle of G_{2}. For each y_{i}, if $G_{2}-y_{i} \in \mathcal{H}$, then $G_{2}-y_{i}+x_{1} \in \mathcal{H}$ because $e\left(x_{1}, G_{2}-y_{i}\right) \geq t / 2$, and if $G_{2}-y_{i} \notin \mathcal{H}$ then $e\left(y_{i-1}, G_{2}\right)=e\left(y_{i+1}, G_{2}\right)=t / 2$ and so $G_{2}-y_{i}+x_{1} \in \mathcal{H}$ since $e\left(x_{1}, y_{i-1} y_{i+1}\right)=2$ in this situation.

Say $H_{1}=G_{1}-x_{1}$ and $H_{2}=G_{2}+x_{1}$. Then $H_{1}+R+v \notin \mathcal{H}$ for all $v \in V\left(H_{2}\right)$. Thus for any $x-y W$-path P of H_{1} with $P \in \mathcal{P}, e(v, x y) \leq 1$ for all $v \in V\left(H_{2}\right)$ and so $e\left(x y, H_{1}\right) \geq p+1-e\left(x y, H_{2}\right) \geq p+1-(t+1)=(s-1)+1$. It follows that $H_{1} \in \mathcal{H}$. Let C be a cycle of H_{1} such that if H_{1} is hamiltonian then C is a hamiltonian cycle of H_{1} and otherwise $x_{2} \notin W, x_{3} \in W$ and C is a hamiltonian cycle of $H_{1}-x_{2}$. Let u and v be any two vertices in $V\left(H_{1}\right) \cap W$. We claim that H_{1} has a u - v path containing $V\left(H_{1}\right) \cap W$ and $e\left(u v, H_{1}\right) \geq(s-1)+1$. To see this, let x be the first vertex of W that succeeds u and y the first vertex of W that succeeds v on C. If $I\left(x y, H_{1}-V(C)\right) \neq \emptyset$, we readily see that H_{1} has $u-v$ path $P \in \mathcal{P}$ and so $e\left(u v, H_{1}\right) \geq(s-1)+1$. So assume $I\left(x y, H_{1}-V(C)\right)=\emptyset$. By Lemma 2.4, we may also assume that $e(x y, C) \leq|V(C)|$. Thus $e\left(x y, H_{1}\right) \leq s-1$ and so H_{1} does not have an x - y path containing $V\left(H_{1}\right) \cap W$. This implies that $e(u v, C) \leq|V(C)|$ by Lemma 2.4 and $I\left(u v, H_{1}-V(C)\right)=\emptyset$. Thus $e\left(u v, H_{1}\right) \leq s-1$. Since $e\left(u x, H_{1}\right) \geq(s-1)+1$ and $e\left(v y, H_{1}\right) \geq(s-1)+1$, either $e\left(x y, H_{1}\right) \geq(s-1)+1$ or $e\left(u v, H_{1}\right) \geq(s-1)+1$, a contradiction. Therefore the claim holds.

Label $C=c_{1} c_{2} \ldots c_{l} c_{1}$ with $l=|V(C)|$ such that if C is a hamiltonian cycle of H_{1} then $c_{1}=x_{2}$ and otherwise C is a hamiltonian cycle of $H_{1}-x_{2}$ with $x_{2} \notin W$ and we let $c_{1}=x_{3}$. Then G_{1} has an $x_{1}-c_{2}$ hamiltonian path and an $x_{1}-c_{l}$ hamiltonian path. By (2), we see that $\left\{c_{2}, c_{l}\right\} \subseteq W$. Suppose that there exists $i \in\{3, \ldots, l-1\}$ such that $c_{i} \notin W$. Let c_{i} be chosen with i maximal. Then $e\left(c_{2} c_{i+1}, H_{1}\right) \geq(s-1)+1$. Notice that if C is not a hamiltonian cycle of H_{1} then $c_{2} x_{2} \notin E$ and $c_{l} x_{2} \notin E$. By Lemma 2.4, $[C]$ contains a $c_{1}-c_{i}$ path containing $V(C) \cap W$. Thus G_{1} has $x_{1}-c_{i}$ path P^{\prime} containing $V\left(G_{1}\right) \cap W$. By (2), $c_{i} \in W$, a contradiction. Therefore $\left\{c_{2}, \ldots, c_{l}\right\} \subseteq W$. Thus either $n_{1}=s$ or $n_{1}=s-1$ with $x_{2} \notin W$. Since $G_{1} \notin \mathcal{H}$, we also see, from this argument, that $e\left(x_{1}, C\right) \leq 1$ and so $e\left(x_{1}, H_{1}\right) \leq 2$.

As $e\left(c_{2} c_{l}, H_{2}\right) \leq t+1$, we may assume without loss of generality that $e\left(c_{l}, H_{2}\right) \leq$ $(t+1) / 2$. Clearly, $I\left(x_{1} c_{l}, R\right)=\emptyset$. Let a be a rational number such that $e\left(x_{1}, R\right)=$ $r / 2+a$. Then $e\left(c_{l}, R\right) \leq r / 2-a$. Clearly, $t \geq e\left(x_{1}, G_{2}\right) \geq 2 n / 3-r / 2-a-2=$ $t / 2+s / 2+n / 6-a-2$ and $s-2 \geq e\left(c_{l}, H_{1}\right) \geq 2 n / 3-(t+1) / 2-r / 2+a=$ $s / 2+n / 6-1 / 2+a$. It follows that $t \geq s+n / 3-2 a-4$ and $s \geq n / 3+2 a+3$. Consequently, $n=s+t+r \geq s+2 n / 3-1+r \geq n+2 a+2+r \geq n+2$, a contradiction.
Part II: $r \geq\lceil n / 3\rceil$
Since $n \geq 8, r \geq 3$. By (5), $n=s+r+t \geq 3+\lceil n / 3\rceil+\lceil n / 3\rceil+1$ and it follows that $n \geq 12$. We claim

$$
\begin{equation*}
n_{1} \geq 4, n_{2} \geq 4 \text { and } n \geq 15 . \tag{6}
\end{equation*}
$$

If this is not true, say $\min \left\{n_{1}, n_{2}\right\}=3$. Let C be a cycle of G containing at least three vertices of W with $l_{W}(C)$ as small as possible and subject to this, we choose
C with $l(C)$ as small as possible. Suppose that $l_{W}(C) \geq 4$. Then $e(x, C)=2$ for all $x \in V(C) \cap W$. Thus $e(x y, G-V(C)) \geq 4 n / 3-4=n-l(C)+n / 3+l(C)-4$ and so $i(x y, G-V(C)) \geq n / 3+l(C)-4$ for all $\{x, y\} \subseteq V(C) \cap W$ with $x \neq y$. By the mimimality of C, we see that $l_{W}(C)=l(C)=4$. Say $C=w_{1} w_{2} w_{3} w_{4} w_{1}$. Then $I\left(w_{i} w_{i+1}, G-V(C)\right) \cap W=\emptyset$ and $I\left(w_{i} w_{i+2}, G-V(C)\right) \subseteq W$ by the minmality of $l_{W}(C)$ for all $i \in\{1,2,3,4\}$. Clearly, $i\left(w_{1} w_{2}, G-V(C)\right)+e\left(w_{3}, G-V(C)\right) \geq$ $n / 3+2 n / 3-2>n-l(C)$ and so $I\left(w_{i} w_{i+1}, G-V(C)\right) \cap N\left(w_{3}, G-V(C)\right) \neq \emptyset$, a contradiction. Therefore $l_{W}(C)=3$ and so $G-V(C) \notin \mathcal{H}$. Moreover, we see $e(x, C) \leq 3$ for all $x \in W-V(C)$ by the minimality of $l(C)$ and so $e(x, G-V(C)) \geq$ $2 n / 3-3>(n-l(C)) / 2$ for all $x \in W-V(C)$. Consequently, $G-V(C) \in \mathcal{H}$, a contradiction. So $n_{1} \geq 4$ and $n_{2} \geq 4$. Since $n=s+r+t \geq 4+\lceil n / 3\rceil+\lceil n / 3\rceil+1$, it follows that $n \geq 15$. Hence (6) holds.

We claim that for each $y \in V\left(G_{2}\right) \cap W, e\left(y, G_{2}+R\right) \geq(r+t+1) / 2$. If this is not true, say $e\left(y, G_{2}+R\right) \leq(r+t) / 2$ for some $y \in V\left(G_{2}\right) \cap W$. Then $s \geq$ $e\left(y, G_{1}\right) \geq 2 n / 3-(r+t) / 2=s / 2+n / 6$. Thus $s \geq n / 3$. With (5), we obtain $n=r+s+t \geq n / 3+n / 3+n / 3+1=n+1$, a contradiction. Hence the claim holds. Thus either G_{2} is hamiltonian and so $V\left(G_{2}\right) \subseteq W$ by (2) or $G_{2}+u$ is hamiltonian for some $u \in R$. Let C be a hamiltonian cycle of G_{2} if G_{2} is hamiltonian and otherwise let C be a hamiltonian cycle of $G_{2}+y_{0}$ for some $y_{0} \in I\left(y_{1} y_{t}, R\right)$. Clearly, $l(C)=t$ or $l(C)=t+1$. Rename the vertices of $V(C) \cap W$ as $b_{1}, b_{2}, \ldots, b_{n_{2}}$ along the direction of C. Moreover, we may assume that if $l(C)=t+1$ then $b_{n_{2}}^{+}=y_{0}$. Let $b_{n_{2}+1}=b_{1}$ and $b_{0}=b_{n_{2}}$. Let $Z_{i}=C\left[b_{i}, b_{i+1}\right)$ for all $i \in\left\{1, \ldots, n_{2}\right\}$. As $V(G)-W$ is an independent set, Z_{i} has at most two vertices for all $i \in\left\{1, \ldots, n_{2}\right\}$. Set $R^{\prime}=R-V(C)$. Clearly, either $R^{\prime}=R$ or $R^{\prime}=R-\left\{y_{0}\right\}$. We may assume without loss of generality that $e\left(x_{1}, G_{1}+R\right) \leq e\left(x_{s}, G_{1}+R\right)$. Thus by (4),

$$
\begin{equation*}
e\left(x_{1}, G_{2}\right) \geq 2 n / 3-(r+s-1) / 2=t / 2+n / 6+1 / 2 \tag{7}
\end{equation*}
$$

Lemma 3.3 For each $i \in\left\{1,2, \ldots, n_{2}\right\}$ there exists a cycle L_{i} with $W \cap V(C)-$ $\left\{b_{i}\right\} \subseteq V\left(L_{i}\right)$ such that either $V\left(L_{i}\right) \subseteq V(C)-V\left(Z_{i}\right)$ and $L_{i}+x_{1} \in \mathcal{H}$ or $V\left(L_{i}\right) \subseteq$ $\left(V(C)-V\left(Z_{i}\right)\right) \cup\left\{v_{i}\right\}$ for some $v_{i} \in R^{\prime}$ and $L_{i}+x_{1} \in \mathcal{H}$.

Proof. Let $i \in\left\{1,2, \ldots, n_{2}\right\}$. By (7), we have

$$
\begin{equation*}
e\left(x_{1}, G_{2}-V\left(Z_{i}\right)\right) \geq\lceil t / 2+n / 6+1 / 2\rceil-e\left(x_{1}, Z_{i}\right) \tag{8}
\end{equation*}
$$

First, assume that $b_{i+1}=b_{i}^{+}$. Then $Z_{i}=b_{i}$. If $b_{i-1}^{+}=b_{i}$, then $e\left(b_{i-1} b_{i+1}, G_{2}+R-\right.$ $\left.b_{i}\right) \geq r+t+1-2=t+r-1$. Thus either $\left[V\left(C-b_{i}\right)\right]$ is hamiltonian or there exists $v_{i} \in R^{\prime}$ such that $e\left(v_{i}, b_{i-1} b_{i+1}\right)=2$. Thus either there is a hamiltonian cycle L_{i} of [$\left.V\left(C-b_{i}\right)\right]$ or $L_{i}=C-b_{i}+v_{i} b_{i-1}+v_{i} b_{i+1}$ is a hamiltonian cycle of $\left[V\left(C-b_{i}\right) \cup\left\{v_{i}\right\}\right]$ for some $v_{i} \in R^{\prime}$. By (7), e($\left.x_{1}, L_{i}\right) \geq\lceil(t+1) / 2\rceil+1$ and so $L_{i}+x_{1}$ is hamiltonian.

Next, assume that $b_{i+1}=b_{i}^{+}$and $b_{i-1}^{++}=b_{i}$. By (2) and the assumption on C, $b_{i} b_{i-1} \notin E$. If $\left[V\left(C-b_{i}-b_{i-1}^{+}\right)\right]$is hamiltonian, then there is a hamiltonian cycle L_{i} of $\left[V\left(C-b_{i}-b_{i-1}^{+}\right)\right]$and $e\left(x_{1}, L_{i}\right) \geq e\left(x_{1}, G_{2}\right)-e\left(x_{1}, b_{i} b_{i-1}^{+}\right)>(t-1) / 2$ and so $L_{i}+x_{1}$ is hamiltonian. So assume that $\left[V\left(C-b_{i}-b_{i-1}^{+}\right)\right]$is not hamiltonian. Then $b_{i+1} b_{i-1} \notin E$.

Similarly, we may assume that $\left[V\left(C-b_{i}\right)\right]$ is not hamiltonian and so $b_{i+1} b_{i-1}^{+} \notin E$. Then $e\left(b_{i-1} b_{i+1}, b_{i} b_{i-1}^{+}\right) \leq 2$ as $b_{i} b_{i-1} \notin E$. Hence $e\left(b_{i-1} b_{i+1}, G_{2}+R-b_{i}-b_{i-1}^{+}\right) \geq$ $r+t+1-2=t+r-1$. Thus $I\left(b_{i-1} b_{i+1}, R^{\prime}\right) \neq \emptyset$. Let $L_{i}=C-\left\{b_{i-1}^{+}, b_{i}\right\}+v_{i} b_{i-1}+v_{i} b_{i+1}$ with $v_{i} \in R^{\prime}$. Clearly, $\left|V\left(L_{i}\right)\right| \leq t$. For the proof, we may assume that x_{1} is not adjacent to two consecutive vertices of L_{i}. Then $e\left(x_{1}, L_{i}\right) \leq t / 2$ by Lemma 2.1. By (7), we obtain that $2 \geq e\left(x_{1}, b_{i-1}^{+} b_{i}\right) \geq t / 2+n / 6+1 / 2-e\left(x_{1}, L_{i}\right) \geq n / 6+1 / 2 \geq 3$, a contradiction.

Next, assume that $b_{i}^{++}=b_{i+1}$ and $b_{i-1}^{+}=b_{i}$. Then $Z_{i}=b_{i} b_{i}^{+}$. The proof is similar as above.

Finally, assume that $b_{i}^{++}=b_{i+1}$ and $b_{i-1}^{++}=b_{i}$. Then $Z_{i}=b_{i} b_{i}^{+}$. As above, we may assume that none of $b_{i+1} b_{i}, b_{i+1} b_{i}^{-}$and $b_{i-1} b_{i}$ is an edge of G. Moreover, $\left[V(C)-\left\{b_{i}, b_{i}^{+}, b_{i}^{-}\right\}\right]$is not hamitonian. Thus $I\left(b_{i-1} b_{i+1}, R^{\prime}\right) \neq \emptyset$. Let $L_{i}=C-$ $\left\{b_{i}^{-}, b_{i}, b_{i}^{+}\right\}+v_{i} b_{i-1}+v_{i} b_{i+1}$ with $v_{i} \in R^{\prime}$. For the proof, we may assume that x_{1} is not adjacent to two consecutive vertices of L_{i}. Thus $e\left(x_{1}, C-\left\{b_{i}^{-}, b_{i}, b_{i}^{+}\right\}\right) \leq(t-1) / 2$. Then by (7), $3 \geq e\left(x_{1}, b_{i}^{-} b_{i} b_{i}^{+}\right) \geq e\left(x_{1}, G_{2}\right)-\lfloor(t-1) / 2\rfloor \geq n / 6+1 \geq 21 / 6$, a contradiction.

By Lemma 3.3,

$$
\begin{equation*}
G_{1}-x_{1}+V\left(Z_{i}\right) \notin \mathcal{H} \text { for all } i \in\left\{1, \ldots, n_{2}\right\} . \tag{9}
\end{equation*}
$$

Let $H=G_{1}-x_{1}$. Let $x^{*}=x_{2}$ if $x_{2} \in W$ and otherwise $x_{2} \notin W$ and $x^{*}=x_{3}$ with $x_{3} \in W$. By (9), $e\left(x^{*} x_{s}, Z_{i}\right) \leq\left|V\left(Z_{i}\right)\right|$ for all $i \in\left\{1,2, \ldots, n_{2}\right\}$. Thus $e\left(x^{*} x_{s}, C\right) \leq$ $l(C)$ and so

$$
\begin{equation*}
e\left(x^{*} x_{s}, G_{1}+R^{\prime}\right) \geq 2\lceil 2 n / 3\rceil-l(C) \geq s+\left|R^{\prime}\right|+\lceil n / 3\rceil . \tag{10}
\end{equation*}
$$

Thus if $H \notin \mathcal{H}$ then $e\left(x^{*} x_{s}, H\right) \leq s-2$ and so $e\left(x^{*} x_{s}, R^{\prime}\right) \geq s+\left|R^{\prime}\right|+\lceil n / 3\rceil-(s-1)=$ $\left|R^{\prime}\right|+\lceil n / 3\rceil+1$. Consequently, $\left|R^{\prime}\right| \geq\lceil n / 3\rceil+1$ and $i\left(x^{*} x_{s}, R^{\prime}\right) \geq\lceil n / 3\rceil+1 \geq 6$.

If H is a hamiltonian, let Q be a hamiltonian cycle of H. If H is not hamiltonian but $H-x_{2}$ is hamiltonian with $x_{2} \notin W$, let Q be a hamiltonian cycle of $H-x_{2}$. Otherwise let $Q=w P_{1}\left[x^{*}, x_{s}\right] w$ with $w \in I\left(x^{*} x_{s}, R^{\prime}\right)$. Fix a direction of Q and rename the vertices of $V(Q) \cap W$ as $a_{1}, a_{2}, \ldots, a_{n_{1}-1}$ along the direction of Q. Let $a_{n_{1}}=a_{1}$. Note that we have at least $\lceil n / 3\rceil+1$ different candidates for w since $i\left(x^{*} x_{s}, R^{\prime}\right) \geq\lceil n / 3\rceil+1 \geq 6$.

Lemma 3.4 For each $j \in\left\{1, \ldots, n_{1}-1\right\}$, we have $e\left(a_{j} a_{j+1}, C\right) \leq l(C)$.
Proof. On the contrary, say $e\left(a_{j} a_{j+1}, C\right) \geq l(C)+1$ for some $j \in\left\{1, \ldots, n_{1}-1\right\}$. Then $e\left(a_{j} a_{j+1}, Z_{i}\right) \geq\left|V\left(Z_{i}\right)\right|+1$ for some $i \in\left\{1, \ldots, n_{2}\right\}$. Thus $\left[Q, V\left(Z_{i}\right)\right] \in \mathcal{H}$. If Q is a cycle of H, then we have two required cycles by Lemma 3.3. If Q is not a cycle of H, we may choose w so that $w \notin V\left(L_{i}\right)$, where L_{i} is as described in Lemma 3.3 , and so there are two required cycles.

With Lemmas 2.4 and 3.4, we now generalize Lemma 3.4 to Lemma 3.5 in the following.

Lemma 3.5 For all $\{j, k\} \subseteq\left\{1, \ldots, n_{1}-1\right\}$ with $j<k$, we have $e\left(a_{j} a_{k}, G_{1}+R^{\prime}\right) \geq$ $s+\left|R^{\prime}\right|+n / 3$.

Proof. By Lemma 3.4, we see that $e\left(a_{j} a_{j+1}, G_{1}+R^{\prime}\right) \geq 2\lceil 2 n / 3\rceil-l(C) \geq s+$ $\left|R^{\prime}\right|+n / 3$ for all $j \in\left\{1, \ldots, n_{1}-1\right\}$. For the proof, assume that $e\left(a_{j} a_{k}, G_{1}+R^{\prime}\right) \leq$ $s+\left|R^{\prime}\right|+\lceil n / 3\rceil-1$ for some $j<k$. Then $e\left(a_{j} a_{k}, C\right) \geq l(C)+1$. Thus $e\left(a_{j} a_{k}, Z_{i}\right) \geq$ $\left|V\left(Z_{i}\right)\right|+1$ for some $i \in\left\{1, \ldots, n_{2}\right\}$. Since $e\left(a_{j} a_{j+1}, G_{1}+R^{\prime}\right) \geq s+\left|R^{\prime}\right|+n / 3$ and $e\left(a_{k} a_{k+1}, G_{1}+R^{\prime}\right) \geq s+\left|R^{\prime}\right|+n / 3$, it follows that

$$
\begin{aligned}
e\left(a_{j+1} a_{k+1}, G_{1}+R^{\prime}\right) & \geq 2\left(s+\left|R^{\prime}\right|+\lceil n / 3\rceil\right)-\left(s+\left|R^{\prime}\right|+\lceil n / 3\rceil-1\right) \\
& =s+\left|R^{\prime}\right|+\lceil n / 3\rceil+1
\end{aligned}
$$

If Q contains a vertex of R^{\prime}, i.e. w, we choose w so that $w \notin V\left(L_{i}\right)$, where L_{i} is as described in Lemma 3.3. If $e\left(a_{j+1} a_{k+1}, Q\right) \geq l(Q)+1$, then $[Q]$ contains a path P from a_{j} to a_{k} with $l_{W}(P)=n_{1}-1$ by Lemma 2.4, and so $\left[Q, Z_{i}\right] \in \mathcal{H}$ as $e\left(a_{j} a_{k}, Z_{i}\right) \geq\left|V\left(Z_{i}\right)\right|+1$, a contradiction since $L_{1}+x_{1} \in \mathcal{H}$ by Lemma 3.3. Hence $e\left(a_{j+1} a_{k+1}, Q\right) \leq l(Q)$. If $I\left(a_{j+1} a_{k+1}, G_{1}+R^{\prime}\right)-V(Q)$ contains a vertex u not belonging to $V\left(L_{i}\right) \cup\left\{x_{1}, w\right\}$, then $Q+u$ contains a path P^{\prime} from a_{j} to a_{k} and $V(Q) \cap W \subseteq V\left(P^{\prime}\right)$ and so $\left[P^{\prime}, Z_{i}\right] \in \mathcal{H}$, again a contradiction since $L_{1}+$ $x_{1} \in \mathcal{H}$. Therefore $I\left(a_{j+1} a_{k+1}, G_{1}+R^{\prime}\right)-V(Q)$ does not contain a vertex not belonging to $V\left(L_{i}\right) \cup\left\{x_{1}, w\right\}$. From Lemma 3.3, we see that $\left|V\left(L_{i}\right) \cap R^{\prime}\right| \leq 1$. Therefore $\left|I\left(a_{j+1} a_{k+1}, G_{1}+R^{\prime}\right)-V(Q)\right| \leq 3$ and $e\left(a_{j+1} a_{k+1}, G_{1}+R^{\prime}\right) \leq s+\left|R^{\prime}\right|+3$, a contradiction.

Lemma 3.6 For any $\left\{v, v^{\prime}\right\} \subseteq R^{\prime}$ and any $\{x, y\} \subseteq V(Q)-R^{\prime}$ with $x \neq y,\left[H, R^{\prime}-\right.$ $\left.\left\{v, v^{\prime}\right\}\right]$ has an $x-y$ path P such that $V(P) \cap V(H) \subseteq V(Q),\left\{a_{1}, a_{2}, \ldots, a_{n_{1}-1}\right\} \subseteq$ $V(P)$ and $\left|V(P) \cap R^{\prime}\right| \leq 2$.

Proof. Let a_{j} be the first vertex of W that succeeds x and a_{k} the first vertex of W that succeeds y on Q. Then $e\left(a_{j} a_{k}, G_{1}+R^{\prime}\right) \geq s+\left|R^{\prime}\right|+n / 3$ by Lemma 3.5. If Q contains a vertex of R^{\prime}, i.e., w, we choose w so that $w \notin\left\{v, v^{\prime}\right\}$. By Lemma 2.4, if $e\left(a_{j} a_{k}, Q\right) \geq l(Q)+1$, then $[Q]$ contains an $x-y$ path P with $V(P) \supseteq V(Q) \cap W$ and we are done. So we may assume that $e\left(a_{j} a_{k}, Q\right) \leq l(Q)$. Then $I\left(a_{j} a_{k}, G_{1}+R^{\prime}-V(Q)\right) \geq$ $n / 3 \geq 5$. Therefore $I\left(a_{j} a_{k}, G_{1}+R^{\prime}-V(Q)\right)$ contains a vertex u of $R^{\prime}-\left\{v, v^{\prime}, w\right\}$ and so $Q+u$ contains a required $x-y$ path.

By Lemma 3.3 and Lemma 3.6, we see that $e\left(a_{j} a_{k}, Z_{i}\right) \leq\left|V\left(Z_{i}\right)\right|$ for all $i \in$ $\left\{1, \ldots, n_{2}\right\}$ and $\{j, k\} \subseteq\left\{1, \ldots, n_{1}-1\right\}$ with $j \neq k$, for otherwise G contains two required cycles. Thus $e\left(a_{j} a_{k}, C\right) \leq l(C)$ for all $\{j, k\} \subseteq\left\{1, \ldots, n_{1}-1\right\}$ with $j \neq k$. Let v and v^{\prime} be two given arbitrary vertices of R^{\prime}. Choose w so that $w \notin\left\{v, v^{\prime}\right\}$. As $n_{1} \geq 4$ and by Lemma 3.6 , there exists $\{j, k\} \subseteq\left\{1, \ldots, n_{1}-1\right\}$ with $j \neq k$ such that $G_{1}+R^{\prime}-\left\{v, v^{\prime}\right\}$ has an $x_{1}-a_{j}$ path P^{\prime} and an $x_{1}-a_{k}$ path $P^{\prime \prime}$ such that $l_{W}\left(P^{\prime}\right)=n_{1}$ and $l_{W}\left(P^{\prime \prime}\right)=n_{1}$. As $e\left(a_{j} a_{k}, C\right) \leq l(C)$, we may assume that $e\left(a_{k}, C\right) \leq l(C) / 2$.

We claim that $I\left(x_{1} a_{k}, R^{\prime}-V(Q)\right)=\emptyset$. If this is not true, we choose $v^{\prime} \in$ $I\left(x_{1} a_{k}, R^{\prime}-V(Q)\right)$. If $x_{2} \in V(Q)$, we apply Lemma 3.6 with x_{2} and a_{k} in place of x and y and see that $G_{1}+R^{\prime} \in \mathcal{H}$, a contradiction. Hence $x_{2} \notin V(Q)$ and
$x_{2} \notin W$. Then apply Lemma 3.6 with x_{3} and a_{k} in place of x and y and see that $G_{1}+R^{\prime} \in \mathcal{H}$, a contradiction. Hence $i\left(x_{1} a_{k}, R^{\prime}-V(Q)\right)=\emptyset$. By Lemma 3.6, $e\left(x_{1}, H\right) \leq 2$ for otherwise $G_{1}+R^{\prime} \in \mathcal{H}$. Let $r^{\prime}=\left|R^{\prime}\right|$ and c a rational number such that $e\left(x_{1}, R^{\prime}\right)=r^{\prime} / 2+c$. Then $e\left(a_{k}, R^{\prime}\right) \leq r^{\prime}-\left(r^{\prime} / 2+c\right)+1=r^{\prime} / 2-c+1$. Note that $x_{1} a_{k} \notin E$. Thus

$$
\begin{align*}
l(C) \geq e\left(x_{1}, C\right) & \geq\lceil 2 n / 3\rceil-r^{\prime} / 2-c-e\left(x_{1}, H\right) \\
& \geq l(C) / 2+n / 6+s / 2-c-2 \tag{11}\\
s-2 \geq e\left(a_{k}, G_{1}\right) & \geq\lceil 2 n / 3\rceil-\left(r^{\prime}+l(C)\right) / 2+c-1=s / 2+n / 6+c-1 . \tag{12}
\end{align*}
$$

By (11), $l(C) \geq n / 3+s-2 c-4$. By (12), $s \geq n / 3+2 c+2$ and so $l(C) \geq 2 n / 3-2$. Since $r^{\prime} \geq\lceil n / 3\rceil-1$ and $n \geq 15$, we obtain that $n=s+l(C)+r^{\prime} \geq n+2 c+r^{\prime}>n$, a contradiction. This proves the theorem.

References

[1] M. Aigner and S. Brandt, Embedding arbitrary graphs of maximum degree two, J. London Math. Soc. (2) 48 (1993), 39-51.
[2] B. Bollobás, Extremal Graph Theory, Academic Press, London (1978).
[3] K. Corrádi and A. Hajnal, On the maximal number of independent circuits in a graph, Acta Math. Acad. Sci. Hungar. 14 (1963), 423-439.
[4] M.H. El-Zahar, On circuits in graphs, Discrete Math. 50 (1984), 227-230.
[5] N. Sauer and J. Spencer, Edge disjoint placement of graphs, J. Combin. Theory Ser. B 25 (1978), 295-302.
[6] Ronghua Shi, 2-neighborhoods and hamiltonian conditions, J. Graph Theory (3) 16 (1992), 267-271.
[7] H. Wang, Partial degree conditions and cycle coverings, J. Graph Theory 78 (2015), 295-304.

