Covering a subset with two cycles

HONG WANG

Department of Mathematics The University of Idaho Moscow, Idaho 83844 U.S.A.

Abstract

Let G be a graph of order n. Let W be a subset of V(G) with $|W| \ge 6$. We show that if $d(x) \ge 2n/3$ for each $x \in W$, then for any partition $|W| = n_1 + n_2$ with $n_1 \ge 3$ and $n_2 \ge 3$, G contains two vertex-disjoint cycles C_1 and C_2 such that C_1 contains n_1 vertices of W and C_2 contains n_2 vertices of W.

1 Introduction

Let G be a graph of order n. A set of subgraphs of G is said to be independent if no two of them have any common vertex in G. Corrádi and Hajnal [3] investigated the maximum number of independent cycles in a graph. They proved that if G is a graph of order at least 3k with minimum degree at least 2k, then G contains k independent cycles. In particular, when the order of G is exactly 3k, then G contains k independent triangles. El-Zahar [4] proved that if G is a graph of order $n_1 + n_2$ with $n_1 \geq 3$ and $n_2 \geq 3$ and the minimum degree of G is at least $\lceil n_1/2 \rceil + \lceil n_2/2 \rceil$, then G contains two independent cycles of orders n_1 and n_2 , respectively. Sauer and Spencer in their work [5] conjectured that if the minimum degree of G is at least 2n/3then G contains every graph of order n with maximum degree of at most 2. This conjecture was proved by Aigner and Brandt [1]. In [7], we proposed the following conjecture:

Conjecture [7] Let G be a graph of order $n \ge 3$. Let W be a subset of V(G) with $|W| \ge 3k$ where k is a positive integer. Suppose that $d(x) \ge 2n/3$ for each $x \in W$. Then for any integer partition $|W| = n_1 + \cdots + n_k$ with $n_i \ge 3(1 \le i \le k)$, G contains k independent cycles C_1, \ldots, C_k such that $|V(C_i) \cap W| = n_i$ for all $1 \le i \le k$.

This conjecture is supported by the following theorem:

Theorem A [7] Let G be a graph of order $n \ge 3$. Let W be a subset of V(G) with $|W| \ge 3k$ where k is a positive integer. Suppose that $d(x) \ge 2n/3$ for each $x \in W$. Then G contains k independent cycles such that each of the k cycles contains at least three vertices of W.

Our work is also motivated by the work of Ronghua Shi [6], who showed that if G is 2-connected and $d(x) \ge n/2$ for each $x \in U$ then G contains a cycle passing through all the vertices of U, where U is a subset of V(G).

In this paper, we prove the following:

Theorem B Let G be a graph of order n. Let W be a subset of V(G) with $|W| \ge 6$. If $d(x) \ge 2n/3$ for each $x \in W$, then for any partition $|W| = n_1 + n_2$ with $n_1 \ge 3$ and $n_2 \ge 3$, G contains two independent cycles C_1 and C_2 such that C_1 contains n_1 vertices of W and C_2 contains n_2 of W.

We discuss only finite simple graphs and use standard terminology and notation from [2] except as indicated. Let G be a graph and u be a vertex of G. If H is a subgraph of G or a subset of V(G) or a sequence of vertices of G, we define N(u, H)to be the set of neighbors of u contained in H. Let e(u, H) = |N(u, H)|. Thus e(u, G)is the degree of u in G. If each of X_1, \ldots, X_k is a subgraph of G or a subset of V(G)or a sequence of vertices of G, we use $[X_1, X_2, \ldots, X_k]$ to denote the subgraph of G induced by the set of all the vertices x i that belongs to some of X_1, X_2, \ldots, X_k . If each of X and Y is a subgraph of G or a subset of V(G) or a sequence of vertices of G, we define $e(X, Y) = \sum_x e(x, Y)$ where x runs over X. The length of a cycle or a path L is denoted by l(L). If W is a subset of V(G), then the W-length of L is the number of vertices of L that are contained in W. We denote the W-length of L by $l_W(L)$. i If we list $V(L) = \{u_1, u_2, \ldots, u_k\}$, then operations in the subscripts of u_i 's will be taken modulo k in $\{1, 2, \ldots, k\}$.

A chord of a cycle C in G is an edge of G - E(C) that joins two vertices of C. If we write $C = x_1 x_2 \dots x_m x_1$, we assume that an orientation of C is given such that x_2 is the successor of x_1 . Moreover, we use x_i^+ and x_i^- to denote the successor and predecessor of x_i , respectively. We use $C[x_i, x_j]$ to represent the path of C from x_i to x_j along the orientation of C. We adopt the notation $C(x_i, x_j] = C[x_i, x_j] - x_i$, $C[x_i, x_j] = C[x_i, x_j] - x_j$ and $C(x_i, x_j) = C[x_i, x_j] - x_i - x_j$. We use C^- to denote the cycle C with its opposite orientation.

If x and y are two vertices of G and H is a subgraph of G or a subset of V, we define $I(xy, H) = N(x, H) \cap N(y, H)$. Let i(xy, H) = |I(xy, H)|. For a subset W of V, let $\delta_W(G) = \min\{e(x, G) | x \in W\}$.

2 Lemmas

Let G = (V, E) be a graph of order n and W a subset of V. Lemma 2.1 is an easy observation.

Lemma 2.1 If $P = x_1 \dots x_k$ is a path of G and u is a vertex in V - V(P) such that $e(u, P) \ge (k+1)/2$, then [P, u] has a hamiltonian path from x_1 to x_k or k is odd and $N(u, P) = \{x_1, x_3, x_5, \dots, x_k\}.$

Lemma 2.2 If $P = x_1 \dots x_k$ is a path of G and u is a vertex in V - V(P) such that $e(ux_k, P) \ge k + 1$, then [P, u] has a hamiltonian path from x_1 to u.

Proof. The condition implies that for some $i \in \{1, \ldots, k-1\}, \{x_k x_i, u x_{i+1}\} \subseteq E$ and so $x_1 \ldots x_i x_k x_{k-1} \ldots x_{i+1} u$ is a required path.

Lemma 2.3 If $P = x_1 \dots x_k$ is a path of G and u and v are two vertices in V - V(P) such that $e(uv, P) \ge k + 2$, then [P, u, v] has a hamiltonian path from x_1 to x_k or e(uv, P) = k + 2 and $e(uv, x_1x_k) = 4$.

Proof. Let $X = \{x_{i+1} | ux_i \in E, 1 \leq i \leq k\}$ and $Y = \{x_{i-1} | ux_i \in E, 1 \leq i \leq k\}$, where $x_{k+1} = x_1$ and $x_0 = x_k$. Then |X| = e(u, P). Thus $e(uv, P) = |X| + e(v, P) \geq k + 2$. Therefore $N(v, P) \cap X$ contains at least two distinct vertices x_{i+1} and x_{j+1} with i < j. Let x_{i+1} and x_{j+1} be chosen with j minimal. If j < k, then $x_1 \dots x_i ux_j x_{j-1} \dots x_{i+1} vx_{j+1} \dots x_k$ is a required path. If j = k, then $|N(v, P) \cap X| = 2$, e(uv, P) = k + 2 and $\{ux_k, vx_1\} \subseteq E$. Applying a similar argument with Y in place of X, we obtain $\{ux_1, vx_k\} \subseteq E$.

Lemma 2.4 Let C be a cycle of order k in G with a given direction and $V(C) \supseteq W$. Let x and y be two vertices on C. Let x' be the first vertex of W that succeeds x and y' the first vertex of W that succeeds y. If $e(x'y', C) \ge k + 1$, then [C] contains an x-y path P such that $W \subseteq V(P)$.

Proof. The condition implies that either there exists u on C[x', y') such that $\{y'u^-, x'u\} \subseteq E$ or there exists v on C[y', x') such that $\{x'v^-, y'v\} \subseteq E$. If e(x', C(y, y']) > 0 or e(y', C(x, x']) > 0, then we readily see that there is a required path. So assume that e(x', C(y, y']) = 0 and e(y', C(x, x']) = 0. Thus either u is on C(x', y] or v is on C(y', x]. Say without loss of generality that the former holds. Then $xC^-[x, y']u^-C^-[u^-, x']uC[u, y]y$ is a required path.

Lemma 2.5 Let C be a cycle of order k in G with a given direction and $V(C) \supseteq W$. Let λ be a nonnegative integer. Suppose that for each pair x and y of vertices in W, if [C] has an x-y path containing W then $e(xy, C) \ge k + \lambda$. Then $e(uv, C) \ge k + \lambda$ for all $\{u, v\} \subseteq W$ with $u \neq v$.

Proof. On the contrary, say $e(uv, C) \leq k + \lambda - 1$ for some $\{u, v\} \subseteq W$ with $u \neq v$. Let x be the first vertex of W that succeeds u and y the first vertex of W succeeds v. Then $e(xu, C) \geq k + \lambda$ and $e(yv, C) \geq k + \lambda$. Thus $e(xy, C) \geq 2(k + \lambda) - (k + \lambda - 1) = k + \lambda + 1$. By Lemma 2.4, [C] has a u-v path containing W and so $e(uv, C) \geq k + \lambda$, a contradiction.

Lemma 2.6 Let W be a subset of V with $|W| \ge 3$. If $e(x, G) \ge n/2$ for all $x \in W$, then G has a cycle C such that $V(C) \supseteq W$.

Proof. Let *P* be a path with its two endvertices in *W* such that $l_W(P)$ is as large as possible. Say $P = x_1 \dots x_k$. If there exists $y \in W - V(P)$, then $e(yx_k, G - V(P)) \leq n - k - 1$. This would yield that $e(yx_k, P) \geq n - (n - k - 1) = k + 1$ and so [P, y] contains a hamiltonian path from x_1 to y by Lemma 2.2, contradicting the maximality of *P*. Thus $V(P) \supseteq W$. The lemma holds if $I(x_1x_k, G - V(P)) \neq \emptyset$. If $I(x_1x_k, G - V(P)) = \emptyset$ then $e(x_1x_k, G - V(P)) \leq n - k$ and so $e(x_1x_k, P) \geq k$ and consequently, [P] is hamiltonian.

3 Proof of the Theorem

Let G = (V, E) be a graph of order n. Let W be a subset of V such that $|W| \ge 6$ and $e(x, G) \ge 2n/3$ for each $x \in W$. Suppose, for a contradiction, that G does not contain two independent cycles of W-lengths n_1 and n_2 , respectively for some partition $|W| = n_1 + n_2$ with $n_1 \ge 3$ and $n_2 \ge 3$. Then $n_1 + n_2 < n$ by El-Zahar's result mentioned in the introduction and $n_1 + n_2 \ge 7$ by Theorem A. Thus $n \ge 8$. The degree condition is still maintained when the edges of G - W are removed from G. So we may assume that G - W has no edges.

We need some special terminology and notation. A W-path of G is a path with its endvertices in W. Let \mathcal{H} denote the set of all the subgraphs H such that H has a cycle C with $V(C) \supseteq V(H) \cap W$. Let \mathcal{P} denote the set of all the subgraphs H such that H has a path P with $V(P) \supseteq V(H) \cap W$.

By Lemma 2.6, $G \in \mathcal{H}$ and so G conatins two independent W-paths P_1 and P_2 such that

$$l_W(P_1) = n_1 \text{ and } l_W(P_2) = n_2.$$
 (1)

Subject to (1), we choose P_1 and P_2 in G such that

$$l(P_1) + l(P_2)$$
 is minimal. (2)

Let $G_1 = [P_1]$ and $G_2 = [P_2]$. Subject to (1) and (2), choose P_1 and P_2 such that

$$e(G_1) + e(G_2)$$
 is maximal. (3)

Say $R = V(G) - V(G_1 \cup G_2)$, $P_1 = x_1 x_2 \dots x_s$, $P_2 = y_1 y_2 \dots y_t$ and |R| = r. Thus R is an independent set of G and n = r + s + t. Note that $\lfloor 2n/3 \rfloor \geq \lfloor n/2 \rfloor + 1$.

Lemma 3.1 Either $I(x_1x_s, R) = \emptyset$ or $I(y_1y_t, R) = \emptyset$.

Proof. On the contrary, say $I(x_1x_s, R) \neq \emptyset$ and $I(y_1y_t, R) \neq \emptyset$. As G does not contain two required cycles, there exists $u \in R$ such that $I(x_1x_s, R) = I(y_1y_t, R) = \{u\}$. Moreover, $G_1 \notin \mathcal{H}$ and $G_2 \notin \mathcal{H}$. It follows that $e(x_1x_s, R) \leq r+1$, $e(y_1y_t, R) \leq r+1$, $e(x_1x_s, G_1) \leq s-1$, and $e(y_1y_t, G_2) \leq t-1$. Thus $e(x_1x_s, G_2) \geq 4n/3 - (r+s) = t+n/3 > t+2$ and $e(y_1y_t, G_1) \geq 4n/3 - (r+t) = s+n/3 > s+2$. By Lemma 2.3, $G_1 - x_1 - x_s + y_1 + y_t \in \mathcal{P}$ and $G_2 - y_1 - y_t + x_1 + x_s \in \mathcal{P}$. In the meantime, we have

$$e(G_1 - x_1 - x_s + y_1 + y_t) + e(G_2 - y_1 - y_t + x_1 + x_s)$$

$$= e(G_1) - e(x_1x_s, G_1) + e(y_1y_t, G_1) + e(G_2) - e(y_1y_t, G_2) + e(x_1x_s, G_2)$$

$$-2e(x_1x_s, y_1y_t)$$

$$\geq e(G_1) - (s - 1) + (s + 3) + e(G_2) - (t - 1) + (t + 3) - 2e(x_1x_s, y_1y_t)$$

$$= e(G_1) + e(G_2) + 8 - 2e(x_1x_s, y_1y_t) \ge e(G_1) + e(G_2).$$

By (1), (2) and (3), we see the equality must holds in these inequalities and $e(x_1x_s, y_1y_t) = 4$. On the other hand, we see that

$$e(x_1, G_2) + e(y_1, G_1) - e(x_1, G_1) - e(y_1, G_2) + e(x_s, G_2) + e(y_t, G_1) - e(x_s, G_1) - e(y_t, G_2) \ge 8$$

Thus either $e(x_1, G_2) + e(y_1, G_1) - e(x_1, G_1) - e(y_1, G_2) \ge 4$ or $e(x_s, G_2) + e(y_t, G_1) - e(x_s, G_1) - e(y_t, G_2) \ge 4$. Say without loss of generality that the former holds. Then

$$e(G_1 - x_1 + y_1) + e(G_2 - y_1 + x_1)$$

= $e(G_1) - e(x_1, G_1) + e(y_1, G_1) + e(G_2) - e(y_1, G_2) + e(x_1, G_2) - 2e(x_1, y_1)$
 $\geq e(G_1) + e(G_2) + 4 - 2e(x_1, y_1) \geq e(G_1) + e(G_2) + 2.$

This contradicts (3) since $G_1 - x_1 + y_1 \in \mathcal{P}$ and $G_2 - y_1 + x_1 \in \mathcal{P}$.

Lemma 3.2 Either $G_1 \notin \mathcal{H}$ and $I(x_1x_s, R) = \emptyset$ or $G_2 \notin \mathcal{H}$ and $I(y_1y_t, R) = \emptyset$.

Proof. Since either $G_1 \notin \mathcal{H}$ or $G_2 \notin \mathcal{H}$, say without loss of generality $G_1 \notin \mathcal{H}$. If $I(x_1x_s, R) = \emptyset$, we are done. Otherwise, $I(x_1x_s, R) \neq \emptyset$, and so $G_2 \notin \mathcal{H}$. Moreover, by Lemma 3.1, $I(y_1y_t, R) = \emptyset$.

By Lemma 3.2, we may assume without loss of generality that $G_1 \notin \mathcal{H}$ and $I(x_1x_s, R) = \emptyset$. Thus

$$e(x_1 x_s, G_1 + R) \le s - 1 + r.$$
(4)

Therefore $2t \ge e(x_1x_s, G_2) \ge 4n/3 - (r+s-1) = t + n/3 + 1$ and this implies

$$t \ge \lceil n/3 \rceil + 1. \tag{5}$$

We shall divide our proof of the theorem into two parts: $r \leq \lceil n/3 \rceil - 1$ or $r \geq \lceil n/3 \rceil$. **Part I:** $n \leq \lceil n/3 \rceil - 1$

Part I: $r \leq \lceil n/3 \rceil - 1$

Let H = G - R and p = |V(H)|. Then $\delta_W(H) \ge \lceil 2n/3 \rceil - r = \lceil p/2 + (p-2r)/6 \rceil \ge (p+1)/2$. As $e(x_1x_s, G_1) \le s - 1$, we may assume that $e(x_1, G_1) \le e(x_s, G_1)$. Thus $e(x_1, G_1) \le (s-1)/2$ and so $e(x_1, G_2) \ge \lceil (p+1)/2 \rceil - \lfloor (s-1)/2 \rfloor \ge t/2 + 1$. We claim that if u is an endvertex of a hamiltonian path of G_2 , then either $e(u, G_2) \ge (t+1)/2$ or $e(u, G_2) = t/2$ and $x_1u \in E$. To see this, say without loss of generality that $e(u, G_2) \le t/2$. Then $e(u, G_1) \ge \lceil (p+1)/2 \rceil - \lfloor t/2 \rfloor \ge (s+1)/2$. By Lemma 2.1, $G_1 - x_1 + u \in \mathcal{P}$ and $G_2 - u + x_1 \in \mathcal{P}$. By (3), we have

$$e(G_1) + e(G_2)$$

$$\geq e(G_1 - x_1 + u) + e(G_2 - u + x_1)$$

$$\geq e(G_1) - (s - 1)/2 + (s + 1)/2 + e(G_2) - t/2 + t/2 + 1 - 2e(x_1, u)$$

$$= e(G_1) + e(G_2) + 2 - 2e(x_1, u)$$

$$\geq e(G_1) + e(G_2).$$

This implies that $e(u, G_2) = t/2$ and $x_1u \in E$. Therefore the claim holds. Thus $G_2 \in \mathcal{H}$ and so $G_2 + x_1 \in \mathcal{H}$ by Lemma 2.1. By (2), $n_2 = t$. Say without loss of generality that $y_1y_2 \ldots y_ty_1$ is a hamiltonian cycle of G_2 . For each y_i , if $G_2 - y_i \in \mathcal{H}$, then $G_2 - y_i + x_1 \in \mathcal{H}$ because $e(x_1, G_2 - y_i) \geq t/2$, and if $G_2 - y_i \notin \mathcal{H}$ then $e(y_{i-1}, G_2) = e(y_{i+1}, G_2) = t/2$ and so $G_2 - y_i + x_1 \in \mathcal{H}$ since $e(x_1, y_{i-1}y_{i+1}) = 2$ in this situation.

Say $H_1 = G_1 - x_1$ and $H_2 = G_2 + x_1$. Then $H_1 + R + v \notin \mathcal{H}$ for all $v \in V(H_2)$. Thus for any $x \cdot y$ W-path P of H_1 with $P \in \mathcal{P}$, $e(v, xy) \leq 1$ for all $v \in V(H_2)$ and so $e(xy, H_1) \geq p + 1 - e(xy, H_2) \geq p + 1 - (t + 1) = (s - 1) + 1$. It follows that $H_1 \in \mathcal{H}$. Let C be a cycle of H_1 such that if H_1 is hamiltonian then C is a hamiltonian cycle of H_1 and otherwise $x_2 \notin W$, $x_3 \in W$ and C is a hamiltonian cycle of $H_1 - x_2$. Let u and v be any two vertices in $V(H_1) \cap W$. We claim that H_1 has a $u \cdot v$ path containing $V(H_1) \cap W$ and $e(uv, H_1) \geq (s - 1) + 1$. To see this, let xbe the first vertex of W that succeeds u and y the first vertex of W that succeeds von C. If $I(xy, H_1 - V(C)) \neq \emptyset$, we readily see that H_1 has $u \cdot v$ path $P \in \mathcal{P}$ and so $e(uv, H_1) \geq (s - 1) + 1$. So assume $I(xy, H_1 - V(C)) = \emptyset$. By Lemma 2.4, we may also assume that $e(xy, C) \leq |V(C)|$. Thus $e(xy, H_1) \leq s - 1$ and so H_1 does not have an $x \cdot y$ path containing $V(H_1) \cap W$. This implies that $e(uv, C) \leq |V(C)|$ by Lemma 2.4 and $I(uv, H_1 - V(C)) = \emptyset$. Thus $e(uv, H_1) \leq (s - 1) + 1$ or $e(uv, H_1) \geq (s - 1) + 1$, a contradiction. Therefore the claim holds.

Label $C = c_1 c_2 \dots c_l c_1$ with l = |V(C)| such that if C is a hamiltonian cycle of H_1 then $c_1 = x_2$ and otherwise C is a hamiltonian cycle of $H_1 - x_2$ with $x_2 \notin W$ and we let $c_1 = x_3$. Then G_1 has an x_1 - c_2 hamiltonian path and an x_1 - c_l hamiltonian path. By (2), we see that $\{c_2, c_l\} \subseteq W$. Suppose that there exists $i \in \{3, \dots, l-1\}$ such that $c_i \notin W$. Let c_i be chosen with i maximal. Then $e(c_2c_{i+1}, H_1) \ge (s-1)+1$. Notice that if C is not a hamiltonian cycle of H_1 then $c_2x_2 \notin E$ and $c_lx_2 \notin E$. By Lemma 2.4, [C] contains a c_1 - c_i path containing $V(C) \cap W$. Thus G_1 has x_1 - c_i path P' containing $V(G_1) \cap W$. By (2), $c_i \in W$, a contradiction. Therefore $\{c_2, \dots, c_l\} \subseteq W$. Thus either $n_1 = s$ or $n_1 = s - 1$ with $x_2 \notin W$. Since $G_1 \notin H$, we also see, from this argument, that $e(x_1, C) \le 1$ and so $e(x_1, H_1) \le 2$.

As $e(c_2c_l, H_2) \leq t+1$, we may assume without loss of generality that $e(c_l, H_2) \leq (t+1)/2$. Clearly, $I(x_1c_l, R) = \emptyset$. Let *a* be a rational number such that $e(x_1, R) = r/2 + a$. Then $e(c_l, R) \leq r/2 - a$. Clearly, $t \geq e(x_1, G_2) \geq 2n/3 - r/2 - a - 2 = t/2 + s/2 + n/6 - a - 2$ and $s - 2 \geq e(c_l, H_1) \geq 2n/3 - (t+1)/2 - r/2 + a = s/2 + n/6 - 1/2 + a$. It follows that $t \geq s + n/3 - 2a - 4$ and $s \geq n/3 + 2a + 3$. Consequently, $n = s + t + r \geq s + 2n/3 - 1 + r \geq n + 2a + 2 + r \geq n + 2$, a contradiction.

Part II: $r \ge \lceil n/3 \rceil$

Since $n \ge 8$, $r \ge 3$. By (5), $n = s + r + t \ge 3 + \lceil n/3 \rceil + \lceil n/3 \rceil + 1$ and it follows that $n \ge 12$. We claim

$$n_1 \ge 4, n_2 \ge 4 \text{ and } n \ge 15.$$
 (6)

If this is not true, say $\min\{n_1, n_2\} = 3$. Let C be a cycle of G containing at least three vertices of W with $l_W(C)$ as small as possible and subject to this, we choose

C with l(C) as small as possible. Suppose that $l_W(C) \ge 4$. Then e(x, C) = 2 for all $x \in V(C) \cap W$. Thus $e(xy, G - V(C)) \ge 4n/3 - 4 = n - l(C) + n/3 + l(C) - 4$ and so $i(xy, G - V(C)) \ge n/3 + l(C) - 4$ for all $\{x, y\} \subseteq V(C) \cap W$ with $x \ne y$. By the minimality of C, we see that $l_W(C) = l(C) = 4$. Say $C = w_1 w_2 w_3 w_4 w_1$. Then $I(w_i w_{i+1}, G - V(C)) \cap W = \emptyset$ and $I(w_i w_{i+2}, G - V(C)) \subseteq W$ by the minmality of $l_W(C)$ for all $i \in \{1, 2, 3, 4\}$. Clearly, $i(w_1 w_2, G - V(C)) + e(w_3, G - V(C)) \ge n/3 + 2n/3 - 2 > n - l(C)$ and so $I(w_i w_{i+1}, G - V(C)) \cap N(w_3, G - V(C)) \ne \emptyset$, a contradiction. Therefore $l_W(C) = 3$ and so $G - V(C) \notin \mathcal{H}$. Moreover, we see $e(x, C) \le 3$ for all $x \in W - V(C)$ by the minimality of l(C) and so $e(x, G - V(C)) \ge 2n/3 - 3 > (n - l(C))/2$ for all $x \in W - V(C)$. Consequently, $G - V(C) \in \mathcal{H}$, a contradiction. So $n_1 \ge 4$ and $n_2 \ge 4$. Since $n = s + r + t \ge 4 + \lceil n/3 \rceil + \lceil n/3 \rceil + 1$, it follows that $n \ge 15$. Hence (6) holds.

We claim that for each $y \in V(G_2) \cap W$, $e(y, G_2 + R) \ge (r + t + 1)/2$. If this is not true, say $e(y, G_2 + R) \le (r + t)/2$ for some $y \in V(G_2) \cap W$. Then $s \ge e(y, G_1) \ge 2n/3 - (r + t)/2 = s/2 + n/6$. Thus $s \ge n/3$. With (5), we obtain $n = r + s + t \ge n/3 + n/3 + n/3 + 1 = n + 1$, a contradiction. Hence the claim holds. Thus either G_2 is hamiltonian and so $V(G_2) \subseteq W$ by (2) or $G_2 + u$ is hamiltonian for some $u \in R$. Let C be a hamiltonian cycle of G_2 if G_2 is hamiltonian and otherwise let C be a hamiltonian cycle of $G_2 + y_0$ for some $y_0 \in I(y_1y_t, R)$. Clearly, l(C) = t or l(C) = t + 1. Rename the vertices of $V(C) \cap W$ as $b_1, b_2, \ldots, b_{n_2}$ along the direction of C. Moreover, we may assume that if l(C) = t + 1 then $b_{n_2}^+ = y_0$. Let $b_{n_2+1} = b_1$ and $b_0 = b_{n_2}$. Let $Z_i = C[b_i, b_{i+1})$ for all $i \in \{1, \ldots, n_2\}$. As V(G) - W is an independent set, Z_i has at most two vertices for all $i \in \{1, \ldots, n_2\}$. Set R' = R - V(C). Clearly, either R' = R or $R' = R - \{y_0\}$. We may assume without loss of generality that $e(x_1, G_1 + R) \le e(x_s, G_1 + R)$. Thus by (4),

$$e(x_1, G_2) \ge 2n/3 - (r+s-1)/2 = t/2 + n/6 + 1/2.$$
 (7)

Lemma 3.3 For each $i \in \{1, 2, ..., n_2\}$ there exists a cycle L_i with $W \cap V(C) - \{b_i\} \subseteq V(L_i)$ such that either $V(L_i) \subseteq V(C) - V(Z_i)$ and $L_i + x_1 \in \mathcal{H}$ or $V(L_i) \subseteq (V(C) - V(Z_i)) \cup \{v_i\}$ for some $v_i \in R'$ and $L_i + x_1 \in \mathcal{H}$.

Proof. Let $i \in \{1, 2, ..., n_2\}$. By (7), we have

$$e(x_1, G_2 - V(Z_i)) \ge \lceil t/2 + n/6 + 1/2 \rceil - e(x_1, Z_i).$$
(8)

First, assume that $b_{i+1} = b_i^+$. Then $Z_i = b_i$. If $b_{i-1}^+ = b_i$, then $e(b_{i-1}b_{i+1}, G_2 + R - b_i) \ge r + t + 1 - 2 = t + r - 1$. Thus either $[V(C - b_i)]$ is hamiltonian or there exists $v_i \in R'$ such that $e(v_i, b_{i-1}b_{i+1}) = 2$. Thus either there is a hamiltonian cycle L_i of $[V(C - b_i)]$ or $L_i = C - b_i + v_i b_{i-1} + v_i b_{i+1}$ is a hamiltonian cycle of $[V(C - b_i) \cup \{v_i\}]$ for some $v_i \in R'$. By (7), $e(x_1, L_i) \ge \lceil (t+1)/2 \rceil + 1$ and so $L_i + x_1$ is hamiltonian.

Next, assume that $b_{i+1} = b_i^+$ and $b_{i-1}^{++} = b_i$. By (2) and the assumption on C, $b_i b_{i-1} \notin E$. If $[V(C-b_i-b_{i-1}^+)]$ is hamiltonian, then there is a hamiltonian cycle L_i of $[V(C-b_i-b_{i-1}^+)]$ and $e(x_1, L_i) \ge e(x_1, G_2) - e(x_1, b_i b_{i-1}^+) > (t-1)/2$ and so $L_i + x_1$ is hamiltonian. So assume that $[V(C-b_i-b_{i-1}^+)]$ is not hamiltonian. Then $b_{i+1}b_{i-1} \notin E$.

Similarly, we may assume that $[V(C - b_i)]$ is not hamiltonian and so $b_{i+1}b_{i-1}^+ \notin E$. Then $e(b_{i-1}b_{i+1}, b_i b_{i-1}^+) \leq 2$ as $b_i b_{i-1} \notin E$. Hence $e(b_{i-1}b_{i+1}, G_2 + R - b_i - b_{i-1}^+) \geq r+t+1-2 = t+r-1$. Thus $I(b_{i-1}b_{i+1}, R') \neq \emptyset$. Let $L_i = C - \{b_{i-1}^+, b_i\} + v_i b_{i-1} + v_i b_{i+1}$ with $v_i \in R'$. Clearly, $|V(L_i)| \leq t$. For the proof, we may assume that x_1 is not adjacent to two consecutive vertices of L_i . Then $e(x_1, L_i) \leq t/2$ by Lemma 2.1. By (7), we obtain that $2 \geq e(x_1, b_{i-1}^+b_i) \geq t/2 + n/6 + 1/2 - e(x_1, L_i) \geq n/6 + 1/2 \geq 3$, a contradiction.

Next, assume that $b_i^{++} = b_{i+1}$ and $b_{i-1}^+ = b_i$. Then $Z_i = b_i b_i^+$. The proof is similar as above.

Finally, assume that $b_i^{++} = b_{i+1}$ and $b_{i-1}^{++} = b_i$. Then $Z_i = b_i b_i^+$. As above, we may assume that none of $b_{i+1}b_i$, $b_{i+1}b_i^-$ and $b_{i-1}b_i$ is an edge of G. Moreover, $[V(C) - \{b_i, b_i^+, b_i^-\}]$ is not hamitonian. Thus $I(b_{i-1}b_{i+1}, R') \neq \emptyset$. Let $L_i = C - \{b_i^-, b_i, b_i^+\} + v_i b_{i-1} + v_i b_{i+1}$ with $v_i \in R'$. For the proof, we may assume that x_1 is not adjacent to two consecutive vertices of L_i . Thus $e(x_1, C - \{b_i^-, b_i, b_i^+\}) \leq (t-1)/2$. Then by (7), $3 \geq e(x_1, b_i^- b_i b_i^+) \geq e(x_1, G_2) - \lfloor (t-1)/2 \rfloor \geq n/6 + 1 \geq 21/6$, a contradiction.

By Lemma 3.3,

$$G_1 - x_1 + V(Z_i) \notin \mathcal{H} \text{ for all } i \in \{1, \dots, n_2\}.$$
(9)

Let $H = G_1 - x_1$. Let $x^* = x_2$ if $x_2 \in W$ and otherwise $x_2 \notin W$ and $x^* = x_3$ with $x_3 \in W$. By (9), $e(x^*x_s, Z_i) \leq |V(Z_i)|$ for all $i \in \{1, 2, \ldots, n_2\}$. Thus $e(x^*x_s, C) \leq l(C)$ and so

$$e(x^*x_s, G_1 + R') \ge 2\lceil 2n/3 \rceil - l(C) \ge s + |R'| + \lceil n/3 \rceil.$$
(10)

Thus if $H \notin \mathcal{H}$ then $e(x^*x_s, H) \leq s-2$ and so $e(x^*x_s, R') \geq s+|R'|+\lceil n/3\rceil - (s-1) = |R'|+\lceil n/3\rceil + 1$. Consequently, $|R'| \geq \lceil n/3\rceil + 1$ and $i(x^*x_s, R') \geq \lceil n/3\rceil + 1 \geq 6$.

If H is a hamiltonian, let Q be a hamiltonian cycle of H. If H is not hamiltonian but $H - x_2$ is hamiltonian with $x_2 \notin W$, let Q be a hamiltonian cycle of $H - x_2$. Otherwise let $Q = wP_1[x^*, x_s]w$ with $w \in I(x^*x_s, R')$. Fix a direction of Q and rename the vertices of $V(Q) \cap W$ as $a_1, a_2, \ldots, a_{n_1-1}$ along the direction of Q. Let $a_{n_1} = a_1$. Note that we have at least $\lceil n/3 \rceil + 1$ different candidates for w since $i(x^*x_s, R') \ge \lceil n/3 \rceil + 1 \ge 6$.

Lemma 3.4 For each $j \in \{1, ..., n_1 - 1\}$, we have $e(a_j a_{j+1}, C) \leq l(C)$.

Proof. On the contrary, say $e(a_j a_{j+1}, C) \ge l(C) + 1$ for some $j \in \{1, \ldots, n_1 - 1\}$. Then $e(a_j a_{j+1}, Z_i) \ge |V(Z_i)| + 1$ for some $i \in \{1, \ldots, n_2\}$. Thus $[Q, V(Z_i)] \in \mathcal{H}$. If Q is a cycle of H, then we have two required cycles by Lemma 3.3. If Q is not a cycle of H, we may choose w so that $w \notin V(L_i)$, where L_i is as described in Lemma 3.3, and so there are two required cycles.

With Lemmas 2.4 and 3.4, we now generalize Lemma 3.4 to Lemma 3.5 in the following.

Lemma 3.5 For all $\{j, k\} \subseteq \{1, \ldots, n_1 - 1\}$ with j < k, we have $e(a_j a_k, G_1 + R') \ge s + |R'| + n/3$.

Proof. By Lemma 3.4, we see that $e(a_j a_{j+1}, G_1 + R') \ge 2\lceil 2n/3 \rceil - l(C) \ge s + |R'| + n/3$ for all $j \in \{1, ..., n_1 - 1\}$. For the proof, assume that $e(a_j a_k, G_1 + R') \le s + |R'| + \lceil n/3 \rceil - 1$ for some j < k. Then $e(a_j a_k, C) \ge l(C) + 1$. Thus $e(a_j a_k, Z_i) \ge |V(Z_i)| + 1$ for some $i \in \{1, ..., n_2\}$. Since $e(a_j a_{j+1}, G_1 + R') \ge s + |R'| + n/3$ and $e(a_k a_{k+1}, G_1 + R') \ge s + |R'| + n/3$, it follows that

$$e(a_{j+1}a_{k+1}, G_1 + R') \geq 2(s + |R'| + \lceil n/3 \rceil) - (s + |R'| + \lceil n/3 \rceil - 1) \\ = s + |R'| + \lceil n/3 \rceil + 1.$$

If Q contains a vertex of R', i.e. w, we choose w so that $w \notin V(L_i)$, where L_i is as described in Lemma 3.3. If $e(a_{j+1}a_{k+1}, Q) \geq l(Q) + 1$, then [Q] contains a path P from a_j to a_k with $l_W(P) = n_1 - 1$ by Lemma 2.4, and so $[Q, Z_i] \in \mathcal{H}$ as $e(a_j a_k, Z_i) \geq |V(Z_i)| + 1$, a contradiction since $L_1 + x_1 \in \mathcal{H}$ by Lemma 3.3. Hence $e(a_{j+1}a_{k+1}, Q) \leq l(Q)$. If $I(a_{j+1}a_{k+1}, G_1 + R') - V(Q)$ contains a vertex unot belonging to $V(L_i) \cup \{x_1, w\}$, then Q + u contains a path P' from a_j to a_k and $V(Q) \cap W \subseteq V(P')$ and so $[P', Z_i] \in \mathcal{H}$, again a contradiction since $L_1 + x_1 \in \mathcal{H}$. Therefore $I(a_{j+1}a_{k+1}, G_1 + R') - V(Q)$ does not contain a vertex not belonging to $V(L_i) \cup \{x_1, w\}$. From Lemma 3.3, we see that $|V(L_i) \cap R'| \leq 1$. Therefore $|I(a_{j+1}a_{k+1}, G_1 + R') - V(Q)| \leq 3$ and $e(a_{j+1}a_{k+1}, G_1 + R') \leq s + |R'| + 3$, a contradiction.

Lemma 3.6 For any $\{v, v'\} \subseteq R'$ and any $\{x, y\} \subseteq V(Q) - R'$ with $x \neq y$, $[H, R' - \{v, v'\}]$ has an x-y path P such that $V(P) \cap V(H) \subseteq V(Q)$, $\{a_1, a_2, \ldots, a_{n_1-1}\} \subseteq V(P)$ and $|V(P) \cap R'| \leq 2$.

Proof. Let a_j be the first vertex of W that succeeds x and a_k the first vertex of W that succeeds y on Q. Then $e(a_ja_k, G_1 + R') \ge s + |R'| + n/3$ by Lemma 3.5. If Q contains a vertex of R', i.e., w, we choose w so that $w \notin \{v, v'\}$. By Lemma 2.4, if $e(a_ja_k, Q) \ge l(Q)+1$, then [Q] contains an x-y path P with $V(P) \supseteq V(Q) \cap W$ and we are done. So we may assume that $e(a_ja_k, Q) \le l(Q)$. Then $I(a_ja_k, G_1 + R' - V(Q)) \ge n/3 \ge 5$. Therefore $I(a_ja_k, G_1 + R' - V(Q))$ contains a vertex u of $R' - \{v, v', w\}$ and so Q + u contains a required x-y path.

By Lemma 3.3 and Lemma 3.6, we see that $e(a_j a_k, Z_i) \leq |V(Z_i)|$ for all $i \in \{1, \ldots, n_2\}$ and $\{j, k\} \subseteq \{1, \ldots, n_1 - 1\}$ with $j \neq k$, for otherwise G contains two required cycles. Thus $e(a_j a_k, C) \leq l(C)$ for all $\{j, k\} \subseteq \{1, \ldots, n_1 - 1\}$ with $j \neq k$. Let v and v' be two given arbitrary vertices of R'. Choose w so that $w \notin \{v, v'\}$. As $n_1 \geq 4$ and by Lemma 3.6, there exists $\{j, k\} \subseteq \{1, \ldots, n_1 - 1\}$ with $j \neq k$ such that $G_1 + R' - \{v, v'\}$ has an x_1 - a_j path P' and an x_1 - a_k path P'' such that $l_W(P') = n_1$ and $l_W(P'') = n_1$. As $e(a_j a_k, C) \leq l(C)$, we may assume that $e(a_k, C) \leq l(C)/2$.

We claim that $I(x_1a_k, R' - V(Q)) = \emptyset$. If this is not true, we choose $v' \in I(x_1a_k, R' - V(Q))$. If $x_2 \in V(Q)$, we apply Lemma 3.6 with x_2 and a_k in place of x and y and see that $G_1 + R' \in \mathcal{H}$, a contradiction. Hence $x_2 \notin V(Q)$ and

 $x_2 \notin W$. Then apply Lemma 3.6 with x_3 and a_k in place of x and y and see that $G_1 + R' \in \mathcal{H}$, a contradiction. Hence $i(x_1a_k, R' - V(Q)) = \emptyset$. By Lemma 3.6, $e(x_1, H) \leq 2$ for otherwise $G_1 + R' \in \mathcal{H}$. Let r' = |R'| and c a rational number such that $e(x_1, R') = r'/2 + c$. Then $e(a_k, R') \leq r' - (r'/2 + c) + 1 = r'/2 - c + 1$. Note that $x_1a_k \notin E$. Thus

$$l(C) \ge e(x_1, C) \ge \lceil 2n/3 \rceil - r'/2 - c - e(x_1, H) \ge l(C)/2 + n/6 + s/2 - c - 2;$$
(11)
$$s - 2 \ge e(a_k, G_1) \ge \lceil 2n/3 \rceil - (r' + l(C))/2 + c - 1 = s/2 + n/6 + c - 1.$$
(12)

By (11), $l(C) \ge n/3 + s - 2c - 4$. By (12), $s \ge n/3 + 2c + 2$ and so $l(C) \ge 2n/3 - 2$. Since $r' \ge \lceil n/3 \rceil - 1$ and $n \ge 15$, we obtain that $n = s + l(C) + r' \ge n + 2c + r' > n$, a contradiction. This proves the theorem.

References

- M. Aigner and S. Brandt, Embedding arbitrary graphs of maximum degree two, J. London Math. Soc. (2) 48 (1993), 39–51.
- [2] B. Bollobás, *Extremal Graph Theory*, Academic Press, London (1978).
- [3] K. Corrádi and A. Hajnal, On the maximal number of independent circuits in a graph, *Acta Math. Acad. Sci. Hungar.* 14 (1963), 423–439.
- [4] M.H. El-Zahar, On circuits in graphs, *Discrete Math.* 50 (1984), 227–230.
- [5] N. Sauer and J. Spencer, Edge disjoint placement of graphs, J. Combin. Theory Ser. B 25 (1978), 295–302.
- [6] Ronghua Shi, 2-neighborhoods and hamiltonian conditions, J. Graph Theory (3) 16 (1992), 267–271.
- [7] H. Wang, Partial degree conditions and cycle coverings, J. Graph Theory 78 (2015), 295-304.

(Received 15 Mar 2015; revised 1 Oct 2015, 8 Dec 2015)