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Abstract

Let G be a graph of order n. Let W be a subset of V (G) with |W | ≥ 6.
We show that if d(x) ≥ 2n/3 for each x ∈ W , then for any partition
|W | = n1 + n2 with n1 ≥ 3 and n2 ≥ 3, G contains two vertex-disjoint
cycles C1 and C2 such that C1 contains n1 vertices of W and C2 contains
n2 vertices of W .

1 Introduction

Let G be a graph of order n. A set of subgraphs of G is said to be independent if
no two of them have any common vertex in G. Corrádi and Hajnal [3] investigated
the maximum number of independent cycles in a graph. They proved that if G is
a graph of order at least 3k with minimum degree at least 2k, then G contains k
independent cycles. In particular, when the order of G is exactly 3k, then G contains
k independent triangles. El-Zahar [4] proved that if G is a graph of order n1 + n2

with n1 ≥ 3 and n2 ≥ 3 and the minimum degree of G is at least �n1/2� + �n2/2�,
then G contains two independent cycles of orders n1 and n2, respectively. Sauer and
Spencer in their work [5] conjectured that if the minimum degree of G is at least 2n/3
then G contains every graph of order n with maximum degree of at most 2. This
conjecture was proved by Aigner and Brandt [1]. In [7], we proposed the following
conjecture:

Conjecture [7] Let G be a graph of order n ≥ 3. Let W be a subset of V (G) with
|W | ≥ 3k where k is a positive integer. Suppose that d(x) ≥ 2n/3 for each x ∈ W .
Then for any integer partition |W | = n1+· · ·+nk with ni ≥ 3(1 ≤ i ≤ k), G contains
k independent cycles C1, . . . , Ck such that |V (Ci) ∩W | = ni for all 1 ≤ i ≤ k.

This conjecture is supported by the following theorem:

Theorem A [7] Let G be a graph of order n ≥ 3. Let W be a subset of V (G) with
|W | ≥ 3k where k is a positive integer. Suppose that d(x) ≥ 2n/3 for each x ∈ W .
Then G contains k independent cycles such that each of the k cycles contains at least
three vertices of W .
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Our work is also motivated by the work of Ronghua Shi [6], who showed that if
G is 2-connected and d(x) ≥ n/2 for each x ∈ U then G contains a cycle passing
through all the vertices of U , where U is a subset of V (G).

In this paper, we prove the following:

Theorem B Let G be a graph of order n. Let W be a subset of V (G) with |W | ≥ 6.
If d(x) ≥ 2n/3 for each x ∈ W , then for any partition |W | = n1 + n2 with n1 ≥ 3
and n2 ≥ 3, G contains two independent cycles C1 and C2 such that C1 contains n1

vertices of W and C2 contains n2 of W .

We discuss only finite simple graphs and use standard terminology and notation
from [2] except as indicated. Let G be a graph and u be a vertex of G. If H is a
subgraph of G or a subset of V (G) or a sequence of vertices of G, we define N(u,H)
to be the set of neighbors of u contained inH . Let e(u,H) = |N(u,H)|. Thus e(u,G)
is the degree of u in G. If each of X1, . . . , Xk is a subgraph of G or a subset of V (G)
or a sequence of vertices of G, we use [X1, X2, . . . , Xk] to denote the subgraph of G
induced by the set of all the vertices x i that belongs to some of X1, X2, . . . , Xk. If
each of X and Y is a subgraph of G or a subset of V (G) or a sequence of vertices of
G, we define e(X, Y ) =

∑
x e(x, Y ) where x runs over X. The length of a cycle or a

path L is denoted by l(L). If W is a subset of V (G), then the W -length of L is the
number of vertices of L that are contained in W . We denote the W -length of L by
lW (L). i If we list V (L) = {u1, u2, . . . , uk}, then operations in the subscripts of ui’s
will be taken modulo k in {1, 2, . . . , k}.

A chord of a cycle C in G is an edge of G−E(C) that joins two vertices of C. If
we write C = x1x2 . . . xmx1, we assume that an orientation of C is given such that
x2 is the successor of x1. Moreover, we use x+

i and x−
i to denote the successor and

predecessor of xi, respectively. We use C[xi, xj ] to represent the path of C from xi

to xj along the orientation of C. We adopt the notation C(xi, xj ] = C[xi, xj ] − xi,
C[xi, xj) = C[xi, xj] − xj and C(xi, xj) = C[xi, xj] − xi − xj . We use C− to denote
the cycle C with its opposite orientation.

If x and y are two vertices of G and H is a subgraph of G or a subset of V , we
define I(xy,H) = N(x,H) ∩N(y,H). Let i(xy,H) = |I(xy,H)|. For a subset W of
V , let δW (G) = min{e(x,G)|x ∈ W}.

2 Lemmas

Let G = (V,E) be a graph of order n and W a subset of V . Lemma 2.1 is an easy
observation.

Lemma 2.1 If P = x1 . . . xk is a path of G and u is a vertex in V −V (P ) such that
e(u, P ) ≥ (k+1)/2, then [P, u] has a hamiltonian path from x1 to xk or k is odd and
N(u, P ) = {x1, x3, x5, . . . , xk}.
Lemma 2.2 If P = x1 . . . xk is a path of G and u is a vertex in V −V (P ) such that
e(uxk, P ) ≥ k + 1, then [P, u] has a hamiltonian path from x1 to u.
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Proof. The condition implies that for some i ∈ {1, . . . , k − 1}, {xkxi, uxi+1} ⊆ E
and so x1 . . . xixkxk−1 . . . xi+1u is a required path.

Lemma 2.3 If P = x1 . . . xk is a path of G and u and v are two vertices in V −V (P )
such that e(uv, P ) ≥ k + 2, then [P, u, v] has a hamiltonian path from x1 to xk or
e(uv, P ) = k + 2 and e(uv, x1xk) = 4.

Proof. Let X = {xi+1|uxi ∈ E, 1 ≤ i ≤ k} and Y = {xi−1|uxi ∈ E, 1 ≤ i ≤ k},
where xk+1 = x1 and x0 = xk. Then |X| = e(u, P ). Thus e(uv, P ) = |X| +
e(v, P ) ≥ k + 2. Therefore N(v, P ) ∩X contains at least two distinct vertices xi+1

and xj+1 with i < j. Let xi+1 and xj+1 be chosen with j minimal. If j < k, then
x1 . . . xiuxjxj−1 . . . xi+1vxj+1 . . . xk is a required path. If j = k, then |N(v, P )∩X| =
2, e(uv, P ) = k + 2 and {uxk, vx1} ⊆ E. Applying a similar argument with Y in
place of X, we obtain {ux1, vxk} ⊆ E.

Lemma 2.4 Let C be a cycle of order k in G with a given direction and V (C) ⊇ W .
Let x and y be two vertices on C. Let x′ be the first vertex of W that succeeds x and
y′ the first vertex of W that succeeds y. If e(x′y′, C) ≥ k + 1, then [C] contains an
x-y path P such that W ⊆ V (P ).

Proof. The condition implies that either there exists u on C[x′, y′) such that
{y′u−, x′u} ⊆ E or there exists v on C[y′, x′) such that {x′v−, y′v} ⊆ E. If
e(x′, C(y, y′]) > 0 or e(y′, C(x, x′]) > 0, then we readily see that there is a required
path. So assume that e(x′, C(y, y′]) = 0 and e(y′, C(x, x′]) = 0. Thus either u is
on C(x′, y] or v is on C(y′, x]. Say without loss of generality that the former holds.
Then xC−[x, y′]u−C−[u−, x′]uC[u, y]y is a required path.

Lemma 2.5 Let C be a cycle of order k in G with a given direction and V (C) ⊇ W .
Let λ be a nonnegative integer. Suppose that for each pair x and y of vertices in W ,
if [C] has an x-y path containing W then e(xy, C) ≥ k + λ. Then e(uv, C) ≥ k + λ
for all {u, v} ⊆ W with u 
= v.

Proof. On the contrary, say e(uv, C) ≤ k + λ− 1 for some {u, v} ⊆ W with u 
= v.
Let x be the first vertex of W that succeeds u and y the first vertex of W succeeds v.
Then e(xu, C) ≥ k+λ and e(yv, C) ≥ k+λ. Thus e(xy, C) ≥ 2(k+λ)−(k+λ−1) =
k+ λ+1. By Lemma 2.4, [C] has a u-v path containing W and so e(uv, C) ≥ k+λ,
a contradiction.

Lemma 2.6 Let W be a subset of V with |W | ≥ 3. If e(x,G) ≥ n/2 for all x ∈ W ,
then G has a cycle C such that V (C) ⊇ W .

Proof. Let P be a path with its two endvertices in W such that lW (P ) is as large as
possible. Say P = x1 . . . xk. If there exists y ∈ W − V (P ), then e(yxk, G− V (P )) ≤
n − k − 1. This would yield that e(yxk, P ) ≥ n − (n − k − 1) = k + 1 and so
[P, y] contains a hamiltonian path from x1 to y by Lemma 2.2, contradicting the
maximality of P . Thus V (P ) ⊇ W . The lemma holds if I(x1xk, G− V (P )) 
= ∅. If
I(x1xk, G− V (P )) = ∅ then e(x1xk, G− V (P )) ≤ n− k and so e(x1xk, P ) ≥ k and
consequently, [P ] is hamiltonian.
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3 Proof of the Theorem

Let G = (V,E) be a graph of order n. Let W be a subset of V such that |W | ≥ 6
and e(x,G) ≥ 2n/3 for each x ∈ W . Suppose, for a contradiction, that G does
not contain two independent cycles of W -lengths n1 and n2, respectively for some
partition |W | = n1 + n2 with n1 ≥ 3 and n2 ≥ 3. Then n1 + n2 < n by El-Zahar’s
result mentioned in the introduction and n1 + n2 ≥ 7 by Theorem A. Thus n ≥ 8.
The degree condition is still maintained when the edges of G−W are removed from
G. So we may assume that G−W has no edges.

We need some special terminology and notation. A W -path of G is a path with
its endvertices in W . Let H denote the set of all the subgraphs H such that H has a
cycle C with V (C) ⊇ V (H) ∩W . Let P denote the set of all the subgraphs H such
that H has a path P with V (P ) ⊇ V (H) ∩W .

By Lemma 2.6, G ∈ H and so G conatins two independent W -paths P1 and P2

such that

lW (P1) = n1 and lW (P2) = n2. (1)

Subject to (1), we choose P1 and P2 in G such that

l(P1) + l(P2) is minimal. (2)

Let G1 = [P1] and G2 = [P2]. Subject to (1) and (2), choose P1 and P2 such that

e(G1) + e(G2) is maximal. (3)

Say R = V (G)− V (G1 ∪G2), P1 = x1x2 . . . xs, P2 = y1y2 . . . yt and |R| = r. Thus R
is an independent set of G and n = r + s+ t. Note that �2n/3� ≥ �n/2� + 1.

Lemma 3.1 Either I(x1xs, R) = ∅ or I(y1yt, R) = ∅.

Proof. On the contrary, say I(x1xs, R) 
= ∅ and I(y1yt, R) 
= ∅. As G does not
contain two required cycles, there exists u ∈ R such that I(x1xs, R) = I(y1yt, R) =
{u}. Moreover, G1 
∈ H and G2 
∈ H. It follows that e(x1xs, R) ≤ r+1, e(y1yt, R) ≤
r+1, e(x1xs, G1) ≤ s−1, and e(y1yt, G2) ≤ t−1. Thus e(x1xs, G2) ≥ 4n/3−(r+s) =
t + n/3 > t+ 2 and e(y1yt, G1) ≥ 4n/3− (r + t) = s+ n/3 > s+ 2. By Lemma 2.3,
G1−x1−xs+ y1+ yt ∈ P and G2− y1− yt+x1+xs ∈ P. In the meantime, we have

e(G1 − x1 − xs + y1 + yt) + e(G2 − y1 − yt + x1 + xs)

= e(G1)− e(x1xs, G1) + e(y1yt, G1) + e(G2)− e(y1yt, G2) + e(x1xs, G2)

−2e(x1xs, y1yt)

≥ e(G1)− (s− 1) + (s+ 3) + e(G2)− (t− 1) + (t+ 3)− 2e(x1xs, y1yt)

= e(G1) + e(G2) + 8− 2e(x1xs, y1yt) ≥ e(G1) + e(G2).
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By (1), (2) and (3), we see the equality must holds in these inequalities and
e(x1xs, y1yt) = 4. On the other hand, we see that

e(x1, G2) + e(y1, G1)− e(x1, G1)− e(y1, G2)

+e(xs, G2) + e(yt, G1)− e(xs, G1)− e(yt, G2) ≥ 8.

Thus either e(x1, G2)+ e(y1, G1)− e(x1, G1)− e(y1, G2) ≥ 4 or e(xs, G2)+ e(yt, G1)−
e(xs, G1)− e(yt, G2) ≥ 4. Say without loss of generality that the former holds. Then

e(G1 − x1 + y1) + e(G2 − y1 + x1)

= e(G1)− e(x1, G1) + e(y1, G1) + e(G2)− e(y1, G2) + e(x1, G2)− 2e(x1, y1)

≥ e(G1) + e(G2) + 4− 2e(x1, y1) ≥ e(G1) + e(G2) + 2.

This contradicts (3) since G1 − x1 + y1 ∈ P and G2 − y1 + x1 ∈ P.

Lemma 3.2 Either G1 
∈ H and I(x1xs, R) = ∅ or G2 
∈ H and I(y1yt, R) = ∅.

Proof. Since either G1 
∈ H or G2 
∈ H, say without loss of generality G1 
∈ H. If
I(x1xs, R) = ∅, we are done. Otherwise, I(x1xs, R) 
= ∅, and so G2 
∈ H. Moreover,
by Lemma 3.1, I(y1yt, R) = ∅.

By Lemma 3.2, we may assume without loss of generality that G1 
∈ H and
I(x1xs, R) = ∅. Thus

e(x1xs, G1 +R) ≤ s− 1 + r. (4)

Therefore 2t ≥ e(x1xs, G2) ≥ 4n/3− (r + s− 1) = t+ n/3 + 1 and this implies

t ≥ �n/3� + 1. (5)

We shall divide our proof of the theorem into two parts: r ≤ �n/3�−1 or r ≥ �n/3�.
Part I: r ≤ �n/3� − 1

LetH = G−R and p = |V (H)|. Then δW (H) ≥ �2n/3�−r = �p/2+(p−2r)/6� ≥
(p + 1)/2. As e(x1xs, G1) ≤ s− 1, we may assume that e(x1, G1) ≤ e(xs, G1). Thus
e(x1, G1) ≤ (s−1)/2 and so e(x1, G2) ≥ �(p+1)/2�−(s−1)/2� ≥ t/2+1. We claim
that if u is an endvertex of a hamiltonian path of G2, then either e(u,G2) ≥ (t+1)/2
or e(u,G2) = t/2 and x1u ∈ E. To see this, say without loss of generality that
e(u,G2) ≤ t/2. Then e(u,G1) ≥ �(p + 1)/2� − t/2� ≥ (s + 1)/2. By Lemma 2.1,
G1 − x1 + u ∈ P and G2 − u+ x1 ∈ P. By (3), we have

e(G1) + e(G2)

≥ e(G1 − x1 + u) + e(G2 − u+ x1)

≥ e(G1)− (s− 1)/2 + (s+ 1)/2 + e(G2)− t/2 + t/2 + 1− 2e(x1, u)

= e(G1) + e(G2) + 2− 2e(x1, u)

≥ e(G1) + e(G2).
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This implies that e(u,G2) = t/2 and x1u ∈ E. Therefore the claim holds. Thus
G2 ∈ H and so G2 + x1 ∈ H by Lemma 2.1. By (2), n2 = t. Say without loss of
generality that y1y2 . . . yty1 is a hamiltonian cycle of G2. For each yi, if G2 − yi ∈ H,
then G2 − yi + x1 ∈ H because e(x1, G2 − yi) ≥ t/2, and if G2 − yi 
∈ H then
e(yi−1, G2) = e(yi+1, G2) = t/2 and so G2 − yi + x1 ∈ H since e(x1, yi−1yi+1) = 2 in
this situation.

Say H1 = G1 − x1 and H2 = G2 + x1. Then H1 + R + v 
∈ H for all v ∈ V (H2).
Thus for any x-y W -path P of H1 with P ∈ P, e(v, xy) ≤ 1 for all v ∈ V (H2)
and so e(xy,H1) ≥ p + 1 − e(xy,H2) ≥ p + 1 − (t + 1) = (s − 1) + 1. It follows
that H1 ∈ H. Let C be a cycle of H1 such that if H1 is hamiltonian then C is a
hamiltonian cycle of H1 and otherwise x2 
∈ W , x3 ∈ W and C is a hamiltonian cycle
of H1 − x2. Let u and v be any two vertices in V (H1) ∩W . We claim that H1 has
a u-v path containing V (H1) ∩ W and e(uv,H1) ≥ (s − 1) + 1. To see this, let x
be the first vertex of W that succeeds u and y the first vertex of W that succeeds v
on C. If I(xy,H1 − V (C)) 
= ∅, we readily see that H1 has u-v path P ∈ P and so
e(uv,H1) ≥ (s− 1) + 1. So assume I(xy,H1 − V (C)) = ∅. By Lemma 2.4, we may
also assume that e(xy, C) ≤ |V (C)|. Thus e(xy,H1) ≤ s−1 and so H1 does not have
an x-y path containing V (H1) ∩W . This implies that e(uv, C) ≤ |V (C)| by Lemma
2.4 and I(uv,H1−V (C)) = ∅. Thus e(uv,H1) ≤ s−1. Since e(ux,H1) ≥ (s−1)+1
and e(vy,H1) ≥ (s− 1)+1, either e(xy,H1) ≥ (s− 1)+1 or e(uv,H1) ≥ (s− 1)+1,
a contradiction. Therefore the claim holds.

Label C = c1c2 . . . clc1 with l = |V (C)| such that if C is a hamiltonian cycle of
H1 then c1 = x2 and otherwise C is a hamiltonian cycle of H1−x2 with x2 
∈ W and
we let c1 = x3. Then G1 has an x1-c2 hamiltonian path and an x1-cl hamiltonian
path. By (2), we see that {c2, cl} ⊆ W . Suppose that there exists i ∈ {3, . . . , l − 1}
such that ci 
∈ W . Let ci be chosen with i maximal. Then e(c2ci+1, H1) ≥ (s−1)+1.
Notice that if C is not a hamiltonian cycle of H1 then c2x2 
∈ E and clx2 
∈ E. By
Lemma 2.4, [C] contains a c1-ci path containing V (C)∩W . Thus G1 has x1-ci path P ′

containing V (G1)∩W . By (2), ci ∈ W , a contradiction. Therefore {c2, . . . , cl} ⊆ W .
Thus either n1 = s or n1 = s− 1 with x2 
∈ W . Since G1 
∈ H, we also see, from this
argument, that e(x1, C) ≤ 1 and so e(x1, H1) ≤ 2.

As e(c2cl, H2) ≤ t+1, we may assume without loss of generality that e(cl, H2) ≤
(t + 1)/2. Clearly, I(x1cl, R) = ∅. Let a be a rational number such that e(x1, R) =
r/2 + a. Then e(cl, R) ≤ r/2 − a. Clearly, t ≥ e(x1, G2) ≥ 2n/3 − r/2 − a − 2 =
t/2 + s/2 + n/6 − a − 2 and s − 2 ≥ e(cl, H1) ≥ 2n/3 − (t + 1)/2 − r/2 + a =
s/2 + n/6 − 1/2 + a. It follows that t ≥ s + n/3 − 2a − 4 and s ≥ n/3 + 2a + 3.
Consequently, n = s+t+r ≥ s+2n/3−1+r ≥ n+2a+2+r ≥ n+2, a contradiction.

Part II: r ≥ �n/3�
Since n ≥ 8, r ≥ 3. By (5), n = s+ r + t ≥ 3 + �n/3�+ �n/3�+ 1 and it follows

that n ≥ 12. We claim

n1 ≥ 4, n2 ≥ 4 and n ≥ 15. (6)

If this is not true, say min{n1, n2} = 3. Let C be a cycle of G containing at least
three vertices of W with lW (C) as small as possible and subject to this, we choose
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C with l(C) as small as possible. Suppose that lW (C) ≥ 4. Then e(x, C) = 2 for
all x ∈ V (C) ∩W . Thus e(xy,G− V (C)) ≥ 4n/3 − 4 = n− l(C) + n/3 + l(C)− 4
and so i(xy,G − V (C)) ≥ n/3 + l(C) − 4 for all {x, y} ⊆ V (C) ∩ W with x 
= y.
By the mimimality of C, we see that lW (C) = l(C) = 4. Say C = w1w2w3w4w1.
Then I(wiwi+1, G−V (C))∩W = ∅ and I(wiwi+2, G−V (C)) ⊆ W by the minmality
of lW (C) for all i ∈ {1, 2, 3, 4}. Clearly, i(w1w2, G − V (C)) + e(w3, G − V (C)) ≥
n/3 + 2n/3 − 2 > n − l(C) and so I(wiwi+1, G − V (C)) ∩ N(w3, G − V (C)) 
= ∅,
a contradiction. Therefore lW (C) = 3 and so G − V (C) 
∈ H. Moreover, we see
e(x, C) ≤ 3 for all x ∈ W −V (C) by the minimality of l(C) and so e(x,G−V (C)) ≥
2n/3 − 3 > (n − l(C))/2 for all x ∈ W − V (C). Consequently, G − V (C) ∈ H, a
contradiction. So n1 ≥ 4 and n2 ≥ 4. Since n = s+ r + t ≥ 4 + �n/3� + �n/3� + 1,
it follows that n ≥ 15. Hence (6) holds.

We claim that for each y ∈ V (G2) ∩ W , e(y,G2 + R) ≥ (r + t + 1)/2. If this
is not true, say e(y,G2 + R) ≤ (r + t)/2 for some y ∈ V (G2) ∩ W . Then s ≥
e(y,G1) ≥ 2n/3 − (r + t)/2 = s/2 + n/6. Thus s ≥ n/3. With (5), we obtain
n = r+ s+ t ≥ n/3+n/3+n/3+1 = n+1, a contradiction. Hence the claim holds.
Thus either G2 is hamiltonian and so V (G2) ⊆ W by (2) or G2+u is hamiltonian for
some u ∈ R. Let C be a hamiltonian cycle of G2 if G2 is hamiltonian and otherwise
let C be a hamiltonian cycle of G2+ y0 for some y0 ∈ I(y1yt, R). Clearly, l(C) = t or
l(C) = t+1. Rename the vertices of V (C)∩W as b1, b2, . . . , bn2 along the direction of
C. Moreover, we may assume that if l(C) = t+ 1 then b+n2

= y0. Let bn2+1 = b1 and
b0 = bn2 . Let Zi = C[bi, bi+1) for all i ∈ {1, . . . , n2}. As V (G)−W is an independent
set, Zi has at most two vertices for all i ∈ {1, . . . , n2}. Set R′ = R− V (C). Clearly,
either R′ = R or R′ = R − {y0}. We may assume without loss of generality that
e(x1, G1 +R) ≤ e(xs, G1 +R). Thus by (4),

e(x1, G2) ≥ 2n/3− (r + s− 1)/2 = t/2 + n/6 + 1/2. (7)

Lemma 3.3 For each i ∈ {1, 2, . . . , n2} there exists a cycle Li with W ∩ V (C) −
{bi} ⊆ V (Li) such that either V (Li) ⊆ V (C) − V (Zi) and Li + x1 ∈ H or V (Li) ⊆
(V (C)− V (Zi)) ∪ {vi} for some vi ∈ R′ and Li + x1 ∈ H.

Proof. Let i ∈ {1, 2, . . . , n2}. By (7), we have

e(x1, G2 − V (Zi)) ≥ �t/2 + n/6 + 1/2� − e(x1, Zi). (8)

First, assume that bi+1 = b+i . Then Zi = bi. If b
+
i−1 = bi, then e(bi−1bi+1, G2+R−

bi) ≥ r+ t+1− 2 = t+ r− 1. Thus either [V (C − bi)] is hamiltonian or there exists
vi ∈ R′ such that e(vi, bi−1bi+1) = 2. Thus either there is a hamiltonian cycle Li of
[V (C− bi)] or Li = C− bi+ vibi−1+ vibi+1 is a hamiltonian cycle of [V (C− bi)∪{vi}]
for some vi ∈ R′. By (7), e(x1, Li) ≥ �(t + 1)/2�+ 1 and so Li + x1 is hamiltonian.

Next, assume that bi+1 = b+i and b++
i−1 = bi. By (2) and the assumption on C,

bibi−1 
∈ E. If [V (C−bi−b+i−1)] is hamiltonian, then there is a hamiltonian cycle Li of
[V (C−bi−b+i−1)] and e(x1, Li) ≥ e(x1, G2)−e(x1, bib

+
i−1) > (t−1)/2 and so Li+x1 is

hamiltonian. So assume that [V (C−bi−b+i−1)] is not hamiltonian. Then bi+1bi−1 
∈ E.
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Similarly, we may assume that [V (C − bi)] is not hamiltonian and so bi+1b
+
i−1 
∈ E.

Then e(bi−1bi+1, bib
+
i−1) ≤ 2 as bibi−1 
∈ E. Hence e(bi−1bi+1, G2 + R − bi − b+i−1) ≥

r+t+1−2 = t+r−1. Thus I(bi−1bi+1, R
′) 
= ∅. Let Li = C−{b+i−1, bi}+vibi−1+vibi+1

with vi ∈ R′. Clearly, |V (Li)| ≤ t. For the proof, we may assume that x1 is not
adjacent to two consecutive vertices of Li. Then e(x1, Li) ≤ t/2 by Lemma 2.1. By
(7), we obtain that 2 ≥ e(x1, b

+
i−1bi) ≥ t/2 + n/6 + 1/2− e(x1, Li) ≥ n/6 + 1/2 ≥ 3,

a contradiction.
Next, assume that b++

i = bi+1 and b+i−1 = bi. Then Zi = bib
+
i . The proof is similar

as above.
Finally, assume that b++

i = bi+1 and b++
i−1 = bi. Then Zi = bib

+
i . As above,

we may assume that none of bi+1bi, bi+1b
−
i and bi−1bi is an edge of G. Moreover,

[V (C) − {bi, b+i , b−i }] is not hamitonian. Thus I(bi−1bi+1, R
′) 
= ∅. Let Li = C −

{b−i , bi, b+i }+vibi−1+vibi+1 with vi ∈ R′. For the proof, we may assume that x1 is not
adjacent to two consecutive vertices of Li. Thus e(x1, C − {b−i , bi, b+i }) ≤ (t− 1)/2.
Then by (7), 3 ≥ e(x1, b

−
i bib

+
i ) ≥ e(x1, G2) − (t − 1)/2� ≥ n/6 + 1 ≥ 21/6, a

contradiction.

By Lemma 3.3,

G1 − x1 + V (Zi) 
∈ H for all i ∈ {1, . . . , n2}. (9)

Let H = G1 − x1. Let x∗ = x2 if x2 ∈ W and otherwise x2 
∈ W and x∗ = x3 with
x3 ∈ W . By (9), e(x∗xs, Zi) ≤ |V (Zi)| for all i ∈ {1, 2, . . . , n2}. Thus e(x∗xs, C) ≤
l(C) and so

e(x∗xs, G1 +R′) ≥ 2�2n/3� − l(C) ≥ s+ |R′|+ �n/3�. (10)

Thus ifH 
∈ H then e(x∗xs, H) ≤ s−2 and so e(x∗xs, R
′) ≥ s+|R′|+�n/3�−(s−1) =

|R′|+ �n/3� + 1. Consequently, |R′| ≥ �n/3� + 1 and i(x∗xs, R
′) ≥ �n/3�+ 1 ≥ 6.

If H is a hamiltonian, let Q be a hamiltonian cycle of H . If H is not hamiltonian
but H − x2 is hamiltonian with x2 
∈ W , let Q be a hamiltonian cycle of H − x2.
Otherwise let Q = wP1[x

∗, xs]w with w ∈ I(x∗xs, R
′). Fix a direction of Q and

rename the vertices of V (Q) ∩ W as a1, a2, . . . , an1−1 along the direction of Q. Let
an1 = a1. Note that we have at least �n/3� + 1 different candidates for w since
i(x∗xs, R

′) ≥ �n/3�+ 1 ≥ 6.

Lemma 3.4 For each j ∈ {1, . . . , n1 − 1}, we have e(ajaj+1, C) ≤ l(C).

Proof. On the contrary, say e(ajaj+1, C) ≥ l(C) + 1 for some j ∈ {1, . . . , n1 − 1}.
Then e(ajaj+1, Zi) ≥ |V (Zi)| + 1 for some i ∈ {1, . . . , n2}. Thus [Q, V (Zi)] ∈ H. If
Q is a cycle of H , then we have two required cycles by Lemma 3.3. If Q is not a
cycle of H , we may choose w so that w 
∈ V (Li), where Li is as described in Lemma
3.3, and so there are two required cycles.

With Lemmas 2.4 and 3.4, we now generalize Lemma 3.4 to Lemma 3.5 in the
following.
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Lemma 3.5 For all {j, k} ⊆ {1, . . . , n1− 1} with j < k, we have e(ajak, G1+R′) ≥
s + |R′|+ n/3.

Proof. By Lemma 3.4, we see that e(ajaj+1, G1 + R′) ≥ 2�2n/3� − l(C) ≥ s +
|R′|+ n/3 for all j ∈ {1, . . . , n1 − 1}. For the proof, assume that e(ajak, G1 +R′) ≤
s+ |R′|+ �n/3� − 1 for some j < k. Then e(ajak, C) ≥ l(C) + 1. Thus e(ajak, Zi) ≥
|V (Zi)| + 1 for some i ∈ {1, . . . , n2}. Since e(ajaj+1, G1 + R′) ≥ s + |R′| + n/3 and
e(akak+1, G1 +R′) ≥ s+ |R′|+ n/3, it follows that

e(aj+1ak+1, G1 +R′) ≥ 2(s+ |R′|+ �n/3�)− (s+ |R′|+ �n/3� − 1)

= s+ |R′|+ �n/3� + 1.

If Q contains a vertex of R′, i.e. w, we choose w so that w 
∈ V (Li), where Li

is as described in Lemma 3.3. If e(aj+1ak+1, Q) ≥ l(Q) + 1, then [Q] contains a
path P from aj to ak with lW (P ) = n1 − 1 by Lemma 2.4, and so [Q,Zi] ∈ H
as e(ajak, Zi) ≥ |V (Zi)| + 1, a contradiction since L1 + x1 ∈ H by Lemma 3.3.
Hence e(aj+1ak+1, Q) ≤ l(Q). If I(aj+1ak+1, G1 + R′) − V (Q) contains a vertex u
not belonging to V (Li) ∪ {x1, w}, then Q + u contains a path P ′ from aj to ak
and V (Q) ∩ W ⊆ V (P ′) and so [P ′, Zi] ∈ H, again a contradiction since L1 +
x1 ∈ H. Therefore I(aj+1ak+1, G1 + R′) − V (Q) does not contain a vertex not
belonging to V (Li) ∪ {x1, w}. From Lemma 3.3, we see that |V (Li) ∩ R′| ≤ 1.
Therefore |I(aj+1ak+1, G1+R′)− V (Q)| ≤ 3 and e(aj+1ak+1, G1+R′) ≤ s+ |R′|+3,
a contradiction.

Lemma 3.6 For any {v, v′} ⊆ R′ and any {x, y} ⊆ V (Q)−R′ with x 
= y, [H,R′ −
{v, v′}] has an x-y path P such that V (P ) ∩ V (H) ⊆ V (Q), {a1, a2, . . . , an1−1} ⊆
V (P ) and |V (P ) ∩ R′| ≤ 2.

Proof. Let aj be the first vertex of W that succeeds x and ak the first vertex of W
that succeeds y on Q. Then e(ajak, G1 + R′) ≥ s + |R′| + n/3 by Lemma 3.5. If Q
contains a vertex of R′, i.e., w, we choose w so that w 
∈ {v, v′}. By Lemma 2.4, if
e(ajak, Q) ≥ l(Q)+1, then [Q] contains an x-y path P with V (P ) ⊇ V (Q)∩W and we
are done. So we may assume that e(ajak, Q) ≤ l(Q). Then I(ajak, G1+R′−V (Q)) ≥
n/3 ≥ 5. Therefore I(ajak, G1 + R′ − V (Q)) contains a vertex u of R′ − {v, v′, w}
and so Q+ u contains a required x-y path.

By Lemma 3.3 and Lemma 3.6, we see that e(ajak, Zi) ≤ |V (Zi)| for all i ∈
{1, . . . , n2} and {j, k} ⊆ {1, . . . , n1 − 1} with j 
= k, for otherwise G contains two
required cycles. Thus e(ajak, C) ≤ l(C) for all {j, k} ⊆ {1, . . . , n1 − 1} with j 
= k.
Let v and v′ be two given arbitrary vertices of R′. Choose w so that w 
∈ {v, v′}. As
n1 ≥ 4 and by Lemma 3.6, there exists {j, k} ⊆ {1, . . . , n1− 1} with j 
= k such that
G1 +R′ − {v, v′} has an x1-aj path P ′ and an x1-ak path P ′′ such that lW (P ′) = n1

and lW (P ′′) = n1. As e(ajak, C) ≤ l(C), we may assume that e(ak, C) ≤ l(C)/2.
We claim that I(x1ak, R

′ − V (Q)) = ∅. If this is not true, we choose v′ ∈
I(x1ak, R

′ − V (Q)). If x2 ∈ V (Q), we apply Lemma 3.6 with x2 and ak in place
of x and y and see that G1 + R′ ∈ H, a contradiction. Hence x2 
∈ V (Q) and
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x2 
∈ W . Then apply Lemma 3.6 with x3 and ak in place of x and y and see that
G1 + R′ ∈ H, a contradiction. Hence i(x1ak, R

′ − V (Q)) = ∅. By Lemma 3.6,
e(x1, H) ≤ 2 for otherwise G1 +R′ ∈ H. Let r′ = |R′| and c a rational number such
that e(x1, R

′) = r′/2 + c. Then e(ak, R
′) ≤ r′ − (r′/2 + c) + 1 = r′/2 − c + 1. Note

that x1ak 
∈ E. Thus

l(C) ≥ e(x1, C) ≥ �2n/3� − r′/2− c− e(x1, H)

≥ l(C)/2 + n/6 + s/2− c− 2; (11)

s− 2 ≥ e(ak, G1) ≥ �2n/3� − (r′ + l(C))/2 + c− 1 = s/2 + n/6 + c− 1. (12)

By (11), l(C) ≥ n/3+ s− 2c− 4. By (12), s ≥ n/3+ 2c+2 and so l(C) ≥ 2n/3− 2.
Since r′ ≥ �n/3�− 1 and n ≥ 15, we obtain that n = s+ l(C) + r′ ≥ n+2c+ r′ > n,
a contradiction. This proves the theorem.
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