Critical graphs with respect to total domination and connected domination

P. Kaemawichanurat L. Caccetta
Western Australian Centre of Excellence in Industrial Optimisation (WACEIO) Department of Mathematics and Statistics Curtin University, GPO Box U1987
Perth, WA 6845
Australia

pavaton@hotmail.com L.Caccetta@exchange.curtin
N. ANANCHUEN*
Department of Mathematics, Faculty of Science
Silpakorn University
Nakorn Pathom 73000
Thailand
nawarat@su.ac.th

Abstract

A graph G is said to be k - γ_{t}-critical if the total domination number $\gamma_{t}(G)=k$ and $\gamma_{t}(G+u v)<k$ for every $u v \notin E(G)$. A k - γ_{c}-critical graph G is a graph with the connected domination number $\gamma_{c}(G)=k$ and $\gamma_{c}(G+u v)<k$ for every $u v \notin E(G)$. Further, a k-tvc graph is a graph with $\gamma_{t}(G)=k$ and $\gamma_{t}(G-v)<k$ for all $v \in V(G)$, where v is not a support vertex (i.e. all neighbors of v have degree greater than one). A 2 -connected graph G is said to be k-cvc if $\gamma_{c}(G)=k$ and $\gamma_{c}(G-v)<k$ for all $v \in V(G)$. In this paper, we prove that connected k - γ_{t}-critical graphs and k - γ_{c}-critical graphs are the same if and only if $3 \leq k \leq 4$. For $k \geq 5$, we concentrate on the class of connected $k-\gamma_{t}$-critical graphs G with $\gamma_{c}(G)=k$ and the class of k - γ_{c}-critical graphs G with $\gamma_{t}(G)=k$. We show that these classes intersect but they do not need to be the same. Further, we prove that 2 -connected k-tvc graphs and k-cvc graphs are the same if and only if $3 \leq k \leq 4$. Similarly, for $k \geq 5$, we focus on the class of 2-connected k-tvc graphs G with $\gamma_{c}(G)=k$ and the class of 2-connected k-cve graphs G with $\gamma_{t}(G)=k$. We finish this paper by showing that these classes do not need to be the same.

[^0]
1 Introduction

Let G be a finite simple undirected graph with a vertex set $V(G)$ and an edge set $E(G)$. Denote the complement of G by \bar{G}. A graph H is a subgraph of G if $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$. An induced subgraph $G[H]$ of a graph G is a subgraph H for which $u v \in E(H)$ if and only if $u v \in E(G)$ where $u, v \in V(H)$. The neighborhood $N_{G}(v)$ of a vertex v in G is $\{u \in V(G) \mid u v \in E(G)\}$. Further, the closed neighborhood $N_{G}[v]$ of a vertex v in G is $N_{G}(v) \cup\{v\}$. We let $N_{G}(S)=\cup_{v \in S} N_{G}(v)$ where $S \subseteq V(G)$. The degree of a vertex v is $\left|N_{G}(v)\right|$. An end vertex of G is a vertex of degree one and a support vertex of G is a vertex which is adjacent to an end vertex. A tree is a connected graph with no cycle. A star $K_{1, n}$ is a tree containing one support vertex and n end vertices.

For subsets $D, X \subseteq V(G), D$ dominates X if every vertex of X is either in D or adjacent to a vertex of D. If D dominates X, then we write $D \succ X$. Further, if $X=V(G)$, then D is a dominating set of G and we write $D \succ G$ instead of $D \succ V(G)$. A total dominating set of a graph G is a subset D^{t} of vertices of G such that every vertex of G is adjacent to some vertex of D^{t}. The total domination number $\gamma_{t}(G)$ of G is the minimum cardinality of a total dominating set. Note that $\gamma_{t}(G) \geq 2$ and every vertex in $V(G)$ is totally dominated by D^{t}. If D^{t} totally dominates G, then we write $D^{t} \succ_{t} G$. A smallest total dominating set of a graph G is called a γ_{t}-set of a graph G. A connected dominating set of a graph G is a dominating set D^{c} of G such that $G\left[D^{c}\right]$ is connected. If D^{c} is a connected dominating set of G, we then write $D^{c} \succ_{c} G$. The minimum cardinality of a connected dominating set of G is called the connected domination number of G and is denoted by $\gamma_{c}(G)$. A smallest connected dominating set of a graph G is called a γ_{c}-set of a graph G. Note that if S is a γ_{c}-set of G and $|S| \geq 2$, then S is also a total dominating set of G. Thus $\gamma_{t}(G) \leq \gamma_{c}(G)$ when $\gamma_{c}(G) \geq 2$.

A graph G is said to be k-total domination edge critical, or k - γ_{t}-critical, if $\gamma_{t}(G)=k$ and for every $u v \notin E(G), \gamma_{t}(G+u v)<k$. A graph G is said to be k-connected domination edge critical, or k - γ_{c}-critical, if $\gamma_{c}(G)=k$ and for every $u v \notin E(G), \gamma_{c}(G+u v)<k$.

In the context of vertex removal, a graph G is said to be k-total domination vertex critical, or k-tvc, if $\gamma_{t}(G)=k$ and for every vertex which is not a support vertex $v \in V(G), \gamma_{t}(G-v)<k$. A graph G is said to be k-connected domination vertex critical, or k-cvc if $\gamma_{c}(G)=k$ and for every vertex $v \in V(G), \gamma_{c}(G-v)<k$. It is easy to see that a disconnected graph cannot contain a connected dominating set. Thus, we may assume that all graphs are connected in the study on k - γ_{c}-critical graphs. Moreover, we assume also that all graphs are 2-connected in the study on k-cve graphs.

The study on total domination critical graphs was started by van der Merwe et al. [9] and continued by a number of researchers (for example, Goddard et al. [4], Henning and van der Merwe [6] and van der Merwe and Loizeaux [8]).

The connected domination critical graphs was introduced by Chen et al. [3] and
continued in Ananchuen [1] and Kaemawichanurat and Ananchuen [7]. Chen et al. [3] completely characterized $2-\gamma_{c}$-critical graphs and gave many properties of 3-γ_{c}-critical graphs. Kaemawichanurat and Ananchuen [7] gave a characterization of $4-\gamma_{c}$-critical graphs with cut vertices and proved that such graphs contain a perfect matching.

Chen et al. [3] showed that a graph G is $2-\gamma_{c}$-critical if and only if $\bar{G}=\cup_{i=1}^{n} K_{1, n_{i}}$ for $n_{i} \geq 1$ and $n \geq 2$. Henning and van der Merwe [6] established that a graph G is $2-\gamma_{t}$-critical if and only if G is a complete graph. Ananchuen [1] noted that $3-\gamma_{c}$-critical graphs and $3-\gamma_{t}$-critical graphs are the same. The problem that arises is whether there is a $k \geq 4$ such that the class of k - γ_{c}-critical graphs and the class of connected k - γ_{t}-critical graphs are the same.

In this paper, we show, in Section 3, that a connected graph G is $4-\gamma_{c}$-critical if and only if it is $4-\gamma_{t}$-critical. For $k \geq 5$, there exists a $k-\gamma_{c}$-critical graph which is not k - γ_{t}-critical. For example, Chen et al. [3] showed that C_{n} is an $(n-2)$ - γ_{c}-critical graph while Goddard et al. [4] referred from Henning [5] that $\gamma_{t}\left(C_{n}\right)=\left\lfloor\frac{n}{2}\right\rfloor+\left\lceil\frac{n}{4}\right\rceil-\left\lfloor\frac{n}{4}\right\rfloor$ which is less than $n-2$ for $n \geq 7$. Clearly, C_{n} is not an $(n-2)-\gamma_{t}$-critical graph. We then concentrate on the class \mathbb{G}_{k} of graphs G such that $\gamma_{c}(G)=\gamma_{t}(G)=k$ and let
\mathbb{T}_{k}^{e} : class of connected k - γ_{t}-critical graphs G with $G \in \mathbb{G}_{k}$ and,
\mathbb{C}_{k}^{e} : class of connected k - γ_{c}-critical graphs G with $G \in \mathbb{G}_{k}$.
We show that $\mathbb{T}_{k}^{e} \neq \mathbb{C}_{k}^{e}$. We finish this section by showing that $\mathbb{T}_{k}^{e} \cap \mathbb{C}_{k}^{e} \neq \emptyset$.
For vertex removal, Ananchuen et al. [2] noted that 2-connected 3-tvc graphs and 2 -connected 3 -cvc graphs are the same. We might ask similarly whether there is a $k \geq 4$ such that 2 -connected k-cve graphs and 2 -connected k-tvc graphs are the same. Our results in Section 4 show that a 2 -connected graph G is 4 -cvc if and only if it is 4 -tvc. Similarly, for $k \geq 5$, we focus on the class \mathbb{G}_{k} and let
\mathbb{T}_{k}^{v} : class of 2-connected k-tvc graphs G with $G \in \mathbb{G}_{k}$ and,
\mathbb{C}_{k}^{v} : class of 2-connected k-cvc graphs G with $G \in \mathbb{G}_{k}$.
We prove that $\mathbb{T}_{k}^{v} \neq \mathbb{C}_{k}^{v}$.

2 Preliminary results

In this section, we state some results that we use in establishing our results in the next two sections. In what follows, for a pair of non-adjacent vertices u and v of G, $D_{u v}^{t}$ and $D_{u v}^{c}$ denote a γ_{t}-set of $G+u v$ and a γ_{c}-set of $G+u v$, respectively. Further, for a vertex v of G, D_{v}^{t} and D_{v}^{c} denote a γ_{t}-set of $G-v$ and a γ_{c}-set of $G-v$, respectively. Van der Merwe et al. [8] and [9] established fundamental properties of $4-\gamma_{t}$-critical graphs described in the following propositions.

Proposition 2.1. [8] Let G be a $4-\gamma_{t}$-critical graph and let u and v be a pair of non-adjacent vertices of G. Then either
(1) $\{u, v\} \succ G$, or
(2) for either u or v, without loss of generality, say u, $\{w, u, v\} \succ G$ for some $w \in N_{G}(u)$ and $w \notin N_{G}(v)$, or
(3) for either u or v, without loss of generality, say $u,\{x, y, u\} \succ G-v$ and $G[\{x, y, u\}]$ is connected.

Proposition 2.2. [9] For any graph G with $\gamma_{t}(G)=3$ and a γ_{t}-set D^{t}, either $G\left[D^{t}\right]=P_{3}$ or $G\left[D^{t}\right]=K_{3}$.

Goddard et al. [4] provided some results on k-tvc graphs.
Lemma 2.3. [4] Let G be a k-tvc graph and $v \in V(G)$. Then
(1) $D_{v}^{t} \cap N_{G}[v]=\emptyset$,
(2) $\left|D_{v}^{t}\right|=k-1$.

On connected domination critical graphs, Chen et al. [3] established the following result for k - γ_{c}-critical graphs.

Lemma 2.4. [3] Let G be a $k-\gamma_{c}$-critical graph and let u and v be a pair of nonadjacent vertices of G. Then
(1) $k-2 \leq\left|D_{u v}^{c}\right| \leq k-1$,
(2) $D_{u v}^{c} \cap\{u, v\} \neq \emptyset$.

In the concept of vertex deletion, Ananchuen et al. [2] provided some properties of k-cve graphs as follows.

Lemma 2.5. [2] Let G be a k-cvc graph and $v \in V(G)$. Then
(1) $D_{v}^{c} \cap N_{G}[v]=\emptyset$,
(2) $\left|D_{v}^{c}\right|=k-1$.

3 Edge critical graphs

In this section, we show that connected k - γ_{t}-critical graphs and k - γ_{c}-critical graphs are the same if and only if $3 \leq k \leq 4$. We first establish the following theorem.

Theorem 3.1. Let G be a connected graph. Then G is a $4-\gamma_{t}$-critical graph if and only if G is a $4-\gamma_{c}$-critical graph.

Proof. Suppose that G is a $4-\gamma_{c}$-critical graph. Thus $\gamma_{t}(G) \leq \gamma_{c}(G)=4$. Suppose that $\gamma_{t}(G)<4$. Hence, there exists a γ_{t}-set D^{t} of G of size less than 4. Because $\left|D^{t}\right|<4, G\left[D^{t}\right]$ is connected by Proposition 2.2. Therefore, D^{t} is a connected dominating set of G of size less than 4, a contradiction. Hence, $\gamma_{t}(G)=4$.

Consider $G+u v$ for $u v \notin E(G)$. Because G is $4-\gamma_{c}$-critical, there exists by Lemma 2.4(1) a γ_{c}-set $D_{u v}^{c}$ of $G+u v$ with $\left|D_{u v}^{c}\right|<4$. Clearly, $D_{u v}^{c}$ is a total dominating set
of $G+u v$. Thus $\gamma_{t}(G+u v) \leq\left|D_{u v}^{c}\right|=\gamma_{c}(G+u v)<\gamma_{c}(G)=\gamma_{t}(G)$. Hence, G is $4-\gamma_{t}$-critical.

Conversely, suppose G is a 4 - γ_{t}-critical graph. We first show that $\gamma_{c}(G)=4$.
Claim : There exists a connected dominating set of size 4 of G.
Consider $G+u v$ for $u v \notin E(G)$. Let $D_{u v}^{t}$ be a γ_{t}-set of $G+u v$. Because $\left|D_{u v}^{t}\right|<4$, $(G+u v)\left[D_{u v}^{t}\right]$ is connected. Therefore, $D_{u v}^{t} \succ_{c} G+u v$. We distinguish 2 cases. Case 1: $\left|D_{u v}^{t} \cap\{u, v\}\right|=1$.

By Proposition 2.1(3), $\left|D_{u v}^{t}\right|=3$. We may suppose without loss of generality that $D_{u v}^{t} \cap\{u, v\}=\{v\}$. Since $D_{u v}^{t} \succ_{c} G+u v$ and G is connected, it follows that there exists $w \in V(G)-D_{u v}^{t}$ such that $w u \in E(G)$ and w must be adjacent to at least one vertex in $D_{u v}^{t}$. Because $\left|D_{u v}^{t}\right|=3, D_{u v}^{t} \cup\{w\}$ is a connected dominating set of size 4 of G.
Case 2: $\left|D_{u v}^{t} \cap\{u, v\}\right|=2$.
We then distinguish 2 subcases according to Proposition 2.1(1) and (2).
Subcase 2.1: $D_{u v}^{t}=\{u, v\}$.
If there is $w \in N_{G}(u) \cap N_{G}(v)$, then $\{u, v, w\}$ is a total dominating set of size 3 of G, a contradiction. Hence, $N_{G}(u) \cap N_{G}(v)=\emptyset$. Because G is connected and $\{u, v\} \succ G$, there exist x, y such that $x \in N_{G}(u), y \in N_{G}(v)$ and $x y \in E(G)$. Thus $\{u, v, x, y\}$ is a connected dominating set of size 4 of G.
Subcase 2.2 : $D_{u v}^{t}=\{u, v, z\}$ for some $z \in V(G)$.
Thus z is adjacent to exactly one of u or v, say v. If there is $y \in N_{G}(\{z, v\}) \cap$ $N_{G}(u)$, then $\{u, v, y, z\}$ is a connected dominating set of size 4 of G. Suppose that $N_{G}(\{z, v\}) \cap N_{G}(u)=\emptyset$. We partition set $V(G)-\{u, v, z\}$ as $A_{1}=N_{G}(u)$ and $A_{2}=N_{G}(\{v, z\})$. If $v \succ A_{2}$, then $\{u, v\} \succ G+u v$. This contradicts the fact that $D_{u v}^{t}=\{u, v, z\}$ is a smallest total dominating set of $G+u v$. Hence, there is $w \in A_{2}$ such that $z w \in E(G)$ but $v w \notin E(G)$. Consider $G+v w$. If $\left|D_{v w}^{t} \cap\{v, w\}\right|=1$, then, by similar arguments as in the proof of Case $1, G$ contains a connected dominating set of size 4. Thus, we now suppose $\left|D_{u v}^{t} \cap\{v, w\}\right|=2$. If $D_{v w}^{t}=\{v, w\}$, then no vertex in $D_{v w}^{t}$ dominates u because $w \in A_{2}$ and $A_{1} \cap A_{2}=\emptyset$, a contradiction. Therefore, $D_{v w}^{t}=\{a, v, w\}$ for some $a \in V(G)$. In fact $a \in A_{1}$. Thus a is adjacent to w because $A_{1} \cap A_{2}=\emptyset$. Since $v z, w z \in E(G),\{a, v, w, z\}$ is a connected dominating set of size 4 of G and we settle our claim.

If $\gamma_{c}(G)<4$, then $\gamma_{t}(G) \leq \gamma_{c}(G)<4$, a contradiction. Hence, $\gamma_{c}(G)=4$.
We finally prove the criticality by considering $G+u v$ for $u v \notin E(G)$. Because G is $4-\gamma_{t}$-critical, there exists a γ_{t}-set $D_{u v}^{t}$ of size less than 4 of $G+u v$. Since $\left|D_{u v}^{t}\right|<4$, $(G+u v)\left[D_{u v}^{t}\right]$ is connected by Proposition 2.2. Thus $D_{u v}^{t} \succ_{c} G+u v$. Therefore, $\gamma_{c}(G+u v) \leq\left|D_{u v}^{t}\right|<4=\gamma_{c}(G)$. This completes the proof of our theorem.

By Theorem 3.1, we have $\mathbb{T}_{4}^{e}=\mathbb{C}_{4}^{e}$. We next show that $\mathbb{T}_{k}^{e} \neq \mathbb{C}_{k}^{e}$ for $k \geq 5$.
Theorem 3.2. $\mathbb{T}_{k}^{e} \neq \mathbb{C}_{k}^{e}$ when $k \geq 5$.
Proof. We prove the theorem by providing a graph $G \in \mathbb{T}_{k}^{e} / \mathbb{C}_{k}^{e}$ when $k \geq 5$. We distinguish our proof by the parity of k.

Case 1: k is even.
Let $k=2 q$ for some positive integer $q \geq 3$. Construct the graph G from q different paths of length 2 , say $P^{i}=x_{1}^{i} x_{2}^{i} x_{3}^{i}$ for $i=1, \ldots, q$ and then forms a clique on $\left\{x_{1}^{i} \mid 1 \leq i \leq q\right\}$ (see Figure 1(a)).

We first show that $\gamma_{t}(G)=\gamma_{c}(G)=k=2 q$. Note that $\left\{x_{1}^{i}, x_{2}^{i} \mid 1 \leq i \leq q\right\} \succ_{c} G$. Hence, $\gamma_{c}(G) \leq 2 q$. For $i=1, . ., q$, we need at least two vertices to totally dominate each of the P^{i}, implying that $\gamma_{t}(G) \geq 2 q$. Therefore, $2 q \leq \gamma_{t}(G)$. Thus $2 q \leq \gamma_{t}(G) \leq$ $\gamma_{c}(G) \leq 2 q$. Hence, $\gamma_{t}(G)=\gamma_{c}(G)=2 q$.

We next consider the total domination number of $G+u v$ where $u v \notin E(G)$. If $\{u, v\}=\left\{x_{m}^{i}, x_{p}^{j}\right\}$ where $i \neq j$ and $2 \leq m, p \leq 3$, then $\left\{x_{m}^{i}, x_{p}^{j}\right\} \cup\left\{x_{1}^{l}, x_{2}^{l} \mid l \neq i, j\right\} \succ_{t}$ $G+u v$. Hence, $\gamma_{t}(G+u v) \leq 2 q-2<\gamma_{t}(G)$. If $\{u, v\}=\left\{x_{1}^{i}, x_{p}^{j}\right\}$ where $i \neq j$ and $p \in\{2,3\}$, then $\left\{x_{1}^{i}, x_{2}^{i}, x_{p}^{j}\right\} \cup\left\{x_{1}^{l}, x_{2}^{l} \mid l \neq i, j\right\} \succ_{t} G+u v$. Hence, $\gamma_{t}(G+u v) \leq$ $2 q-1<\gamma_{t}(G)$. Finally, if $\{u, v\}=\left\{x_{1}^{i}, x_{3}^{i}\right\}$, then $\left\{x_{1}^{i}\right\} \cup\left\{x_{1}^{l}, x_{2}^{l} \mid l \neq i\right\} \succ_{t} G+u v$. Thus $\gamma_{t}(G+u v)=2 q-1<\gamma_{t}(G)$. Therefore, G is k - γ_{t}-critical and $G \in \mathbb{T}_{k}^{e}$.

We then consider the connected domination number of $G+u v$. If $\{u, v\}=$ $\left\{x_{3}^{1}, x_{3}^{2}\right\}$, then by Lemma 2.4(2), $D_{u v}^{c} \cap\left\{x_{3}^{1}, x_{3}^{2}\right\} \neq \emptyset$. Without loss of generality, we may suppose $x_{3}^{1} \in D_{u v}^{c}$. Since $(G+u v)\left[D_{u v}^{c}\right]$ is connected, we need at least 2 vertices x_{1}^{i}, x_{2}^{i} to dominate P^{i} for $i \neq 1,2$. If $x_{3}^{2} \in D_{u v}^{c}$, then $x_{1}^{2}, x_{2}^{2} \in D_{u v}^{c}$ or $x_{1}^{1}, x_{2}^{1} \in D_{u v}^{c}$ by the connectedness of $(G+u v)\left[D_{u v}^{c}\right]$. Therefore $\left|D_{u v}^{c}\right| \geq 2 q=k$. Thus G is not critical. Then $x_{3}^{2} \notin D_{u v}^{c}$ and thus $x_{1}^{1}, x_{2}^{1}, x_{3}^{1} \in D_{u v}^{c}$ by the connectedness of $(G+u v)\left[D_{u v}^{c}\right]$. Further, $x_{1}^{2} \in D_{u v}^{c}$ to dominate x_{2}^{2}. Therefore, $\left|D_{u v}^{c}\right| \geq 2 q=k$ and G is not a k - γ_{c}-critical graph. Thus $G \notin \mathbb{C}_{k}^{e}$.

Figure 1(a)

Figure 1(b)

Case 2: k is odd.
Let $k=2 q+1$ for some positive integer $q \geq 2$. Constructed the graph G from q different paths of length 2 , say $P^{i}=x_{1}^{i} x_{2}^{i} x_{3}^{i}$ for $i=1, \ldots, q$ and a path of length 1, say $P^{q+1}=x_{1}^{q+1} x_{2}^{q+1}$ and then forms a clique on $\left\{x_{1}^{i} \mid 1 \leq i \leq q+1\right\}$ (see Figure 1(b)).

By similar arguments as in Case 1, we have $\gamma_{t}(G)=\gamma_{c}(G)=2 q+1$. To show the criticality of $G+u v$ where $u v \notin E(G)$, we can apply similar arguments as in the proof of Case 1 when $\{u, v\} \subseteq\left\{x_{l}^{i} \mid 1 \leq i \leq q, 1 \leq l \leq 3\right\}$. We now suppose that $\{u, v\} \cap V\left(P^{q+1}\right) \neq \emptyset$. Because $\left|V\left(P^{q+1}\right)\right|=2,\left|\{u, v\} \cap V\left(P^{q+1}\right)\right|=1$. Without loss of generality, assume that $u \in V\left(P^{q+1}\right)$ and $v \in V\left(P^{j}\right)$ for some $j \in\{1, \ldots, q\}$. If $u \in\left\{x_{1}^{q+1}, x_{2}^{q+1}\right\}$ and $v \in\left\{x_{2}^{j}, x_{3}^{j}\right\}$, then $\{u, v\} \cup\left\{x_{1}^{l}, x_{2}^{l} \mid l \neq j, q+1\right\} \succ_{t} G+u v$. Thus $\gamma_{t}(G+u v) \leq 2 q \leq \gamma_{t}(G)$. Finally if $u=x_{2}^{q+1}$ and $v=x_{1}^{j}$, then $\left\{x_{1}^{l}, x_{2}^{l} \mid l \neq q+1\right\} \succ_{t}$
$G+u v$. Therefore, $\gamma_{t}(G+u v) \leq 2 q<\gamma_{t}(G)$ and $G \in \mathbb{T}_{k}^{e}$. By considering $G+x_{3}^{1} x_{3}^{2}$, we can show that a graph G is not a k - γ_{c}-critical graph by similar arguments as in Case 1.

Hence, $G \in \mathbb{T}_{k}^{e}$ but $G \notin \mathbb{C}_{k}^{e}$. Therefore, $\mathbb{T}_{k}^{e} \neq \mathbb{C}_{k}^{e}$ when $k \geq 5$. This completes the proof of our theorem.

Chen et al. [3] characterized that a graph G is $2-\gamma_{c}$-critical if and only if $\bar{G}=$ $\cup_{i=1}^{n} K_{1, n_{i}}$ for $n_{i} \geq 1$ and $n \geq 2$ while Henning and van der Merwe [6] proved that a graph G is $2-\gamma_{t}$-critical if and only if G is a complete graph. Thus $\mathbb{T}_{2}^{e} \neq \mathbb{C}_{2}^{e}$. Ananchuen [1] pointed out that 3 - γ_{t}-critical graphs and 3 - γ_{c}-critical graphs are the same. That is $\mathbb{T}_{3}^{e}=\mathbb{C}_{3}^{e}$. By Theorems 3.1 and 3.2 , we have the following corollary.

Corollary 3.3. $\mathbb{T}_{k}^{e}=\mathbb{C}_{k}^{e}$ if and only if $3 \leq k \leq 4$.
Our next result shows that there exists a graph belonging to \mathbb{T}_{k}^{e} and \mathbb{C}_{k}^{e}.
Theorem 3.4. For $k \geq 5, \mathbb{T}_{k}^{e} \cap \mathbb{C}_{k}^{e} \neq \emptyset$.
Proof. Let $G \in \mathbb{C}_{k}^{e}$. For all $u v \notin E(G)$ and a γ_{c}-set $D_{u v}^{c}$ of $G+u v$, we have $D_{u v}^{c}$ is also a total dominating set of $G+u v$. Since G is a k - γ_{c}-critical graph and $\gamma_{t}(G)=k$, it follows that $\gamma_{t}(G+u v) \leq\left|D_{u v}^{c}\right|<k=\gamma_{t}(G)$. Therefore, $G \in \mathbb{T}_{k}^{e}$ and $\mathbb{C}_{k}^{e} \subseteq \mathbb{T}_{k}^{e}$. To prove the theorem, it suffices to establish a graph G in the class \mathbb{C}_{k}^{e}. We distinguish 2 cases according to the parity of k.
Case 1: k is even.
Let $k=2 m$ for some positive integer $m \geq 3$. For $1 \leq i \leq k$, let $K_{n_{i}}$ be a complete graph of order n_{i} and K_{k} a complete graph of order k where $V\left(K_{k}\right)=\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$. Then we join every vertex in $V\left(K_{n_{2 i}}\right)$ to every vertex in $V\left(K_{n_{2 i-1}}\right)$ for $1 \leq i \leq m$. Further, we join x_{i} to every vertex in $K_{n_{i}}$ for $1 \leq i \leq 2 m$. Finally, for $1 \leq i \leq m$, we join $x_{2 i}$ to every vertex in $V\left(K_{n_{2 i-1}}\right)$ except one vertex, say $u_{2 i-1}$, and join $x_{2 i-1}$ to every vertex in $V\left(K_{n_{2 i}}\right)$ except one vertex, say $u_{2 i}$ (see Figure 2(a)).

Figure 2(a)
We next show that a graph $G \in \mathbb{C}_{k}^{e}$. Clearly, $\left\{x_{1}, x_{2}, \ldots, x_{k}\right\} \succ_{c} G$. Thus $\gamma_{t}(G) \leq \gamma_{c}(G) \leq k$. By the construction, we need at least 2 vertices to totally dominate $K_{n_{2 i}} \cup K_{n_{2 i-1}}$ for $1 \leq i \leq m$. It follows that $\gamma_{t}(G) \geq k$. Hence, $k \leq$ $\gamma_{t}(G) \leq \gamma_{c}(G) \leq k$. Therefore, $\gamma_{c}(G)=\gamma_{t}(G)=k$.

For establishing the criticality, we consider $G+u v$ where $u v \notin E(G)$. If $\{u, v\}=$ $\left\{x_{2 i}, u_{2 i-1}\right\}$, then $D_{u v}^{c}=\left\{x_{i} \mid i=1,2, \ldots, k\right\}-\left\{x_{2 i-1}\right\}$. Similarly, if $\{u, v\}=$ $\left\{x_{2 i-1}, u_{2 i}\right\}$, then i $D_{u v}^{c}=\left\{x_{i} \mid i=1,2, \ldots, k\right\}-\left\{x_{2 i}\right\}$. If $\{u, v\}=\left\{x_{2 i}, q\right\}$ when q is any vertex in $K_{n_{2 j-1}}$ or $K_{n_{2 j}}$ for $1 \leq i \neq j \leq m$, then $D_{u v}^{c}=\left(\left\{x_{i} \mid i=1,2, \ldots, k\right\} \cup\right.$ $\{q\})-\left\{x_{2 j}, x_{2 j-1}\right\}$. We can show that $\gamma_{c}(G)<k$ when $\{u, v\}=\left\{x_{2 i-1}, q\right\}$ such that q is a vertex in $K_{n_{2 j-1}}$ or $K_{n_{2 j}}$ for $1 \leq i \neq j \leq m$ by a similar argument. Further, if $\{u, v\}=\{p, q\}$ when $p \in V\left(K_{n_{2 i}}\right)$ and $q \in V\left(K_{n_{2 j}}\right)$ for $1 \leq i \neq j \leq m$, we have $D_{u v}^{c}=\left(\left\{x_{i} \mid i=1,2, \ldots, k\right\} \cup\{p, q\}\right)-\left\{x_{2 i-1}, x_{2 j}, x_{2 j-1}\right\}$. Moreover, when $p \in V\left(K_{n_{2 i}}\right)$ and $q \in V\left(K_{n_{2 j-1}}\right)$ or $p \in V\left(K_{n_{2 i-1}}\right)$ and $q \in V\left(K_{n_{2 j}}\right)$ or $p \in V\left(K_{n_{2 i-1}}\right)$ and $q \in V\left(K_{n_{2 j-1}}\right)$ for $1 \leq i \neq j \leq m$, we can prove the criticality by similar arguments. Therefore, $G \in \mathbb{C}_{k}^{e}$.
Case 2: k is odd.
Let $k=2 m+1$ for some positive integer $m \geq 2$. For $1 \leq i \leq k-1$, let $K_{n_{i}}$ be a complete graph of order $n_{i}, K_{n_{k}}=K_{1}$ and K_{k} a complete graph of order k such that $V\left(K_{k}\right)=\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$. Then we join every vertex in $V\left(K_{n_{2 i}}\right)$ to every vertex in $V\left(K_{n_{2 i-1}}\right)$ for $1 \leq i \leq m$. Further, we join x_{i} to every vertex in $K_{n_{i}}$ for $1 \leq i \leq 2 m+1$. Finally, for $1 \leq i \leq m$, we join $x_{2 i}$ to every vertex in $V\left(K_{n_{2 i-1}}\right)$ except one vertex and $x_{2 i-1}$ to every vertex in $V\left(K_{n_{2 i}}\right)$ except one vertex (see Figure 2(b)). It is worth noting that, in these two constructions of Cases 1 and 2, the graphs $G \in \mathbb{T}_{k}^{e} \cap \mathbb{C}_{k}^{e}$ when $n_{i}=1$ for $1 \leq i \leq k$ were found earlier by Henning and van der Merwe [6].

Figure 2(b)
We can show that $\gamma_{c}(G)=k$ by similar arguments as in Case 1 . We then show the criticality of G. Let $\{a\}=V\left(K_{n_{k}}\right)$. Consider $G+u v$ where $u v \notin E(G)$. If $\{u, v\} \subseteq \cup_{i=1}^{k-1}\left(V\left(K_{n_{i}}\right) \cup\left\{x_{i}\right\}\right)$, we then establish the criticality by similar arguments as k is even. We now consider when $\{u, v\} \cap\left\{a, x_{k}\right\} \neq \emptyset$. If $\{u, v\}=\left\{x_{k}, p\right\}$ for some $p \in V\left(K_{n_{2 i}}\right)$ or $p \in V\left(K_{n_{2 i-1}}\right), i=1,2, \ldots, m$, then $D_{u v}^{c}=\left(\left\{x_{i} \mid i=1,2, \ldots, k\right\} \cup\right.$ $\{p\})-\left\{x_{2 i}, x_{2 i-1}\right\}$. If $\{u, v\}=\{a, p\}$ for some $p \in V\left(K_{n_{2 i}}\right)$ or $p \in V\left(K_{n_{2 i-1}}\right), i=$ $1,2, \ldots, m$, then $D_{u v}^{c}=\left(\left\{x_{i} \mid i=1,2, \ldots, k\right\} \cup\{p\}\right)-\left\{x_{2 i-1}, x_{k}\right\}$ or $D_{u v}^{c}=\left(\left\{x_{i} \mid i=\right.\right.$ $1,2, \ldots, k\} \cup\{p\})-\left\{x_{2 i}, x_{k}\right\}$, respectively. Finally, if $\{u, v\}=\left\{a, x_{i}\right\}$ for $1 \leq i \leq k-1$, then $D_{u v}^{c}=\left\{x_{i} \mid i=1,2, \ldots, k-1\right\}$. In either case, $\gamma_{c}(G+u v)<k$. Therefore, $G \in \mathbb{C}_{k}^{e}$ and this completes the proof of our theorem.

4 Vertex critical graphs

In this section, we show that 2 -connected k-tvc graphs and k-cvc graphs are the same if and only if $3 \leq k \leq 4$. We first give the following theorem.

Theorem 4.1. Let G be a 2-connected graph. Then G is a 4-tvc graph if and only if G is a 4-cvc graph.

Proof. Note that for any $v \in V(G), v$ is not a support vertex and $G-v$ is connected since G is 2 -connected. Let G be a 4 -cvc graph. Hence, $\gamma_{t}(G) \leq \gamma_{c}(G)=4$. If $\gamma_{t}(G)<4$, then there exists a γ_{t}-set D^{t} of size less than 4 of G. Therefore, $G\left[D^{t}\right]$ is connected by Proposition 2.2. Thus $D^{t} \succ_{c} G$ and we have $\gamma_{c}(G) \leq 3$, a contradiction. Hence, $\gamma_{t}(G)=4$.

We next show the criticality. For any $v \in V(G), \gamma_{t}(G-v) \leq \gamma_{c}(G-v)=3$ by Lemma 2.5(2) and because G is 4 -cvc. Thus $\gamma_{t}(G-v)<\gamma_{t}(G)$ as required.

Conversely, suppose G is 4 -tvc. We first show that $\gamma_{c}(G)=4$. Let $v \in V(G)$. Consider $G-v$. Since G is 4 -tvc, there exists a γ_{t}-set D_{v}^{t} of $G-v$. By Lemma 2.3(2), $\left|D_{v}^{t}\right|=3$. By Proposition 2.2, $(G-v)\left[D_{v}^{t}\right]$ is connected. Thus $D_{v}^{t} \succ_{c} G-v$. By Lemma 2.3(1), there is no vertex of D_{v}^{t} adjacent to v. Since G is connected, there exists $w \in V(G)-D_{v}^{t}$ such that $v w \in E(G)$ and w is adjacent to at least one vertex of D_{v}^{t}. Thus $D_{v}^{t} \cup\{w\}$ is a γ_{c}-set of size 4 of G. We now have $\gamma_{c}(G) \leq 4$. Suppose there exists D^{c} which is a γ_{c}-set of size less than 4 . Since $G\left[D^{c}\right]$ is connected, there is no isolated vertex in $G\left[D^{c}\right]$. Thus $D^{c} \succ_{t} G$. Therefore, $\gamma_{t}(G) \leq\left|D^{c}\right|<4=$ $\gamma_{t}(G)$, a contradiction. Thus $\gamma_{c}(G)=4$. In the proof of criticality, since $\left|D_{v}^{t}\right|=3$, $(G-v)\left[D_{v}^{t}\right]$ is connected. Hence, D_{v}^{t} is a connected dominating set of $G-v$. Therefore, $\gamma_{c}(G-v) \leq\left|D_{v}^{t}\right|=3<4=\gamma_{c}(G)$ and this completes the proof of our theorem.

Recall that
\mathbb{T}_{k}^{v} : class of 2-connected k-tvc graphs G with $G \in \mathbb{G}_{k}$ and,
\mathbb{C}_{k}^{v} : class of 2-connected k-cvc graphs G with $G \in \mathbb{G}_{k}$.
By Theorem 4.1, we have $\mathbb{T}_{4}^{v}=\mathbb{C}_{4}^{v}$. However, we next show that \mathbb{T}_{k}^{v} and \mathbb{C}_{k}^{v} when $k \geq 5$ are different.

Theorem 4.2. $\mathbb{T}_{k}^{v} \neq \mathbb{C}_{k}^{v}$ when $k \geq 5$.
Proof. We prove this theorem by giving a construction of a graph G such that $G \in \mathbb{T}_{k}^{v}$ but $G \notin \mathbb{C}_{k}^{v}$ when $k \geq 5$. We distinguish 2 cases according to the parity of k.

Case 1: k is even.
Let $k=2 m+2$ where $m \geq 2$. Let $P^{i}=a_{1}^{i} a_{2}^{i} a_{3}^{i} a_{4}^{i}$ for $1 \leq i \leq m$. Let $V(G)=$ $\cup_{i=1}^{m} V\left(P^{i}\right) \cup\{x, y\}$ and $E(G)=\{x y\} \cup\left\{x a_{1}^{i} \mid 1 \leq i \leq m\right\} \cup\left\{y a_{4}^{i} \mid 1 \leq i \leq m\right\}$ (see Figure 3(a)).

Clearly, $\{x, y\} \cup\left\{a_{1}^{i}, a_{4}^{i} \mid 1 \leq i \leq m\right\} \succ_{c} G$. Thus $\gamma_{c}(G) \leq 2 m+2$. Since a γ_{c}-set of G is also a γ_{t}-set of $G, \gamma_{t}(G) \leq \gamma_{c}(G) \leq 2 m+2$. To show that $\gamma_{t}(G)=\gamma_{c}(G)=2 m+2$, we need only show that $2 m+2 \leq \gamma_{t}(G)$. Let D^{t} be a γ_{t}-set of G. We next establish the following claim.

Claim 1: For $1 \leq i \leq m,\left|D^{t} \cap V\left(P^{i}\right)\right| \geq 2$.
Suppose first that $a_{2}^{i} \in D^{t}$. Thus $a_{3}^{i} \in D^{t}$ or $a_{1}^{i} \in D^{t}$. It follows that $a_{3}^{i}, a_{2}^{i} \in D^{t}$ or $a_{1}^{i}, a_{2}^{i} \in D^{t}$. We then suppose that $a_{2}^{i} \notin D^{t}$. If $a_{3}^{i} \in D^{t}$, then $a_{4}^{i} \in D^{t}$. Finally, consider when $a_{3}^{i} \notin D^{t}$. Thus $a_{1}^{i}, a_{4}^{i} \in D^{t}$ to dominate a_{2}^{i}, a_{3}^{i} and we settle Claim 1.

Suppose first that $\{x, y\} \subseteq D^{t}$. By Claim $1,\left|D^{t}\right| \geq 2 m+2$.
We next suppose that $\left|\{x, y\} \cap D^{t}\right|=1$. Without loss of generality, assume that $\{x, y\} \cap D^{t}=\{x\}$. Since $x \in D^{t}, x$ is adjacent to some vertex in D^{t}. Thus $a_{1}^{i} \in D^{t}$ for some $i \in\{1, \ldots, m\}$. Without loss of generality, $a_{1}^{1} \in D^{t}$. We first suppose that $a_{4}^{1} \notin D^{t}$. Since $D^{t} \succ_{t} a_{4}^{1}$ and $y \notin D^{t}, a_{3}^{1} \in D^{t}$. Because $a_{3}^{1} \in D^{t}$ and $a_{4}^{1} \notin D^{t}$, it follows that $a_{2}^{1} \in D^{t}$. Hence, $\left\{x, a_{1}^{1}, a_{2}^{1}, a_{3}^{1}\right\} \subseteq D^{t}$. By Claim 1, $\left|D^{t} \cap V\left(P^{i}\right)\right| \geq 2$ for $2 \leq i \leq m$. Therefore, $\left|D^{t}\right| \geq 2(m-1)+4=2 m+2$. We then consider when $a_{4}^{1} \in D^{t}$. Since $y \notin D^{t}, a_{3}^{1} \in D^{t}$. Hence, $\left\{x, a_{1}^{1}, a_{4}^{1}, a_{3}^{1}\right\} \subseteq D^{t}$. Similarly, $\left|D^{t}\right| \geq 2(m-1)+4=2 m+2$.

We finally suppose that $\{x, y\} \cap D^{t}=\emptyset$. Since $D^{t} \succ_{t}\{x, y\}, a_{1}^{i}, a_{4}^{j} \in D^{t}$ for some $i, j \in\{1, \ldots, m\}$. Suppose first that $i=j$. With out loss of generality, $i=j=1$. Since $x, y \notin D^{t}, a_{1}^{1}, a_{4}^{1} \in D^{t}$ and $a_{1}^{1} a_{4}^{1} \notin E(G)$, it follows that $a_{2}^{1}, a_{3}^{1} \in D^{t}$ and thus $\left\{a_{1}^{1}, a_{2}^{1}, a_{3}^{1}, a_{4}^{1}\right\} \subseteq D^{t}$. By Claim 1, $\left|V\left(P^{i}\right) \cap D^{t}\right| \geq 2$ for $2 \leq i \leq m$. Thus $\left|D^{t}\right| \geq 2(m-1)+4=2 m+2$. We now consider $j \neq i$. Without loss of generality, let $i=1, j=2$. Since $\{x, y\} \cap D^{t}=\emptyset$ and $a_{1}^{1}, a_{4}^{2} \in D^{t}$, it follows that we need at least 3 vertices in $D^{t} \cap V\left(P^{l}\right)$ to totally dominate P^{l} for $l \in\{1,2\}$. Therefore, by Claim 1, $\left|D^{t}\right| \geq 2(m-2)+3+3=2 m+2$.

Hence, $2 m+2 \leq \gamma_{t}(G) \leq \gamma_{c}(G) \leq 2 m+2$ and we have that $\gamma_{t}(G)=\gamma_{c}(G)=$ $2 m+2$. We next establish the total domination criticality. Consider $G-v$ where $v \in V(G)$. We have to show that $\left|D_{v}^{t}\right|=2 m+1$. Suppose first that $v=a_{1}^{i}$. Thus $D_{v}^{t}=\left\{a_{3}^{i}, a_{4}^{i}, y\right\} \cup\left\{a_{2}^{j}, a_{3}^{j} \mid 1 \leq i \neq j \leq m\right\}$ and $\left|D^{t}\right|=2(m-1)+3=2 m+1$. We then suppose that $v=a_{2}^{i}$. Hence, $D_{v}^{t}=\left\{x, y, a_{4}^{i}\right\} \cup\left\{a_{2}^{j}, a_{3}^{j} \mid 1 \leq j \neq i \leq m\right\}$ and $\left|D_{v}^{t}\right|=$ $2(m-1)+3=2 m+1$. When $v=x$, we have $D_{v}^{t}=\left\{a_{2}^{1}, a_{3}^{1}, a_{4}^{1}\right\} \cup\left\{a_{2}^{i}, a_{3}^{i} \mid 2 \leq i \leq m\right\}$
and $\left|D_{v}^{t}\right|=2(m-1)+3=2 m+1$. We can prove the criticality when $v=a_{4}^{i}, v=a_{3}^{i}$ and $v=y$ where $i \in\{1, \ldots, m\}$ by the same arguments as when $v=a_{1}^{i}, v=a_{2}^{i}$ and $v=x$, respectively. Hence, $G \in \mathbb{T}_{k}^{v}$. The graph G is not a k-cvc because when we consider $G-x$, by Lemma 2.5(1), $y \notin D_{x}^{c}$ and it follows that $(G-x)\left[D_{x}^{c}\right]$ is not connected. Therefore, $G \notin \mathbb{C}_{k}^{v}$.
Case 2: k is odd.
Let $k=2 m+1$ when $m \geq 2$. Let $P^{i}=a_{1}^{i} a_{2}^{i} a_{3}^{i} a_{4}^{i}$ for $2 \leq i \leq m$ and $P^{1}=a_{1}^{1} a_{2}^{1} a_{3}^{1}$. Let $V(G)=\cup_{i=1}^{m} V\left(P^{i}\right) \cup\{x, y\}$ and $E(G)=\left\{x y, a_{3}^{1} y\right\} \cup\left\{x a_{1}^{i} \mid 1 \leq i \leq m\right\} \cup\left\{y a_{4}^{i} \mid 2 \leq\right.$ $i \leq m\}$ (see Figure 3(b)).

We see that $\left\{x, y, a_{1}^{1}\right\} \cup\left\{a_{1}^{i}, a_{4}^{i} \mid 2 \leq i \leq m\right\} \succ_{c} G$. Thus $\gamma_{c}(G) \leq 2(m-1)+3=$ $2 m+1$. To show that $\gamma_{t}(G)=\gamma_{c}(G)=2 m+1$, we need only show that $\gamma_{t}(G) \geq 2 m+1$. Let D^{t} be a γ_{t}-set of G. We also establish the following claim.
Claim 2: For $2 \leq i \leq m,\left|D^{t} \cap V\left(P^{i}\right)\right| \geq 2$.
By applying the same arguments as in the proof of Claim 1, $\left|D^{t} \cap V\left(P^{i}\right)\right| \geq 2$ for all i such that $\left|V\left(P^{i}\right)\right|=4$.

We first suppose that $\{x, y\} \subseteq D^{t}$. To dominate $a_{2}^{1}, a_{1}^{1} \in D^{t}$ or $a_{3}^{1} \in D^{t}$. Hence, $\left\{a_{1}^{1}, x, y\right\} \subseteq D^{t}$ or $\left\{a_{3}^{1}, x, y\right\} \subseteq D^{t}$. By Claim 2, $\left|D^{t} \cap V\left(P^{i}\right)\right| \geq 2$ for $2 \leq i \leq m$. Thus $\left|D^{t}\right| \geq 2(m-1)+3=2 m+1$.

Suppose $\left|\{x, y\} \cap D^{t}\right|=1$. Without loss of generality, assume that $\{x, y\} \cap D^{t}=$ $\{x\}$. Since $x \in D^{t}$ and $y \notin D^{t}$, it follows that $a_{1}^{i} \in D^{t}$ for some $i \in\{1, \ldots, m\}$. We first suppose that $i>1$, without loss of generality $i=2$. Thus $a_{1}^{2} \in D^{t}$. Since $y \notin D^{t}$ and $D^{t} \succ_{t} P^{1}$, it follows that $\left|D^{t} \cap V\left(P^{1}\right)\right| \geq 2$. Because $D^{t} \succ_{t} a_{4}^{2}$, $\left\{x, a_{1}^{2}, a_{2}^{2}, a_{3}^{2}\right\} \subseteq D^{t}$ when $a_{4}^{2} \notin D^{t}$ and $\left\{x, a_{1}^{2}, a_{3}^{2}, a_{4}^{2}\right\} \subseteq D^{t}$ when $a_{4}^{2} \in D^{t}$. Hence, by Claim 2, $\gamma_{t}(G)=\left|D^{t}\right| \geq 2(m-2)+2+4=2 m+2>2 m+1=\gamma_{c}(G)$, a contradiction. Therefore, $i=1$. Since $y \notin D^{t}, D^{t} \succ_{t} a_{3}^{1}$ and $a_{1}^{1} a_{3}^{1} \notin E(G)$, it follows that $\left|D^{t} \cap V\left(P^{1}\right)\right| \geq 2$. By Claim 2, $\left|D^{t} \cap V\left(P^{j}\right)\right| \geq 2$ for $j \in\{2, \ldots, m\}$. Hence, $\left|D^{t}\right| \geq 2(m-1)+2+1=2 m+1$.

Suppose $\{x, y\} \cap D^{t}=\emptyset$. To totally dominate $\{x, y\},\left\{a_{1}^{i}, a_{3}^{1}\right\} \subseteq D^{t}$ or $\left\{a_{1}^{i}, a_{4}^{j}\right\} \subseteq$ D^{t} for some $1 \leq i \leq m, 2 \leq j \leq m$.

We first consider the case when $\left\{a_{1}^{i}, a_{4}^{j}\right\} \subseteq D^{t}$ for some $1 \leq i \leq m, 2 \leq j \leq m$. Since $x, y \notin D^{t},\left|D^{t} \cap V\left(P^{1}\right)\right| \geq 2$. We first suppose that $i>1$. If $i \neq j$, then
$\left|D^{t} \cap V\left(P^{i}\right)\right|=\left|D^{t} \cap V\left(P^{j}\right)\right|=3$ to dominate a_{4}^{i} and a_{1}^{j} because $x, y \notin D^{t}$. By Claim 2, $\gamma_{t}(G)=\left|D^{t}\right| \geq 2(m-3)+3+3+2=2 m+2>2 m+1=\gamma_{c}(G)$, a contradiction. Hence, $i=j$. Since $a_{1}^{i}, a_{4}^{i} \in D^{t}, x, y \notin D^{t}$ and $a_{1}^{i} a_{4}^{i} \notin E(G)$, it follows that $a_{2}^{i}, a_{3}^{i} \in D^{t}$. Thus, by Claim 2, $\gamma_{t}(G)=\left|D^{t}\right| \geq 2(m-2)+2+4=2 m+2>2 m+1=\gamma_{c}(G)$, again a contradiction. Hence, $i=1$. Therefore, $\left\{a_{1}^{1}, a_{2}^{1}\right\} \subseteq D^{t}$ and $\left\{a_{2}^{j}, a_{3}^{j}, a_{4}^{j}\right\} \subseteq D^{t}$ to totally dominate a_{1}^{j}. Thus $\left|D^{t}\right| \geq 2(m-2)+2+3=2 m+1$.

We now consider when $\left\{a_{1}^{i}, a_{3}^{1}\right\} \subseteq D^{t}$ for some $1 \leq i \leq m$. If $i=1$, then $D^{t} \cap V\left(P^{1}\right)=\left\{a_{1}^{1}, a_{2}^{1}, a_{3}^{1}\right\}$ because $a_{1}^{1} a_{3}^{1} \notin E(G)$. Thus, by Claim $2,\left|D^{t}\right| \geq 2(m-$ 1) $+3=2 m+1$. If $i>1$, without loss of generality let $i=2$, then $a_{2}^{1} \in D^{t}$ because $a_{3}^{1} \in D^{t}$ and $y \notin D^{t}$. Since $a_{1}^{2} \in D^{t}$ and $x, y \notin D^{t}$, it follows that $\left|D^{t} \cap V\left(P^{2}\right)\right|=3$ to totally dominate a_{4}^{2}. By Claim $2,\left|D^{t}\right| \geq 2(m-2)+2+3=2 m+1$. Hence, $2 m+1 \leq \gamma_{t}(G) \leq \gamma_{c}(G) \leq 2 m+1$. Therefore, $\gamma_{t}(G)=\gamma_{c}(G)=2 m+1$.

We finally establish the criticality of a graph G. Consider $G-v$ where $v \in V(G)$. We have to show that $\left|D_{v}^{t}\right|=2 m$. Suppose first that $v=x$, then $D_{v}^{t}=\left\{a_{2}^{i}, a_{3}^{i} \mid 2 \leq i \leq\right.$ $m\} \cup\left\{a_{2}^{1}, a_{3}^{1}\right\}$ and $\left|D_{v}^{t}\right|=2(m-1)+2=2 m$. Similarly, $\left|D_{y}^{t}\right|=2 m$. We then suppose $v=a_{1}^{1}$. Thus $D_{v}^{t}=\left\{a_{2}^{i}, a_{3}^{i} \mid 2 \leq i \leq m\right\} \cup\left\{a_{3}^{1}, y\right\}$ and $\left|D_{v}^{t}\right|=2(m-1)+2=2 m$. We also show that $\left|D_{a_{3}^{1}}^{t}\right|=2 m$ by a similar argument as $v=a_{1}^{1}$. If $v=a_{2}^{1}$, then $D_{v}^{t}=\left\{a_{2}^{i}, a_{3}^{i} \mid 2 \leq i \leq m\right\} \cup\{x, y\}$ and $\left|D_{v}^{t}\right|=2(m-1)+2=2 m$. If $v=a_{1}^{i}$ for $2 \leq i \leq m$, then $D_{v}^{t}=\left\{a_{2}^{j}, a_{3}^{j} \mid 2 \leq j \neq i \leq m\right\} \cup\left\{a_{3}^{i}, a_{4}^{i}\right\} \cup\left\{a_{1}^{1}, a_{2}^{1}\right\}$. It follows that $\left|D_{v}^{t}\right|=2(m-2)+2+2=2 m$. Further, if $v=a_{4}^{i}$ for $2 \leq i \leq m$, then $D_{v}^{t}=\left\{a_{2}^{j}, a_{3}^{j} \mid 2 \leq\right.$ $j \neq i \leq m\} \cup\left\{a_{1}^{i}, a_{2}^{i}\right\} \cup\left\{a_{3}^{1}, a_{2}^{1}\right\}$. It follows that $\left|D_{v}^{t}\right|=2(m-2)+2+2=2 m$. If $v=a_{2}^{i}$ for $2 \leq i \leq m$, then $D_{v}^{t}=\left\{a_{2}^{j}, a_{3}^{j} \mid 2 \leq j \neq i \leq m\right\} \cup\left\{a_{1}^{1}, a_{4}^{i}, x, y\right\}$. It follows that $\left|D_{v}^{t}\right|=2(m-2)+4=2 m$. Finally, if $v=a_{3}^{i}$ for $2 \leq i \leq m$, then $D_{v}^{t}=$ $\left\{a_{2}^{j}, a_{3}^{j} \mid 2 \leq j \neq i \leq m\right\} \cup\left\{a_{1}^{1}, a_{1}^{i}, x, y\right\}$. It also follows that $\left|D_{v}^{t}\right|=2(m-2)+4=2 m$. Hence, $G \in \mathbb{T}_{k}^{v}$.

We can show that G is not a k-cvc graph by the same arguments as in Case 1. Hence, $G \notin \mathbb{C}_{k}^{v}$ and this completes the proof of our theorem.

Goddard et al. [4] mentioned that K_{2} is a 2-tvc graph while Ananchuen et al. [2] claimed that a 2 -cvc graph is $K_{2 n}$ delete a perfect matching where $n \geq 2$. Thus $\mathbb{T}_{2}^{v} \neq \mathbb{C}_{2}^{v}$. Ananchuen et al. [2] also pointed out that 2-connected 3-tvc graphs and 2 -connected 3 -cvc graphs are the same. Therefore, $\mathbb{T}_{3}^{v}=\mathbb{C}_{3}^{v}$. By Theorems 4.1 and 4.2 , we can conclude the following corollary.

Corollary 4.3. $\mathbb{T}_{k}^{v}=\mathbb{C}_{k}^{v}$ if and only if $3 \leq k \leq 4$.

Acknowledgements

P. Kaemawichanurat was supported by Development and Promotion of Science and Technology i Talents Project (DPST), Thailand. This work was done while N. Ananchuen was a visitor at Curtin University.

References

[1] N. Ananchuen, On domination critical graphs with cut vertices having connected domination number 3, Int. Math. Forum 2 (2007), 3041-3052.
[2] W. Ananchuen, N. Ananchuen and M. D. Plummer, Vertex criticality for connected domination, Utilitas Math. 86 (2011), 45-64.
[3] X. G. Chen, L. Sun and D. X. Ma, Connected domination critical graphs, Appl. Math. Lett. 17 (2004), 503-507.
[4] W. Goddard, T. W. Haynes, M. A. Henning and L. C. van der Merwe, The diameter of total domination vertex critical graphs, Discrete Math. 286 (2004), 255-261.
[5] M. A. Henning, Graphs with large total domination number, J. Graph Theory 35 (2000), 21-45.
[6] M. A. Henning and L. C. van der Merwe, Properties of total domination edgecritical graphs, Discrete Appl. Math. 158 (2010), 147-153.
[7] P. Kaemawichanurat and N. Ananchuen, On 4- γ_{c}-critical graphs with cut vertices, Utilitas Math. 82 (2010), 253-268.
[8] L. C. van der Merwe and M. Loizeaux, 4_{t}-critical graphs with maximum diameter, J. Combin. Math. Combin. Comput. 60 (2007), 65-80.
[9] L. C. van der Merwe, C. M. Mynhardt and T. W. Haynes, Total domination edge critical graphs, Utilitas Math. 54 (1998), 229-240.

[^0]: * Also at Center of Excellence Mathematics, CHE, Si Ayutthaya Rd., Bangkok 10400, Thailand

