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Abstract

There is a large body of literature devoted to the graph-theoretic model-
ing of searching in networks. Using such terms as cops, robbers, watch-
men, searchers, and intruders, these works posit the movements of pur-
suers and evaders from one vertex to another in a graph G, not necessarily
along edges, with the respective purposes of capturing the evaders and
escaping the pursuers. Various assumptions on the mobility and knowl-
edge of the pursuers and evaders, as well as various definitions of capture,
determine the graph-theoretic parameter of primary interest: the mini-
mum number of pursuers needed to guarantee the capture of all evaders
regardless of the routes elected by the evaders for escape. In this paper,
we analyze a model under which pursuers and evaders move simultane-
ously from one vertex to another along the edges of G, none of whom
moves with infinite speed. Capture of an evader occurs if and only if the
evader and a pursuer are within distance one. Denoting the indicated
minimum number of pursuers under our model by w(G), we determine
conditions under which w(G) is at least w(H) for H a subgraph of G. We
consider the relationship between w(G) and various invariants of G such
as girth and diameter. And we determine w(G) for G in various classes.
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1 Introduction

In graph theory, a pursuit-evasion model is a collection of axioms by which pursuers
and evaders move throughout a graph with the respective purposes of capturing each
evader and evading the pursuers indefinitely. For a given graph and a fixed model
that specifies such things as the means by which a capture is made and the nature
of the mobility of the pursuers and evaders, the task is to determine the minimum
number of pursuers required to guarantee the capture of each evader, no matter what
movements the evader may take. This number is generally called the search number
of the graph under the given model.

There are many different pursuit-evasion models in the literature. The earliest,
which involves not so much evasion as pursuit, is credited to Parsons [19] whose work
was inspired by searchers (pursuers) who must locate a missing explorer (evader)
wandering aimlessly in a network of caverns and connecting tunnels. In Parsons’
work, a graph G = (V,E) is considered to be an embedding in 3-space, and the
locations of the evader and the pursuers are given by continuous functions of time
into V ∪E. A rescue (or capture) of the evader thus occurs if and only if there exists
a finite time at which the location of a pursuer is identical to the location of the
evader. Accordingly, the minimum number s(G) of pursuers required to guarantee
the capture of the evader is the smallest integer k with the following property: that
there exist k pursuer location functions l1, l2, . . . , lk such that for every evader loca-
tion function f , there exists a finite time tf where f(tf) = li(tf) for some i. Note
that the usage of the quantifiers codifies the assumption that the pursuers needn’t
have any knowledge of the whereabouts or the intentions of the evader, wheras the
evader, who may elect a route that is most inimical to capture or rescue, may have
complete knowledge of the whereabouts or the intentions of the pursuers. A discrete
characterization of this model, presented by Golovach [15], is given in terms of edge
clearing. In this characterization, the movement of a pursuer along edge e will clear
e of evaders (or, in another setting, will clear e of a noxious gas). However, e will
return to uncleared status if at some step there is a path of uncleared edges through
e that does not contain any pursuers. Under Parsons’ formulation (and hence under
Golovach’s as well), s(Kn) = n for n ≥ 4, where Kn is the complete graph on n
vertices.

A number of pursuit-evasion models are summarized in surveys by Alspach [3]
and Fomin and Thilikos [12]. Alspach distinguishes between models that sweep a
graph and models that search a graph. In the former type (which includes Parson’s
model), the evader may be located at a vertex or an edge, while in the latter type
the evader may be located only at a vertex. Among the five sweep models mentioned
in [3], four of them (all but Parsons’) admit loops or multiple edges. Of those four,
three require the pursuers to occupy only vertices at each time t, and furthermore
constrain the pursuers’ moves so that only one pursuer may move per unit interval
of time. The first of those three models (called the wormhole model) allows the
pursuer in motion to move to a neighboring vertex either by a continuous slide or an
instantaneous jump. A capture is made if the evader and some pursuer occupy the
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same point at the same time. The second of the three models (called the laser or
node search model) provides for capture if the intruder is on an edge whose incident
vertices are occupied by pursuers (see [17]). And finally, the third of the three models
represents a strategy that combines the wormhole with the laser. Turning to the
search models, Alspach focuses on the basic pursuit-evasion model (the BPE model)
with complete information. In this model, pursuers and evaders move alternately,
and have complete knowledge of the locations of all parties. Capture occurs if the
evader and a pursuer are located at the same vertex at the same time. Here, it can
be shown that any finite tree T has search number 1.

Fomin and Thilikos likewise survey various models of the pursuit-evasion problem,
using vocabulary that differs somewhat from Alspach’s. Graph sweeping models
such as Parsons’ are called edge search models as suggested by Golovach’s equivalent
characterization indicated above. Other edge search models mentioned in [12] include
that of [5] in which an edge is cleared either by its traversal by a pursuer or by the
simultaneous occupation of its incident vertices by two pursuers. Fomin and Thilikos
refer to this model as a mixed strategy model. Still other variations of edge-clearing
models set particular limits on the degrees of knowledge held by the involved parties.
For example, in [22], a node-searching model is accompanied by an assumption that
the pursuers can see the evader. In a radius of capture model (as given in [11]
and [20]), a graph is assumed to be embedded in R3, and edges are assumed to be
made up of polygonal lines. The distance between two adjacent vertices is thus the
Euclidean length of the edge, and a capture is made whenever the evader is within
some specified distance ε of a pursuer. For example, it is known from [11] that the
tetrahedron (in which each edge is assumed to have length 1) has search number 2
if 0.5 ≤ ε < 1.5 and 1 if ε ≥ 1.5. And finally, the cops and robbers model introduced
by Quilliot [21] and the duo Nowakowski and Winkler in [18], is the BPE model
reviewed by Alspach. In [2], Aigner and Fromme show that under this model the
search number of any planar graph is at most 3. Bonato et al. [6] extend this model
by specifying that a capture takes place when the evader is within a specified distance
of the pursuer, and in [13], Frieze et al. consider a model in which the pursuers and
evader may move more than one edge at a time. Major results of this model are
surveyed by Bonato and Nowakowski in [7].

Recently, Dyer and Milley [10] have extended the work of Hartnell et al. [16]
by considering the minimum number of guards required to ensure that no vertex
remains unobserved for more than a fixed time t0 as the guards execute closed walks
through a dominating set. Beaton et al. [4] continued the work in [10] by proving a
conjectured bound on the minimum number of guards when the underlying graph is
a tree and t0 is even.

See Abramovskaya and Petrov [1] for a recent survey of models and applications.

Using the terms watchman and intruder, this paper presents a model that is
inspired largely by the works of Brugger [8] and Brugger et al. [9] on the Paranoid
Watchman Problem. In [8], watchmen and an intruder move alternately such that at
their respective turns to move, (1) each watchman moves instantly from one vertex to
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an adjacent vertex, and (2) the intruder moves instantly from one vertex to another
along a path. A capture occurs if some non-initial vertex of the intruder’s path is
adjacent to a watchman, or if the intruder and a watchman occupy the same vertex.

In this paper, we consider a model under which watchmen and intruders initiate
their movements simultaneously, and edge traversals by watchmen and intruders
require positive time. Since watchmen may thus be regarded as occupying edges
during time intervals of positive length, we further specify that any watchman who
is located in an edge may inspect only that edge and its incident vertices. On the
other hand, any watchman at some vertex q may inspect the edges incident with q
and the vertices adjacent to q. A capture occurs if an intruder occupies an inspected
location.

Though these conditions will be formalized in the next section, we give an example
from [8] that will serve to distinguish the model of this paper from the Brugger model.

Graph G is given in Figure 1.1.

�r

�v �

z

�

x

�t

� �

y
�

u
�

w
�

s

�
�
��

�
�

��

�
�
��

�
�

��

Figure 1.1
The graph G

Under the Brugger model, suppose a lone watchman occupies vertex v while the
intruder is at t. If the watchman subsequently moves to z, then w, he prevents the
intruder from fleeing to r without capture. This is due to the fact that any walk to
r would take the intruder through v, which is visible from z and w. On the other
hand, under the model of this paper, the intruder could successfully flee along the
path t, x, y, v, r as the watchman is in transit from z to w. We note that this is a
real difference in models, since under the model of [8], only one watchman suffices
to clear G of intruders, while two will prove necessary under the model proposed
herein.

For the remainder of this section, we give an informal elaboration of the proposed
model and a summary of the paper.

We will assume that we have a network of finitely many rooms and connecting,
non-intersecting corridors with the properties that each corridor leads to precisely
two distinct rooms and any two distinct rooms are connected by at most one corridor.
An occupant of any given room may fully inspect the corridors that emanate from
that room as well as all rooms to which those corridors are connected. Likewise, by



JEONG-OK CHOI ET AL. /AUSTRALAS. J. COMBIN. 64 (3) (2016), 392–419 396

the symmetry of visibility, an occupant of any given corridor may fully inspect that
corridor and each of the two rooms that are connected by the corridor.

At step 0, a finite number of watchmen and a number of intruders (perhaps in-
finitely many) are deployed throughout the rooms. Between integral steps i and
i+1, each watchman may remain in his current room or move through a connecting
corridor to an adjacent room. Each intruder, however, may remain in his current
room or move to any room that is reachable via the network of rooms and corridors.
(Thus, both rooms and corridors may be occupied strictly between consecutive inte-
gral steps, but at each integral step, only rooms may be occupied.) The capture of
a particular intruder occurs at the earliest integral step i such that strictly between
steps i − 1 and i, or at step i, the location of the intruder is inspectable from the
location of some watchman.

Clearly, if each room contains one watchman at step i, then each intruder is
captured at step i if not prior. Thus the capture of all intruders in finitely many
steps can be accomplished if the number of watchman is at least the number of rooms.
However, it is possible that fewer watchmen are needed for the task. (Imagine, for
instance, that each two distinct rooms are connected by a corridor. Then only 1
watchman is needed, and the capture of each intruder occurs at step 0.) For a
given configuration of rooms and corridors, we therefore require the fewest number
of watchmen needed to guarantee that each intruder can be captured in finitely many
steps, regardless of the number of intruders present. We will refer to this number as
the watchman number.

Of course, in a graph-theoretic context, rooms are represented by vertices and
corridors are represented by edges. Thus the above conditions require that G is
finite, simple, and loopless. From one integral step to the next, intruders move along
walks in G of arbitrary finite length and watchmen move along paths in G of length
at most 1 such that at each step, each party is located on some vertex. From any
vertex v at which a watchman may be located, he can inspect the edges incident
with v and the vertices adjacent to v. From any edge e on which a watchman may
be travelling, he can inspect e and the two vertices incident with e. The capture of
an intruder occurs as described two paragraphs ago.

In Section 2, we establish notation and definitions, thereby giving rigor to the
above description. We also present a number of results that allow the analysis of
watchman numbers to be conducted under various simplifying conditions. In Section
3, we establish relationships between the watchman numbers of graphs and their
subgraphs, thereby facilitating the determination of watchman numbers of graphs
in certain structural classes. In Section 4, we consider the relationship between the
watchman number and other graph invariants such as diameter, girth, and minimum
degree. We then study the watchman numbers of paths, cycles, complete multipartite
graphs, interval graphs, hypercubes, and various Cartesian products. (Trees are
considered in a separate paper.) Finally, Section 5 is given to closing remarks.
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2 Notation, definitions, and preliminary results

Throughout this paper, all graphs will be finite, simple (no multiple edges), and
loopless. Unless otherwise indicated, G shall denote an arbitrary graph and H shall
denote an arbitrary subgraph of G. For v ∈ V (G), the closed neighborhood of v,
NG[v], shall denote the set of vertices that are equal or adjacent to v in G.

For any integer n ≥ 1, a walk of length n in G is an (n + 1)-tuple W =
(w0, w1, w2, . . . , wn) of vertices in V (G) such that for 1 ≤ i ≤ n, wi−1 is adjacent
to wi. The vertices w0 and wn are respectively the initial and terminal vertices of
W , and for 1 ≤ i ≤ n − 1, vertex wi is an interior vertex of W . (Note that since
the coordinate entries of W need not be pairwise distinct, a vertex wi may belong
to more than one category.) A walk of length 0 in G is a 1-tuple (w) for w ∈ V (G).
Such a walk, which is also a path, is said to have initial and terminal vertex w, and
no interior vertices.

We now formalize the model in a way that not only captures the description given
in Section 1, but generalizes it. Particularly, we will develop the problem allowing
for the possibility that the locations of the intruders are constrained to some fixed
subgraph of the graph over which the watchmen may move. This generalization will
facilitate arguments to be found later in the paper. Additionally, we alert the reader
to the fact that the formalization will codify the existence of only one intruder. This
simplifies the notation and the argumentation of this section, yet results in no loss of
generality since we conclude in Theorem 2.8 that watchman numbers are invariant
to the number of intruders.

For positive integer k, a k-watchman pursuit in G shall denote any infinite se-
quence S0, S1, S2, S3, . . . such that

(1) each Si is a k-tuple
(
vi,1, vi,2, vi,3, . . . , vi,k

)
of (not necessarily distinct) vertices in

V , and

(2) vi,j is equal to or adjacent to vi−1,j for each i ≥ 1.

The vertex vi,j shall denote the location of watchman j at step i, and the vector Si

shall be called the watchman location vector at step i. In the case k = 1, we may
dispense with the formality of referring to Si as the 1-tuple (vi,1), and instead merely
identify Si with the vertex vi or the 1-tuple (vi) as clarity requires. We may make
occasional reference to a pursuit in G; this shall refer to a k-watchman pursuit in G
for some k. Note that (2) codifies the informal condition that from one step to the
next, each watchman will either not change rooms or will move to an adjacent room.

Similarly, an intruder evasion in H (where H is a subgraph of G) shall denote
an infinite sequence of walks W0,W1,W2,W3, . . . in H such that

(3) no Wi of positive length has equal terminal and initial vertices, and

(4) the terminal vertex of Wi−1 is the initial vertex of Wi.

The walk Wi shall represent the route taken by the intruder between step i and step
i + 1. The initial vertex of Wi shall denote the location of the intruder at step i
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(implying that the terminal vertex of Wi, which equals the initial vertex of Wi+1,
is the location of the intruder at step i + 1). Note that (4) codifies the informal
condition that from one step to the next, the intruder may flee to a different room
in H that is reachable by a walk in H or remain at his current location (in the event
that the corresponding walk is of length 0).

Now let S = S0, S1, S2, . . . denote a k-watchman pursuit in G, and let T =
W0,W1,W2, . . . denote an intruder evasion in H . Then the ordered pair (S, T ) shall
be called a k-search of H from G. (In the event H = G, the phrase “from G” may be
omitted.) We say that the intruder is captured at step i under (S, T ) if and only if i
is the smallest integer such that for some h, 1 ≤ h ≤ k,

(5) the initial vertex of Wi is adjacent or equal to vi,h, or

(6) vi−1,h and vi,h are distinct and some interior vertex of Wi−1 is equal to either
vi−1,h or vi,h, or

(7) vi−1,h = vi,h and some interior vertex of Wi−1 is adjacent to vi,h.

Moreover, we say that watchman h0 captures the intruder at step i under (S, T ) if
and only if the intruder is captured at step i under (S, T ) and condition (5), (6) or
(7) holds with h = h0.

It may be helpful to think of the movements of watchmen and the intruder as oc-
curing between steps along edges, during which time the as-yet-uncaptured intruder
will be captured if (by 6) his walk takes him through a vertex that is incident with
an edge along which a watchman is moving, or (by 7) his walk takes him through a
vertex that is adjacent to a vertex occupied by a watchman who has elected not to
move. A capture will also occur (by 5) if at the ends of the moves of the watchmen
and the as-yet-uncaptured intruder, the intruder is located on a vertex that is equal
or adjacent to a vertex that locates some watchman. Note that for fixed h, conditions
(6) and (7) are mutually exclusive, but that (5) and (6) may both be true as may (5)
and (7). In each of the two cases, both conditions declare that the capture occurs
at step i, so there is no ambiguity. In the sequel, it will be useful to refer to the
captures described by (5), (6), and (7) as captures of Type 1, Type 2, and Type 3,
respectively.

Let (S∗, T ∗) be a fixed k-search of H from G. Then (S∗, T ∗) is successful for
H relative to G if and only if there exists a step at which the intruder is captured
under (S∗, T ∗). Furthermore, S∗ is successful for H relative to G if and only if for all
intruder evasions T in H , (S∗, T ) is successful for H relative to G. Finally, we say
that H is k-guardable relative to G if and only if there exists a k-watchman pursuit
in G that is successful for H relative to G. (In the event that H = G, the phrase
“relative to G” may be omitted.)

It is clear that H is |V (G)|-guardable relative to G. (The deployment of one
watchman to each of the vertices of G suffices for the capture of the intruder at step
0.) Thus there exists a smallest integer k such that H is k-guardable relative to G,
motivating the next definition.
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Definition 2.1. Let G be a graph with subgraph H . Then the watchman number
of H relative to G, denoted w(H|G), is the smallest positive integer k such that H is
k-guardable relative to G. If H = G, then w(H|G) shall be denoted w(G) and shall
be called the watchman number of G.

Since H is a subgraph of G, it follows that the set of pursuits S in G such that
(S, T ) is successful for all intruder evasions T in G is a subset of the set of pursuits
S in G such that (S, T ) is successful for all intruder evasions T in H . Thus we have

Observation 2.2. For graph G with subgraph H, w(H|G) ≤ w(G).

The next theorem indicates that if an intruder can avoid capture by taking walks,
then he can avoid capture by taking paths. This will prove useful in the proof of
Theorem 2.6.

Theorem 2.3. Let (S, T ) be a k-search of H from G such that for fixed integer
c ≥ 0, the intruder is not captured at or prior to step c under (S, T ). Then there
exists an intruder evasion T ∗ = W ∗

0 ,W
∗
1 ,W

∗
2 . . . in H such that

(1) for 0 ≤ i ≤ c, W ∗
i is a path in H, and

(2) under (S, T ∗), the intruder is not captured at or prior to step c.

Proof: Let T = W0,W1,W2, . . . . For either 0 ≤ i ≤ c such that Wi is a path or
i > c, define W ∗

i to be Wi. For 0 ≤ i ≤ c such that Wi is not a path, it follows that
Wi has positive length, and hence has distinct initial and terminal vertices αi and βi

respectively. In this case, define W ∗
i to be Pi where Pi is some fixed path from αi to

βi such that all interior vertices (if any) of Pi are found among the interior vertices
incident with Wi. Then it is clear that T ∗ = W ∗

0 ,W
∗
1 ,W

∗
2 , . . . is an intruder evasion

in H satisfying (1). To see that (2) holds, note that under (S, T ∗), the intruder
cannot experience a capture of Type 1, Type 2, or Type 3 at or prior to step c since
under (S, T ) the intruder does not experience a capture of Type 1, Type 2, or Type
3 at or prior to step c. �

We now give the definition of a set Di(G,H, S) that is analogous to the comple-
ment of the set Ai of cleared vertices discussed in [8]. Intuitively, Di(G,H, S) will be
the set of vertices at which the intruder may be located at step i, uncaptured under
the movements of the watchmen given by S.

Definition 2.4. Let G be a graph with subgraph H and let S denote a pursuit in
G. Then for non-negative integer i, Di(G,H, S) denotes the set of vertices in V (H)
such that v ∈ Di(G,H, S) if and only if there exists an intruder evasion T in H with
the properties that

(1) the intruder is located on vertex v at step i under T , and
(2) the intruder is not captured at any step i0 ≤ i under (S, T ).

We shall denote Di(G,H, S) by Di when there is no chance for confusion.

An example follows. In Figure 2.1 and Table 2.2, we give G = P4�P4 (the
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Cartesian product of P4 with P4) and demonstrate a 2-watchman pursuit S in G and
Di(G,G, S) through step 11.
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Figure 2.1
The graph P4�P4

Si Di(G,G, S) Si Di(G,G, S)
i = 0 (1,9) {3, 4, 6, 7, 8, 11, 12, 14, 15, 16} i = 6 (6,11) {3, 4, 8, 16}
i = 1 (2,9) {4, 7, 8, 11, 12, 14, 15, 16} i = 7 (2,11) {4, 8, 16}
i = 2 (6,9) {3, 4, 8, 11, 12, 14, 15, 16} i = 8 (3,11) {8, 16}
i = 3 (6,13) {3, 4, 8, 11, 12, 15, 16} i = 9 (4,11) {16}
i = 4 (6,14) {3, 4, 8, 11, 12, 16} i = 10 (8,11) {16}
i = 5 (6,15) {3, 4, 8, 12} i = 11 (12,11) ∅

Table 2.2
A 2-watchman pursuit in P4�P4

Observation 2.5. For fixed k, let S and S∗ be k-watchman pursuits in G. For fixed
non-negative integers x and x∗, suppose Dx(G,H, S) = (resp. ⊆) Dx∗(G,H, S∗).
Suppose also that, for i ≥ 0, Sx+i = S∗

x∗+i. Then for i ≥ 0, Dx+i(G,H, S) = (resp.
⊆) Dx∗+i(G,H, S∗)

Suppose S is a successful pursuit for H relative to G. From the next theorem, it
will follow that there exists a finite upper bound on the number of steps required for
the capture of the intruder under (S, T ) over the set of all intruder evasions T in H .
That is, there exists a finite number of steps nS such that no matter which intruder
evasion T is elected, the intruder will be captured in nS or fewer steps under (S, T ).
It will follow as a corollary that w(H|G) will equal the fewest number of watchmen
sufficient to the task of capturing an arbitrary number of simultaneous intruders.

Theorem 2.6. The pursuit S in G is successful for H relative to G if and only if
Di(G,H, S) = ∅ for some i.

Proof: ⇐. Suppose that c is a fixed integer such that Dc(G,H, S) = ∅. Select an
arbitrary intruder evasion T in H , and suppose that the intruder is located on vertex
v0 at step c under T . Since v0 /∈ Dc(G,H, S), it follows by Definition 2.4 that under
(S, T ), the intruder is captured at some step i ≤ c. So, by the arbitrariness of T , S
is successful for H relative to G.
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⇒. Now suppose that for all i ≥ 0, Di(G,H, S) 
= ∅. By Theorem 2.3, it follows
that for each i ≥ 0, there exists an intruder evasion in H, say,

T i = P i
0, P

i
1, P

i
2, P

i
3, . . . , P

i
i ,W

i
i+1,W

i
i+2 . . .

such that the intruder is not captured at any step at or prior to step i under (S, T i),
and the first i + 1 terms of T i are paths in H . Since V (H) is finite and hence
contains only finitely many distinct paths, there exists a path P0 in H and an infinite
subsequence SS0 of 0, 1, 2, 3, 4, 5, 6, . . . such that for every term x of SS0, the first
term of T x is P0. Note that any intruder evasion T in H such that T0 = P0 has the
property that the intruder is not captured at step 0 under (S, T ).

Now, since V (H) is finite, there exists a path P1 in H and an infinite subsequence
SS1 of SS0 such that for every term x of SS1, the first two terms of T x are P0 and
P1. Note that any intruder evasion T in H such that T0 = P0 and T1 = P1 has the
property that the intruder is not captured at step 0 or step 1 under (S, T ).

Continuing this process, we create an intruder evasion

T ∗ = P0, P1, P2, P3, . . .

in H such that at no finite step i is the intruder captured under (S, T ∗). Thus S is
not successful for H relative to G. �

Let S be a k-watchman pursuit that is successful for H relative to G. Then by
the preceding theorem, we may find the smallest integer i such that Di(G,H, S) = ∅.
Denoting this integer by mG,H,S and observing that it is not a function of any given
intruder evasion, we have the following result.

Corollary 2.7. Let S be a pursuit that is successful for H relative to G. Then for
any intruder evasion T in H, the intruder is captured at or prior to step mG,H,S

under (S, T ). Moreover, by Definition 2.4, there exists an intruder evasion T such
that under (S, T ) the intruder is uncaptured at step mG,H,S − 1.

Let PE denote our formalized pursuit-evasion model under which there exists
precisely one intruder. Let PE ′ denote the pursuit-evasion model that is identical
to PE except for the constraint that there exist at least two simultaneous intruders.
Continuing our assumption that S is a k-watchman pursuit that is successful for H
relative to G, we observe that under PE ′, each of the two or more intruders will be
captured no later than mG,H,S as determined under PE . Expanding (in the obvious
way) our use of the phrase “watchman number of H relative to G” to the case of
more than one intruder, we have that the watchman number of H relative to G under
PE ′ is thus no more than the watchman number of H relative to G under PE . This
inequality is clearly reversible, resulting in the next theorem.

Theorem 2.8. Let G be a graph with subgraph H. Then the fewest number of watch-
men sufficient to the task of capturing an arbitrary number m ≤ ∞ of simultaneous
intruders is invariant to m. Therefore, to study the general model of this paper in
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which the number of intruders is at least 1, it suffices to assume the existence of just
one intruder.

We now consider additional simplifying conditions. Let S be a k-watchman pur-
suit in G and let �v denote a k-tuple of vertices in V (G). Then S initiates at �v if and
only if S0 = �v. Additionally, for positive integer c, S is aggressive to step c (resp.
elementary to step c ) if and only if for 1 ≤ i ≤ c, Si−1 and Si differ in at least
one coordinate (resp. differ in at most one coordinate). (Thus, in a search that is
elementary and aggressive to step c, precisely one watchmen will move between step
i−1 and step i, 1 ≤ i ≤ c.) We close this section by showing that if �v is an arbitrary
k-tuple of vertices in V (G) and H is k-guardable relative to connected G, then there
exists a k-watchman pursuit S in G such that S initiates at �v, S is successful for
H relative to G, and S is both elementary and aggressive to step mG,H,S. Thus, in
the determination of w(H|G), it will suffice to consider only those pursuits that are
aggressive and elementary to finitely many steps, as well as initiated at the most
convenient vertices. We begin with the matter of elementariness.

Theorem 2.9. Let H be k-guardable relative to G. Then there exists a k-watchman
pursuit S that is successful for H relative to G and elementary to step mG,H,S.

Proof: Throughout the proof, all successful pursuits are understood to be for H
relative to G.

The claim is clearly true if k = 1. Thus we suppose that k is a fixed integer at least
2, and we let K denote the set of successful k-watchman pursuits. By assumption,
K 
= ∅.

For each pursuit S ∈ K we define the following:

(1) for each i, 1 ≤ i ≤ mG,H,S, σi(S) denotes the number of coordinates in which
Si−1 and Si differ;

(2) σ(S) denotes
∑

σi(S) where the summation is taken over all i, 1 ≤ i ≤ mG,H,S

such that σi(S) ≥ 2. (We take σ(S) to be 0 if the indexing set is empty.)

Since we are claiming that there exists a pursuit S in K such that σi(S) ≤ 1 for
1 ≤ i ≤ mG,H,S, we assume the contrary that for every pursuit S in K, σi(S) ≥ 2
for some i, 1 ≤ i ≤ mG,H,S, and hence σ(S) ≥ 2. We may thus select a pursuit
S∗ = S∗

0 , S
∗
1 , S

∗
2 , . . . in K such that σ(S∗) minimizes σ(S) over all pursuits S in K,

and we may find an integer c ≤ mG,H,S∗ such that σc(S
∗) ≥ 2. With no loss of

generality, we assume that vc−1,1 differs from vc,1 and that vc−1,2 differs from vc,2.

Now let S denote the k-watchman pursuit that agrees with S∗ except for the
insertion of a particular watchman location vector S∗

z ; particularly,

S = S∗
0 , S

∗
1 , S

∗
2 , . . . , S

∗
c−1, S

∗
z , S

∗
c , S

∗
c+1, . . . ,

where S∗
z is the watchman location vector that has first coordinate entry vc−1,1 and

agrees with S∗
c otherwise. We aim to show that S is in K with σ(S) < σ(S∗), thereby

contradicting the minimality of σ(S∗).
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Let T = W0,W1,W2, . . . be an arbitrary intruder evasion in H . Let the walks
Wc−1 and Wc be, respectively,

αW β and βW γ, where the presuperscripts and postsu-
perscripts respectively indicate initial and terminal vertices of the walks. Let αW γ

denote the walk formed by catenating αW β and βW γ where, if α = γ, αW γ is under-
stood to be the path of 0 length. Then the following sequence T ∗ is easily verified
to be an intruder evasion in H :

T ∗ = W0,W1,W2, . . . ,Wc−2,
αW γ, Wc+1,Wc+2, . . .

Moreover, (S∗, T ∗) is successful forH relative to G since S∗ is successful forH relative
to G by assumption. This implies that under (S∗, T ∗), the intruder is captured prior
to step c, at step c, or after step c.

Since S∗ and S (resp. T ∗ and T ) are termwise identical prior to step c (resp.
prior to step c− 1), the intruder is captured at step s < c under (S∗, T ∗) if and only
if he is captured at step s < c under (S, T ). Likewise, for x ≥ c, the xth step of
S∗ (resp. T ∗) is identical to the (x + 1)st step of S (resp. T ). So, if the intruder
is captured at step s > c under (S∗, T ∗), he will be captured by step s + 1 under
(S, T ). So let us assume that the intruder is captured at step c under (S∗, T ∗). Since
the intruder then cannot be captured prior to step c under (S, T ) (for otherwise he
would be captured prior to step c under (S∗, T ∗)), we will show that he is captured
at step c or step c+ 1 under (S, T ).

Since the intruder is captured at step c under (S∗, T ∗), then the intruder experi-
ences at least one of the following:

(1) a Type 1 capture: some coordinate entry vc,h of S∗
c is equal or adjacent to the

initial vertex γ of the walk W ∗
c , or

(2) a Type 2 capture: some interior vertex of the walk W ∗
c−1 =

αW γ is equal to one
of the distinct coordinate entries vc−1,h and vc,h of S∗

c−1 and S∗
c , respectively, or

(3) a Type 3 capture: some interior vertex of the walk W ∗
c−1 =

αW γ is adjacent to
the indistinct coordinate entries vc−1,h and vc,h of S∗

c−1 and S∗
c , respectively.

Suppose (1) holds. Since Sc+1 = S∗
c and Wc+1 = W ∗

c , then the coordinate entry
vc,h of Sc+1 is equal or adjacent to the initial vertex γ of the walk in Wc+1, implying
that the intruder is captured by step c+ 1 under (S, T ).

Suppose (3) holds. Then α 
= γ and the walk αW γ contains some interior vertex
v that is adjacent to vc−1,h = vc,h where necessarily h 
= 1, 2. We observe that v is
in the interior of αW β = Wc−1 or in the interior of βW γ = Wc or is the initial vertex
β of Wc. We also observe that vc−1,h is in the hth coordinate of Sc−1, Sc, and Sc+1.
Thus, the intruder is captured by step c+ 1 under (S, T ).

Finally, suppose that (2) holds. Then α 
= γ, vc−1,h is adjacent to vc,h, and the
walk αW γ contains some interior vertex v that is equal to vc−1,h or vc,h. As in the
case above, we observe that v is in the interior of αW β = Wc−1 or in the interior of
βW γ = Wc or is the initial vertex β of Wc. Consider two cases.
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Suppose h = 1. Then vc−1,h is the first coordinate entry of Sc−1 and Sc, and vc,h
is the first coordinate entry of Sc+1. Moreover, as noted above, Wc−1 = αW β and
Wc = βW γ . Therefore, the following hold: if v is an interior vertex of αW β, then
the intruder will experience a capture of Type 3 at step c under (S, T ); if v is in the
interior of βW γ, then the intruder will experience a capture of Type 2 by step c+ 1
under (S, T ); if v is β, then the intruder will experience a capture of Type 1 at step
c under (S, T ).

Suppose h 
= 1. Then vc−1,h is the hth coordinate entry of Sc−1 and vc,h is the hth

coordinate entry of both Sc and Sc+1. Moreover, as noted above, Wc−1 =
αW β and

Wc = βW γ . Therefore, the following hold: if v is an interior vertex of αW β, then
the intruder will experience a capture of Type 2 at step c under (S, T ); if v is in the
interior of βW γ, then the intruder will experience a capture of Type 3 at step c + 1
under (S, T ) if he hasn’t been captured at step c; if v is β, then the intruder will
experience a capture of Type 1 at step c under (S, T ).

Thus S is successful since T was arbitrary. Moreover, we have seen that for any
intruder evasion T , the intruder is captured under (S, T ) at step no later than s+ 1
where s is the step at which the intruder would be caught under (S∗, T ∗). Thus by
Corollary 2.7, mG,H,S ≤ mG,H,S∗ +1. We also observe that through step mG,H,S∗ +1,
the terms of S are

S∗
0 , S

∗
1 , S

∗
2 , . . . , S

∗
c−1, S

∗
z , S

∗
c , S

∗
c+1, . . . , S

∗
mG,H,S∗ ,

while through step mG,H,S∗ , the terms of S∗ are

S∗
0 , S

∗
1 , S

∗
2 , . . . , S

∗
c−1, S

∗
c , S

∗
c+1, . . . , S

∗
mG,H,S∗ .

Since S∗
z and S∗

c differ in exactly one coordinate, and S∗
z and S∗

c−1 differ in one
fewer coordinates than S∗

c−1 and S∗
c , it follows that σ(S) < σ(S∗), contradicting the

minimality of σ(S∗). �

We next turn to the matter of aggressive pursuits.

Theorem 2.10. Let H be k-guardable relative to G. Then there exists a k-watchman
pursuit S that is successful for H relative to G and both elementary and aggressive
to step mG,H,S.

Proof: By Theorem 2.9, we may select a k-watchman pursuit

S∗ = S∗
0 , S

∗
1 , S

∗
2 , . . .

that is successful for H relative to G and elementary to step mG,H,S∗. If S∗ is
aggressive to step mG,H,S∗ , we are done. So, suppose that c is a fixed integer such
that c ≤ mG,H,S∗ and S∗

c−1 = S∗
c . Let S

∗∗ be the elementary k-watchman pursuit in
G that results by deleting the term S∗

c from the sequence S∗:

S∗∗ = S∗
0 , S

∗
1 , S

∗
2 , . . . , S

∗
c−1, S

∗
c+1, S

∗
c+2, . . .

Since S∗
i = S∗∗

i for 0 ≤ i ≤ c − 1, then Di(G,H, S∗∗) = Di(G,H, S∗) for 0 ≤ i ≤
c− 1, giving in particular Dc−1(G,H, S∗∗) = Dc−1(G,H, S∗). But Dc−1(G,H, S∗) =
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Dc(G,H, S∗) since S∗
c−1 = S∗

c . So Dc−1(G,H, S∗∗) = Dc(G,H, S∗). Moreover, for
i ≥ 0, S∗∗

c−1+i = S∗
c+i. Thus by Observation 2.5, Dc−1+i(G,H, S∗∗) = Dc+i(G,H, S∗)

for i ≥ 0. Letting i = mG,H,S∗ − c, it therefore follows that DmG,H,S∗−1(G,H, S∗∗) =
DmG,H,S∗ (G,H, S∗) = ∅, which implies by Theorem 2.6 that S∗∗ is successful with
mG,H,S∗∗ < mG,H,S∗. (Particularly, mG,H,S∗∗ = mG,H,S∗ − 1.) Moreover, it is clear
that S∗∗ is elementary to step mG,H,S∗∗. Thus, by the iterative deletion of consecutive
repeated terms of S∗, we construct the desired k-watchman pursuit. �

Finally, we consider initiation.

Theorem 2.11. Let H be k-guardable relative to connected G, and let �v denote a
k-tuple of vertices in V (G). Then there exists a k-watchman pursuit S such that
S is successful for H relative to G, S initiates at �v, and S is both aggressive and
elementary to step mG,H,S.

Proof: By Theorem 2.10, we may select a k-watchman pursuit

S∗ = S∗
0 , S

∗
1 , S

∗
2 , . . .

that is successful for H relative to G and both elementary and aggressive to step
mG,H,S∗ . Because G is connected, it follows that for some integer h, we may construct
a k-watchman pursuit in G

S = S0, S1, . . . , Sh, S
∗
0 , S

∗
1 , S

∗
2 , S

∗
3 , . . .

such that S initiates at �v and is elementary and aggressive to step h + 1 +mG,H,S∗.
To conclude the proof, it therefore suffices to show that S is successful for H relative
to G with mG,H,S ≤ h + mG,H,S∗ + 1. But by Observation 2.5 with x∗ = 0 and
x = h + 1, Dh+1+mG,H,S∗ (G,H, S) ⊆ DmG,H,S∗(S

∗) = ∅. The result now follows from
Theorem 2.6. �

3 Watchman numbers of subgraphs relative to graphs

It is a property of watchman numbers that if H is a subgraph of G, then w(H) is not
necessarily less than or equal to w(G). Take, for instance, K1 join C4. This graph
clearly has watchman number 1, yet its subgraph C4 will prove to have watchman
number 2. Under what conditions is it the case that w(H) ≤ w(G)?

Let H be a subgraph of G. Then the closure of H , denoted H̄ , is the subgraph
of G induced by

⋃
v∈V (H) NG[v]. Additionally, the vertex boundary of H is B(H) =

V (H̄)−V (H). We note that v ∈ V (H̄) if and only if either v ∈ V (H) or v is adjacent
to some vertex in V (H). Since H̄ is a subgraph of G, then any k-watchman pursuit
in H̄ is a k-watchman pursuit in G. Thus we have

Observation 3.1. Let H be a subgraph of G. Then w(H|G) ≤ w(H|H̄).

In the following discussion, it will be occasionally convenient to denote the infinite
sequence of watchman location vectors Sr, Sr+1, Sr+2, . . . by Sr, Sr+1, Sr+2, . . . , S∞,
where S∞ is merely a symbolic reminder of the infinitude of the sequence.
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Let H be a subgraph of G and let S = S0, S1, S2, . . . be a k-watchman pursuit
in G that is successful for H relative to G. Suppose also that V

(
H̄
)
is a proper

subset of V (G). Then a detour from H̄ by watchman j under S is a finite or infinite
sequence

Sr, Sr+1, Sr+2, . . . , St

of at least 3 consecutive terms of S such that

(1) r < mG,H,S,

(2) the location of watchman j at step r is in B(H), and

(3) t is the maximum extended integer (r+2 ≤ t ≤ ∞) such that for all i, r < i < t,
watchman j is located in V (G)−V (H̄) at step i. (Note that if t is finite, the location
of watchman j at step t must be in B(H).)

We observe that since r < mG,H,S, it follows that for each j, there are only finitely
many distinct detours from H̄ by watchman j under fixed S. We also note that since
detours have at least 3 terms, the set of integers strictly between r and t is not empty.

Theorem 3.2. Let H be a connected subgraph of G that is k-guardable relative to
G. Then H is k-guardable relative to H̄ and w(H|H̄) ≤ w(H|G).

Proof: Throughout the proof, all k-watchman pursuits are understood to be in G
and all successes are understood to be for H relative to G. We may assume that
V
(
H̄
)
is a proper subset of V (G), for otherwise H̄ = G, rendering the theorem trivial.

Additionally, we note that if H is k-guardable relative to H̄ when H is k-guardable
relative to G, then it easily follows that w(H|H̄) ≤ w(H|G). We thus devote our
attention to proving that H is k-guardable relative to H̄.

Since H is k-guardable relative to G, then by Theorem 2.11 we may select a
successful k-watchman pursuit S ′ = S ′

0, S
′
1, S

′
2, . . . such that the watchman location

vector S ′
0 is a vector of vertices in V (H). If the number of detours from H̄ of

watchman j under S ′ is 0 for each j, then we are done. Thus, suppose without loss
of generality that the number of detours from H̄ of watchman 1 under S ′ is d ≥ 1. It
will suffice to construct a successful k-watchman pursuit S∗ such that (1) S∗

0 contains
only vertices in V (H), and (2) under S∗, the number of detours from H̄ of watchman
1 is d− 1 while the number of detours from H̄ of every other watchman is the same
as under S ′.

Let S ′
r, S

′
r+1, . . . , S

′
t be a detour from H̄ of watchman 1 under S ′, where t ≤ ∞.

Then r ≥ 1 since S ′
0 contains only vertices in V (H).

We assume that the location of watchman 1 at step r is vr ∈ B(H) and, if t is
finite, the location of watchman 1 at step t is vt ∈ B(H).

If t < ∞, then due to the connectedness of H , it follows that there exists a finite
sequence of vertices hr, hr+1, hr+2, . . . , hy−1, hy in H̄ such that

(1) y ≥ t,
(2) hr = vr, hy = vt and all other terms are in V (H), and
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(3) consecutive terms of the sequence are either equal or adjacent.

In this case, we define S to be the k-watchman pursuit in G that results by inserting
y − t copies of S ′

r+1 between S ′
r and S ′

r+1 in S ′. On the other hand, if t = ∞, we set
y = ∞, and we define S to equal S ′. In each case, by an application of Observation
2.5, S is successful. Moreover, watchman 1 has d detours from H̄ . If t is finite, one
of those detours is given by

S ′
r,

y−t+1 copies︷ ︸︸ ︷
S ′
r+1, S

′
r+1, . . . , S

′
r+1, S

′
r+2, S

′
r+3, . . . , S

′
t = Sr, Sr+1, Sr+2, . . . Sy.

If t is infinite, one of those detours is

S ′
r, S

′
r+1, S

′
r+2, . . . S

′
∞ = Sr, Sr+1, Sr+2, . . . Sy.

We now show the existence of S∗. For 0 ≤ i ≤ r, define S∗
i to be Si. If t = ∞,

then for i > r, define S∗
i to be the k-tuple of vertices that equals Si in the last k− 1

coordinates and vr in the first coordinate. If t < ∞, then for r+1 ≤ i ≤ y−1, define
S∗
i to be the k-tuple of vertices that equals Si in the last k − 1 coordinates and hi

in the first coordinate; and for i ≥ y, define S∗
i to be Si. Then it is readily seen that

S∗ = S∗
0 , S

∗
1 , S

∗
2 , . . . is a k-watchman pursuit in G under which watchman 1 has d−1

detours from H̄ and each watchman j 
= 1 has the same number of detours from H̄
under S∗ as under S. We show that for every i, Di(G,H, S∗) ⊆ Di(G,H, S), thereby
proving that S∗ is successful by Theorem 2.6.

Fix an arbitrary integer c ≥ 0 and v ∈ Dc(G,H, S∗). Then there exists an
intruder evasion T in H such that at step c, the intruder is located on v and is
uncaptured at or prior to step c under (S∗, T ). But for all i ≥ 0 and j, 2 ≤ j ≤ k,
the jth coordinate entry of S∗

i equals the jth coordinate entry of Si. Thus for such
j, watchman j does not capture the intruder at or prior to step c under (S, T ). We
therefore see that if the intruder is captured at or prior to step c under (S, T ), he
is captured by watchman 1. But for 0 ≤ i ≤ r, watchman 1 has the same location
at step i under S∗ as under S. Therefore, if 0 ≤ c ≤ r, the intruder is not captured
by watchman 1 at or prior to step c under (S, T ). Moreover, for steps r < i < y,
the intruder is confined to vertices (in V (H)) that are not equal or adjacent to the
locations of watchman 1 under S, implying that the intruder is not captured by
watchman 1 at or prior to step c under (S, T ) for r < c < y. And finally, we observe
that for i ≥ y (which is vacuous if y = ∞), watchman 1 has the same location at
step i under S as under S∗. Therefore the intruder is not captured by watchman 1 at
any step at or prior to step c under (S, T ) if c ≥ y. Hence v ∈ Dc(G,H, S), implying
that Dc(G,H, S∗) ⊆ Dc(G,H, S) and therefore that S∗ is successful for H relative
to G. Moreover, since S∗

0 = S0, then S∗
0 contains only vertices in V (H). The proof

is thus concluded since watchman 1 has d− 1 detours from H̄ under S∗. �

Corollary 3.3. Let H be a connected subgraph of G. Then by Observation 3.1 and
Theorem 3.2, w(H|G) = w(H|H̄).

Let H be a subgraph of G such that B(H) is a non-empty set {x1, x2, . . . , xm},
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m ≥ 1. Then H̄ is said to be basic if and only if (1) each vertex xi in B(H) is adjacent
to precisely one vertex yi in V (H), and (2) if xi1 and xi2 are adjacent elements of
B(H), then yi1 and yi2 are indistinct or adjacent elements of V (H).

Theorem 3.4. Let H be an induced connected subgraph of G and suppose that H̄ is
basic. Then w(H) ≤ w(G).

Proof: We have seen that w(H|H̄) = w(H|G) ≤ w(G). It thus suffices to show that
w(H) = w(H|H̄). Since it is clear that w(H) ≥ w(H|H̄), we show w(H) ≤ w(H|H̄).

We recall that H̄ is the graph induced by the vertices of H and their neighbors.
Thus, since H is induced, it follows that two vertices in V (H) are adjacent in H if
and only if they are adjacent in H̄.

Let S = S0, S1, S2, . . . be a k-watchman pursuit in H̄ , where Si = (vi,1, vi,2, . . . ,
vi,k). For each i ≥ 0, let S∗

i denote the k-tuple of vertices (v∗i,1, v
∗
i,2, . . . , v

∗
i,k) in H

such that (1) if vi,j is in V (H), then v∗i,j = vi,j, and (2) if vi,j is in B(H), then v∗i,j
is the unique vertex in V (H) to which vi,j is adjacent. Since H̄ is basic, it is readily
seen that S∗ = S∗

0 , S
∗
1 , S

∗
2 , . . . is a k-watchman pursuit in H . It thus suffices to show

that Di(H,H, S∗) ⊆ Di(H̄,H, S) for each i. We proceed by induction on i.

To establish the base case, select v ∈ D0(H,H, S∗). Then v ∈ V (H) and
v /∈ ⋃k

j=1NH [v
∗
0,j]. Since H̄ is basic, it follows that v /∈ ⋃k

j=1NH̄ [v0,j], giving

v ∈ D0(H̄,H, S). Thus D0(H,H, S∗) ⊆ D0(H̄,H, S).

Now suppose that c is a positive integer such that for 0 ≤ i ≤ c−1, Di(H,H, S∗) ⊆
Di(H̄,H, S). Select v ∈ Dc(H,H, S∗). Then there exists an intruder evasion T ∗ in
H

T ∗ = α0W α1 , α1W α2, . . . αc−2W αc−1 αc−1W v, vW αc+1, . . .

such that under (S∗, T ∗) the intruder is on vertex v at step c and is uncaptured
at step c or prior. Thus the intruder is uncaptured at step c − 1 under (S∗, T ∗),
implying that αc−1 is in Dc−1(H,H, S∗), and hence (by the inductive assumption)
also in Dc−1(H̄,H, S). Therefore, there exists an intruder evasion T

T = β0W β1, β1W β2, . . . βc−2W αc−1 , αc−1W v, vW βc+1 . . .

in H such that under (S, T ), the intruder is on αc−1 at step c− 1 and is uncaptured
at or prior to step c− 1. Noting the equality of the walks Wc−1 and W ∗

c−1 of T and
T ∗ respectively (each is αc−1W v), we show that the intruder is uncaptured at step c
under (S, T ), concluding the proof.

To show that a capture of Type 1 is not made at step c under (S, T ), we observe
that since the intruder is uncaptured at step c under (S∗, T ∗), then v /∈ ⋃k

j=1NH [v
∗
c,j].

Since H̄ is basic, it follows that v /∈ ⋃k
j=1NH̄ [vc,j], implying no Type 1 capture under

(S, T ) at step c.

To show that a capture of Type 2 is not made at step c under (S, T ), assume
otherwise so that, with no loss of generality, some interior vertex u of αc−1W v equals
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vc,1 or vc−1,1, where vc−1,1 
= vc,1. Assume (with no loss of generality) that u =
vc,1. Then vc,1 must be in V (H) since u ∈ V (H), which implies that vc,1 = v∗c,1.
Therefore, the interior vertex u of αc−1W v equals a vertex of S∗

c , a contradiction of
the assumption that the intruder is uncaptured at or prior to step c under (S∗, T ∗).

To show that a capture of Type 3 is not made at step c under (S, T ), assume
otherwise so that, with no loss of generality, some interior vertex u of αc−1W v is
adjacent to vc−1,1 = vc,1 in H̄ . If vc,1 is in B(H), then u = v∗c,1, a contradiction of
the assumption that the intruder is uncaptured at or prior to step c under (S∗, T ∗).
On the other hand, if vc,1 is not in B(H), then vc,1 = v∗c,1 = vc−1,1 = v∗c−1,1. Thus,
at steps c− 1 and c, watchman 1 is at the vertex vc,1 in V (H), which is adjacent to
u in H since H is induced. Therefore we have the contradiction that the intruder is
captured by step c under (S∗, T ∗). �

4 Watchman numbers for several classes of graphs

We begin this section with the derivation of relationships between w(G) and certain
graph invariants.

For graphG, let the minimum degree ofG be denoted δ(G) and let the domination
number of G be denoted γ(G). It is clear that w(G) ≤ γ(G). Moreover, if G has
diameter 2, then for any vertex v in G with degree δ(G), the neighbors of v form a
dominating set, and hence γ(G) ≤ δ(G). We state these results as

Observation 4.1. For graph G, w(G) ≤ γ(G). If G has diameter 2, then w(G) ≤
δ(G).

We state a more general bound on w(G) with the next observation.

Observation 4.2. Let G be a connected graph and let X ⊆ V (G). If X is a domi-
nating set, set y = 0. Otherwise, let H be the graph induced by V (G)−⋃

x∈X N [x],
let C1, C2, . . . Ch be the components of H, and let y denote max{w(C i)|1 ≤ i ≤ h}.
Then for every walk W in G, either W is incident with only vertices in V (C i) for
some i or W is incident with some vertex in N [x] where x ∈ X. Thus, letting k
denote |X|+ y, we may form a successful k-watchman pursuit S such that for every
vertex x in X, there exists j where watchman j is located on x at every step. Hence
w(G) ≤ k.

Now let G be a connected graph with finite girth L ≥ 4 and let C = c0, c1, c2, . . . ,
cL−1 be an L-cycle in G. By Theorem 2.11, there is no 1-watchman pursuit in G that
is successful for G if there is no 1-watchman pursuit in G that is successful for G and
initiates at c0. So, let S = (v0), (v1), (v2), . . . be an arbitrary 1-watchman pursuit in
G where v0 = c0. We show that w(G) ≥ 2 by showing that S is not successful for G.

For each i ≥ 0, let cxi
denote a fixed vertex from among those vertices of C that

minimize the distance di between cxi
and vi. We construct an intruder evasion T in

C (and therefore in G) such that (S, T ) is not successful, thus:
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Let the location of the intruder at step 0 be c2. Then for all i ≥ 1,

(1) if di = 0, let the location of the intruder at step i be c(2+xi) mod L. (Note that
if movement on the part of the intruder is necessary to attain the prescribed
position, there is an appropriate direction about the cycle in which the intruder
may move without being observed by the watchman.)

(2) if di = 1, let the location of the intruder at step i be c(1+xi) mod L. (Note the
same comment.)

(3) if di is at least 2, let the location of the intruder at step i be the same as at
step i− 1.

Since the intruder is captured at no step i, we have

Theorem 4.3. For a connected graph G with finite girth at least 4, w(G) ≥ 2.

Now suppose that δ(G) ≥ 2 and S is a successful
(
δ(G) − 1

)
-watchman pursuit

in G. With no loss of generality, we may assume that for fixed vertex v0 with degree
δ(G), every watchman has location v0 at step 0. Let m denote mG,G,S. If m = 0, then
the component entries of S0 form a dominating set, implying that G is isomorphic to
Kδ(G)+1, and hence has girth 3. If m > 0, then Dm−1(G,G, S) contains some vertex
v; hence there exists an intruder evasion T = W0,W1,W2, . . . in G such that at step
m − 1, the intruder is located on v and is yet uncaptured under (S, T ). Let the
distinct neighbors of v be y1, y2, y3, . . . , yh, where h ≥ δ(G). Since Dm(G,G, S) = ∅,
then for any i, 1 ≤ i ≤ h, the intruder is captured at step m if Wm−1 is the path
of length 1 from v to yi. Thus, at step m, each yi is either the location of some
watchman or is adjacent to the location of some watchman. Since the number of
watchmen is less than h, some watchman (at step m) has a location that is either
adjacent to at least 2 distinct neighbors of v, or is both a neighbor of v and adjacent
to at least one neighbor of v. These two conditions respectively imply the existence
of a 4-cycle in G and a 3-cycle in G, giving the next theorem.

Theorem 4.4. For a connected graph G with finite girth at least 5, w(G) ≥ δ(G).

We now turn to the watchman numbers of graphs in the following classes: paths,
cycles, complete r-partite graphs, interval graphs, r-paths, Moore graphs, the Hea-
wood graph, and various Cartesian products. Trees will considered in another paper.

The watchman numbers of paths and cycles are clear.

Observation 4.5. For path Pn and cycle Cm where n ≥ 1 and m = 3, w
(
Pn

)
=

w
(
Cm

)
= 1. For m ≥ 4, w

(
Cm

)
= 2.

We note that the difference between w(G) and γ(G) can be arbitrarily large, as
illustrated by the case G = Pn. We also confirm that for graph G with subgraph
H , each of the two relationships w(H) ≤ w(G) and w(G) ≤ w(H) is a possibility.
Particularly, for n ≥ 4, 1 = w(Pn) ≤ w(Cn) = 2, and 1 = w(K1 + Cn) < w(Cn) = 2,
where + is the join operator.
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Theorem 4.6. Let G = Kn1,n2,n3,...,nr be the complete r-partite graph on
∑

ni ver-
tices, where n1 ≤ n2 · · · ≤ nr. Then w(G) = 2.

Proof: If n1 = 1, then the domination number of G is 1, and hence w(G) = 1. If
n1 ≥ 2, then the domination number of G is 2, and therefore 1 ≤ w(G) ≤ 2. But for
any 1-watchman pursuit S in G, it is easy to find an intruder evasion T such that
for each i, Di(G,G, S) contains at least one vertex in the same part as the location
of the watchman at step i. Thus S is not successful for G, giving w(G) = 2. �

Theorem 4.7. Let G be a connected interval graph with order n. Then w(G) ≤ 2.

Proof: The vertices of G can be identified v1, v2, . . . , vn such that for 1 ≤ i < j <
k ≤ n, vj is adjacent to vk if vi is adjacent to vk. We will say that vx is to the left
(resp. right) of vy if and only if x < y (resp. x > y).

By the connectedness of G, for arbitrary y, 1 ≤ y < n, some vertex vx in
{v1, v2, . . . , vy} is adjacent to some vertex vz in {vy+1, vy+2, . . . , vn}. Thus, vy is
also adjacent to vz, establishing that for any vertex vy, 1 ≤ y < n, vy is adjacent to
some vertex to its right. Setting k0 = 1, we may therefore let k0, k1, k2, . . . , km be
the strictly increasing sequence of integers such that km = n and for 1 ≤ i ≤ m, ki
is the largest integer such that vki−1

is adjacent to vki . We observe the following.

(1) for 1 ≤ i ≤ m, each vertex that is to the left of vki and equal or to the right of
vki−1

is adjacent to vki ;

(2) for 2 ≤ i ≤ m− 1, any walk from some vertex to the right of vki to some vertex
to the left of vki−1

is incident with some vertex vz such that vz is to the right of vki−1

and either equal to or left of vki. Thus, by (1), vz either equals or is adjacent to vki.

We now show w(G) ≤ 2 by demonstrating a succesful 2-watchman pursuit.

Let S be the 2-watchman pursuit in which each watchman is located on v1 at
step 0 and ultimately located on vn = vkm :

S = (vk0, vk0), (vk1, vk0), (vk1 , vk1), (vk2, vk1), (vk2 , vk2), (vk3, vk2), (vk3, vk3), . . . ,
. . . , (vkm−1, vkm), (vkm, vkm), (vkm , vkm), (vkm, vkm), . . . ,

We show by induction that for each i ≥ 0, Di(G,G, S) contains no vertices to the left
of each watchman at step i. It will then follow that Di is empty if Si = (vkm , vkm) =
(vn, vn).

It is clear that Di contains no vertices to the left of the watchmen for i = 0. Let
h ≥ 1 be an integer such that Dh−1 contains no vertices to the left of each watchman
at step h − 1, and select arbitrary vertex β in Dh. Then there exists an intruder
evasion T with Wh−1 =

αW β such that the intruder is uncaptured at or prior to step
h under (S, T ). We consider two cases.

Case 1. Sh−1 = (vkj , vkj−1
) for some j. Since α ∈ Dh−1, the inductive assumption

implies that α is not to the left of vkj−1
. Nor is α in the union of the closed neigh-

borhoods of vkj−1
and vkj , for otherwise a Type 1 capture would occur at step h− 1.

Therefore by (1) α is to the right of vkj . By (2), if β is to the left of vkj−1
, then there

is a vertex vz along
αW β that is adjacent or equal to vkj . Since watchman 1 is at vkj
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at steps h− 1 and h, a capture occurs at step h, contradicting the assumption that
the intruder is uncaptured at or prior to step h. Thus β is not to the left of each
watchman.

Case 2. Sh−1 = (vkj , vkj) for some j. Since α ∈ Dh−1, the inductive assumption
implies that α is not to the left of vkj . Nor is α in the closed neighborhood of vkj , for
otherwise a Type 1 capture would occur at step h− 1. Therefore α is to the right of
vkj . Suppose that β is to the left of vkj . If β is equal or to the right of vkj−1

, then the
capture of the intruder at step h is guaranteed by (1) and the presence of watchman
2 on vkj at step h. And if β is to the left of vkj−1

, then the capture of the intruder
at step h is guaranteed by (2). Thus β is not to the left of each watchman. �

For an integer r ≥ 2, the infinite r-path P∞(r) is the interval graph on vertices
. . . v−3, v−2, v−1, v0, v1, v2, v3 . . . such that vs is adjacent to vt if and only if |s− t| ≤
r − 1. The r-path on n vertices is the subgraph Pn(r) of P∞(r) induced by vertices
v1, v2, . . . , vn.

If r = 2, then w
(
Pn(r)

)
= 1 since Pn(r) is the path Pn. If r = 3, then the

following is easily verified to be a successful 1-watchman pursuit in Pn(r):

v1, v2, . . . , vn−2, vn−1, vn, vn, vn, . . . .

Now suppose r ≥ 4. If n ≤ 2r − 1, then the domination number of Pn(r)
is 1, implying w

(
Pn(r)

)
= 1. Thus, suppose that 2r ≤ n < ∞. Since Pn(r) is

an interval graph, then w
(
Pn(r)

) ≤ 2. Let S be a 1-watchman pursuit such that
the location of the watchman at step 0 is v1. It is easy to see that for any i,
Di(Pn(r), Pn(r), S) contains v1 if the watchman is located on vz for some z ≥ r + 1,
and Di(Pn(r), Pn(r), S) contains vn if the watchman is located on vz for some z ≤ r.
Thus w

(
Pn(r)

)
= 2. We summarize these results as follows.

Corollary 4.8. Let Pn(r) denote the r-path on n < ∞ vertices. Then w
(
Pn(r)

) ≤ 2.
Moreover, w

(
Pn(r)

)
= 1 if and only if r = 2 or r = 3 or r ≥ 4 with n ≤ 2r − 1.

A Moore graph is a graph with diameter d and girth 2d + 1. It is known that
all Moore graphs are regular. Additionally, in the case d = 2, each Moore graph has
degree 2, 3, 7, or 57, the first three of which are uniqely represented by the 5-cycle,
the Petersen graph, and the Hoffman-Singleton graph, respectively. (It is not known
whether there exists a 57-regular Moore graph with diameter 2.) By Observation
4.1 and Theorem 4.4, the Petersen graph and the Hoffman-Singleton graph have
watchman numbers 3 and 7, respectively. If a Moore graph of diameter 2 and degree
57 exists, then its watchman number is 57. This, along with Theorem 4.4, gives the
following.

Theorem 4.9. Among Moore graphs with diameter 2, the Petersen and Hoffman-
Singleton graphs have respective watchmen numbers 3 and 7. Any Moore graph with
diameter 2 and degree 57 has watchman number 57. Any Moore graph with degree
d > 2 and finite girth at least 7 has watchman number at least d.

The Heawood graph HW is a 3-regular bipartite graph with 7 vertices in each
part and girth 6. Properties of HW include (1) any two distinct vertices in the same
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part have a union of open neighborhoods that contains exactly 5 vertices, and (2) for
any three distinct vertices u, v, w in the same part of HW , vertex u has a neighbor
that is not among the neighbors of v or w.

Theorem 4.10. Let HW denote the Heawood graph. Then w(HW ) = 3.

Proof: By Theorem 4.4, w(HW ) ≥ 3. To show that w(HW ) is exactly 3, we
construct a successful 3-watchman search.

Denote the two parts ofHW by {1, 3, 5, 7, 9, 11, 13} and {2, 4, 6, 8, 10, 12, 14}. Let
1 be adjacent to 2, 6, 14; 3 be adjacent to 2, 4, 8; 5 be adjacent to 4, 6, 10;
7 be adjacent to 6, 8, 12; 9 be adjacent to 8, 10, 14; 11 be adjacent to 2, 10, 12;

13 be adjacent to 4, 12, 14.

Let S be a 3-watchman search of HW such that S0 = (1, 3, 11), S1 = (1, 4, 11),
S2 = (1, 3, 11) and S4 = (1, 8, 11). It is easy to verify that D4(HW,HW,S) is empty.

�

Let G1 and G2 be connected graphs where V (G1) and V (G2) are disjoint vertex
sets {v1, v2, v3, . . . , vn1} and {u1, u2, u3, . . . , un2}, respectively. Let G = G1�G2. For
fixed j, let Hj be the subgraph of G induced by the set of vertices {(vi, uj)|1 ≤
i ≤ n1}. Then Hj is isomorphic to G1 and has a basic closure. By Theorem 3.4, it
follows that w(G1�G2) ≥ w(Gi) for each i = 1, 2. Moreover, it readily follows from
the commutivity and associativity of Cartesian product that if G1, G2, . . . , Gn are
connected graphs and X is a non-empty subset of {1, 2, . . . n}, then by the preceding
inequality, we have

Theorem 4.11. w
(
Πi∈XGi

) ≤ w
(
Πn

i=1Gi

)
.

We now turn to the products of particular graphs with emphasis on complete
graphs and paths.

Theorem 4.12. For positive integers m ≤ n and r ≤ s, w(Kr
m) ≤ w(Ks

n).

Proof: We denote vertices ofKt
p in the usual way: as t-tuples with coordinate entries

in {1, 2, . . . , p}. Accordingly, the t-tuple representation of any vertex of Kr
m shall also

represent a vertex of Kr
n.

By Theorem 4.11, we have w(Kr
n) ≤ w(Ks

n). It thus suffices to show that
w(Kr

m) ≤ w(Kr
n).

For each vertex v of Kr
n, we define v∗ to be the r-tuple that results by replacing

each coordinate entry of v that exceeds m with m. Then v∗ represents a vertex of
both Kr

n and Kr
m. We observe the following for r-tuple x that represents a vertex of

Kr
m and r-tuple y that represents a vertex of Kr

n:

(1) if x = y in Kr
n, then x = y∗ in Kr

m, and

(2) if x is adjacent to y in Kr
n, then x is adjacent or equal to y∗ in Kr

m.

Now let S denote a k-watchman pursuit that is successful for Kr
n. Denoting

Si by the k-tuple (vi,1, vi,2, . . . , vi,k) of vertices of Kr
n, we define S∗

i to be the k-
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tuple (v∗i,1, v
∗
i,2, . . . , v

∗
i,k) of vertices in Kr

m. It is clear that S∗ = S∗
0 , S

∗
1 , S

∗
2 , . . . is

a k-watchman pursuit in Kr
m, Thus, it suffices to show that S∗ is successful for

Kr
m. To that end, we will show that for all i ≥ 0, if Di(K

r
n, K

r
n, S) = ∅, then

Di(K
r
m, K

r
m, S

∗) = ∅.
Proceeding contrapositively, fix arbitrary i and assume Di(K

r
m, K

r
m, S

∗) 
= ∅.
We may thus select vertex z ∈ Di(K

r
m, K

r
m, S

∗), which implies that there exists
an intruder evasion T ∗ = W ∗

0 ,W
∗
1 ,W

∗
2 , . . . ,W

∗
i−1,W

∗
i , . . . in Kr

m such that under
(S∗, T ∗), the intruder is on vertex z at step i and is uncaptured at or prior to step
i. Noting that T ∗ is also an intruder evasion in Kr

n, we assume that under (S, T ∗) in
Kr

n, the intruder is captured at or prior to step i, from which a contradiction will be
shown.

With no loss of generality, suppose that the intruder is captured by watchman 1
at step j, 0 ≤ j ≤ i, under (S, T ∗) in Kr

n. If the capture is of Type 1, then watchman
1 and the intruder are located on equal or adjacent vertices in Kr

n at step j under
(S, T ∗). But the location of the intruder at step j is a vertex of Kr

m. Hence, by (1)
and (2), this implies that the watchman and the intruder are located on equal or
adjacent vertices in Kr

m under (S∗, T ∗) at step j, a contradiction of the assumption
that the intruder is uncaptured through step i under (S∗, T ∗). If the capture is of
Type 2, then some interior vertex x of Wj−1 is equal to vj−1,1 or vj,1 in Kr

n, where
vj−1,1 
= vj,1. But again, x is a vertex of Kr

m, implying by (1) that x is equal to v∗j−1,1

or v∗j,1 in Kr
m, giving the same contradiction. If the capture is of Type 3, then some

interior vertex x of Wj−1 is adjacent to vj−1,1 = vj,1 in Kr
n. But since x is a vertex

of Kr
m, then by (2), x is adjacent or equal to v∗j−1,1 = v∗j,1 in Kr

m, implying that the
intruder is captured under (S∗, T ∗) at or prior to step j.

We thus have that for all i ≥ 0, Di(K
r
m, K

r
m, S

∗) = ∅ if Di(K
r
n, K

r
n, S) = ∅. But

since S is successful for Kr
n, Di(K

r
n, K

r
n, S) = ∅ for i = mKr

n,K
r
n,S by Theorem 2.6.

Thus Di(K
r
m, K

r
m, S

∗) = ∅ for i = mKr
n,K

r
n,S, which implies that S∗ is successful for

Kr
m. Since S∗ and S have equal lengths, it follows that w(Kr

m) ≤ w(Kr
n). �

Now consider the graph G = Ka1�Ka2 , vertices of which we represent in the
usual way by vx,y, 1 ≤ x ≤ a1, 1 ≤ y ≤ a2. We show

Theorem 4.13. For positive integers a1 ≤ a2 · · · ≤ an and n ≥ 2, w
(
Ka1�Ka2

)
=

a1 and w
(
Πn

i=1Kai

) ≥ an−1.

Proof: Consider G = Ka1�Ka2 . Since γ(G) = a1, w(G) ≤ a1. To show that
w(G) = a1, let S be an arbitrary elementary and aggressive (a1 − 1)-watchman
pursuit in G. Since the vertices of S0 are too few to dominate G, D0(G,G, S) is
non-empty, containing those vertices not equal or adjacent to any coordinate entry
of S0. Now, proceeding by induction to show that no Di(G,G, S) is empty, let i∗− 1
be a positive integer such that Di∗−1(G,G, S) contains some vertex vr,c. Considering
two cases, first suppose that Si∗−1 and Si∗ differ in the jth coordinate, where those
coordinate entries are respectively vr1,c1 and vr1,c2, r1 
= r and c1 
= c. Since the
number of watchmen is less than the number of columns, there must be a column
c0 
= c2 of the array that contains no vertex of Si∗ , implying that between step i∗− 1
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and i∗, the intruder may flee (or stay put) without inducing capture at step i∗. Hence
Di∗(G,G, S) is not empty. On the other hand, suppose that Si∗−1 and Si∗ differ in
the jth coordinate, where those coordinate entries are respectively vr1,c1 and vr2,c1.
Since the number of watchmen is less than the number of rows, we may apply a
similar argument.

To show w
(
Πn

i=1Kai

) ≥ an−1, let G1 = Πn
i=1Kai and let G2 = Kan−1�Kan . By

Theorem 4.11 and the first part of Theorem 4.13, w(G1) ≥ w(G2) = an−1. �

In [14], it is proved that γ(K3
n) = �n2

2
. Therefore the following result holds.

Theorem 4.14. w(K3
n) ≤ �n2

2
.

We note without proof that we have found w(K3
3) = 4. More generally, through

constructive methods, we have found that for a positive integer j,
w(K3

2j+1) ≤ 2j2 + j + 1 and w(K3
2j) ≤ 2j2 − 1. These too imply that w(K3

n) < �n2

2
.

Since the n-cubeQn is the graphKn
2 , we have by Theorem 4.12 that ifm ≤ n, then

w(Qm) ≤ w(Qn). Additionally, w(Q2) = 2 (since Q2 is the 4-cycle) and w(Q3) = 2
since w(Q3) ≥ 2 and γ(Q3) = 2. For the consideration of Q4, we appeal to the
characterization of Q4 in which V (Q4) is the power set of the 4-set {a, b, c, d} and
vertex x is adjacent to vertex y if and only if their cardinalities differ by precisely 1
and one is a subset of the other. We see that w(Q4) ≤ 3, since we form a successful
3-watchman pursuit S in Q4 as follows. Permanently station one watchman on each
of ∅ and {a, b, c, d}. Then an uncaptured intruder must be located among the 2-
subsets of {a, b, c, d} at each step, between any two of which no edge exists. The
third watchman may then visit each 2-subset, forcing the capture of the intruder. To
see that w(Q4) = 3, we argue that each 2-watchman pursuit in Q4 is not successful.
Assuming the contrary, suppose that S is an elementary, aggressive 2-watchman
pursuit that is successful for Q4. Since γ(Q4) > 2, then the capture occurs at step
m = mQ4,Q4,S > 0. Hence Dm−1 
= ∅ and Dm = ∅. Owing to the symmetry of
Q4, we may assume that from step m − 1 to step m, watchman 1 (with no loss of
generality) moves from {a} to ∅. If Dm−1 contains a vertex y of order 2, 3 or 4,
then y is in Dm due to the stationarity of watchman 2 from step m − 1 to step
m, contradicting that Dm is empty. Thus Dm−1 contains either {b}, {c}, or {d}. If
Dm−1 contains {b}, then Dm contains either {a, b}, {b, c} or {b, d} since the location
of watchman 2 cannot be adjacent or equal to all three. Analogous conclusions hold
if Dm−1 contains {c} or {d}. Thus we again have our contradiction, concluding the
argument that w(Q4) = 3.

We note that we have found a successful 5-watchman pursuit in Q5, a successful
8-watchman pursuit in Q6, and a successful 13-watchman pursuit in Q7, establishing
upper bounds on their respective watchman numbers of 5, 8 and 13.

Theorem 4.15. Let G be connected. Then

(1) for n ≥ 2, w(G�Pn) ≤ γ(G) + 1;

(2) for n ≥ 3, w(G�Cn) ≤ γ(G) + w(G�Pn−1) ≤ 2γ(G) + 1;
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(3) for n ≥ 2, w(G�Kn) ≤ γ(G) + w(G�Kn−1) ≤ (n− 1)γ(G) + 1.

Proof: Let γ(G) be denoted by γ. We give an informal description of a (γ + 1)-
watchman pursuit S that is successful for G�Pn and elementary to arbitrarily large
step. Parts (2) and (3) are consequences of (1); details are omitted.

Let V (G�Pn) =
{
vi,j

∣∣ 1 ≤ i ≤ |V (G)| and 1 ≤ j ≤ n
}
. For fixed j, the set{

vi,j
∣∣ 1 ≤ i ≤ |V (G)|} induces a copy Gi of G, and for fixed i, the set

{
vi,j

∣∣ 1 ≤
j ≤ n

}
induces a copy of Pn.

We first consider the case γ ≥ 2. For fixed j, 1 ≤ j ≤ n, let
X(j) =

{
x1(j), x2(j), x3(j), . . . , xγ(j)

}
be a dominating set of Gj, where the graph

induced by xi(1), xi(2), . . . , xi(n) is isomorphic to Pn. We define S by describing the
locations and movements of watchmen as follows:

At step 0, for 1 ≤ i ≤ γ, watchman i is located on xi(1) and watchman γ + 1 is
located on x1(1). Clearly D0 contains no vertices of G1;

in the next step, watchman 1 moves from x1(1) to x1(2);

in the next one or more steps, watchman γ + 1 moves (in G1) from x1(1) to x2(1)
(possible since G1 is connected);

in the next step, watchman 2 moves from x2(1) to x2(2);

in the next one or more steps, watchman γ + 1 moves (in G1) from x2(1) to x3(1);

in the next step, watchman 3 moves from x3(1) to x3(2);
...

in the next step, watchman γ − 1 moves from xγ−1(1) to xγ−1(2);

in the next one or more steps, watchman γ+1 moves (in G1) from xγ−1(1) to xγ(1).
At all steps k at or prior to the step k1 at which watchman γ + 1 reaches xγ(1), Dk

contains no vertices of G1;

in the next step, watchman γ moves from xγ(1) to xγ(2). At this step (which is step
k1 + 1), Dk1+1 contains no vertices of G1 or G2;

in the next steps, watchman γ + 1 moves from xγ(1) to x1(2). At the step k2 of his
arrival at x1(2), for 1 ≤ i ≤ γ, watchman i is located on xi(2) and watchman γ + 1
is located on x1(2). No vertices of G1 or G2 are contained in Dk2 .

If n = 2, then Dk2 = ∅ and we are done. Otherwise, we repeat the pattern of
movements by the watchmen until for 1 ≤ i ≤ γ, watchman i is located on xi(n), at
which step k3, Dk3 = ∅.

In the event that γ = 1, let X(j) = {x1(j)} be a dominating set of Gj such that
graph induced by x1(1), x1(2), . . . , x1(n) is isomorphic to Pn. The following is readily
checked to be a successful elementary and aggressive 2-watchman pursuit in G�Pn:
At step i for 0 ≤ i ≤ 2n− 3, let the first watchman be located at x1

(� i+1
2
)) and let

the second watchman be located at x1

(� i+3
2
�)). �

We note that since Q5 is isomorphic to Q4�P2, then w(Q5) ≤ 5 by Theorem
4.15(1). But as well, Q5 is isomorphic to Q3�C4. Hence, by Theorem 4.15(2), we
again have w(Q5) ≤ 5. But not always are the bounds the same. By Theorem 4.15(1)
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and 4.15(2), respectively, w(C13�P17) ≤ 6 and w(C13�P17) ≤ 13. On the other hand,
by Theorem 4.15(1) and 4.15(2), respectively, w(C13�P6) ≤ 6 and w(C13�P6) ≤ 5.
It can be easily verified that w(Cm�Pn) is given the smaller bound by Theorem
4.15(1) if and only if �m

3
 < 2�n

3
.

Theorem 4.16. If 2 ≤ m,n, then w(Km�Pn) = 2.

Proof: By Theorem 4.15(1), w(Km�Pn) ≤ 2. Now, Km�Pn has induced con-
nected subgraph Km�P2, which is Km�K2. But by Theorem 4.13, w(Km�K2) ≥ 2.
Moreover, Km�K2 has a basic closure in Km�Pn, implying by Theorem 3.4 that
w(Km�Pn) ≥ w(Km�K2). Hence, w(Km�Pn) = 2. �

We turn to the products of paths. For positive ai ≤ bi, 1 ≤ i ≤ n, with at least
one strict inequality, Πn

i=1Pai is an induced connected subgraph of Πn
i=1Pbi with a

basic closure. Thus by Theorem 3.4, w(Πn
i=1Pai) ≤ w(Πn

i=1Pbi).

Referring to Figure 2.1, we have demonstrated a successful 2-watchman pursuit
in P 2

4 . Since C4 is a subgraph of P 2
4 with basic closure, then w(P 2

4 ) ≥ w(C4) = 2,
giving w(P 2

4 ) = 2. An extension of the strategy illustrated in Table 2.2, yields the
following.

Theorem 4.17. For integers a1 ≤ a2, w(Pa1�Pa2) ≤ �a1+4
3

�.
Therefore we have the following.

If a1 = 1, then w(Pa1�Pa2) = w(Pa2) = 1; and

if a1 = 2, 3 or 4, then w(Pa1�Pa2) = 2.

We state without proof that w(P 2
5 ) > 2. Hence, w(P 2

5 ) = 3 by Theorem 4.17.
Additionally, for a1 = 6 or 7, Pa1�Pa2 has an induced connected subgraph isomorphic
to P 2

5 with a basic closure. Thus, w(Pa1�Pa2) = 3 by Theorem 4.17.

5 Closing remarks

As noted in the introduction, the literature presents many pursuit-evasion models.
Some of these models have the property ofmonotonicity ; that is, if the search number
of a graph is s, then there exists a pursuit executed by the pursuers that not only
clears the graph of all evaders, but does so in a way that once a vertex is first
cleared of an evader, that vertex can never again be occupied by an evader without
capture. We observe that the model presented in this paper does not have the
property of monotonicity. The graph that results by subdividing each edge of K1,3

has watchman number 1, but every successful 1-watchman pursuit has the property
that D0, D1, D2, . . . is not monotonically decreasing.

A number of open questions are inspired by our exploration of this topic.

(1) Are there more general conditions than those of Theorem 3.4 that guarantee
w(H) ≤ w(G) for H a subgraph of G?
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(1) We have seen w(G) = 1 or 2 for interval graph G. Is there a simple set of
necessary and sufficient conditions for w(G) = 1?

(3) We have seen that w(Qn) ≤ fn for n = 3, 4, 5, 6, 7, where fn is the nth Fibonacci
number. More generally, is w(Qn) ≤ fn for n ≥ 3? For which n does w(Qn)
equal fn?

(4) We have bounded w(K3
2j) with 2j2−1 for j ≥ 3 and w(K3

2j+1) with 2j2+ j+1
for j ≥ 2. Can this bound be improved? What is w(Kd

n) for d ≥ 3?

(5) In Theorem 4.17, we bound w(Pa1�Pa2) from above, with equality for a1 ≤ 7.
Does equality hold for for a1 ≥ 8? What is w(P d

n) for d ≥ 2?
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