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Abstract

A graph G containing a perfect matching is said to be m-extendable if
m ≤ (|V (G)| − 2)/2 and for every matching M with |M | = m, there
is a perfect matching F in G such that M ⊆ F . In a previous paper,
four of the present five authors characterized those quadrangulations of
the torus which are 2-extendable. In the present work a characterization
of those which are 3-extendable is obtained. Since no quadrangulation
of the torus can be m-extendable for any m ≥ 4, this completes the
study of m-extendability for toroidal quadrangulations. Moreover, by
another previous result, it follows that we have therefore characterized
all 3-extendable toroidal graphs.

1 Introduction

A connected graph G with a perfect matching is said to be m-extendable if |V (G)| ≥
2m + 2 and every matching of size m extends to (i.e., is a subset of) a perfect
matching. (For a general reference on the subject of matching extension, see [17],
and for three surveys on the subject, see also [14, 15, 16].)

We begin by noting that if an even toroidal quadrangulation is only 3-connected, it
may not even have a perfect matching. (See Figure 2.1 of [1].) Hence we immediately
focus on those even toroidal graphs which are (at least) 4-connected. Dean [5] showed
that no toroidal graph is 4-extendable. Hence by Theorem 2.2 of [12], no toroidal
graph is m-extendable for any m > 4 as well.

A 4-connected even toroidal quadrangulation need not be 3-extendable or even
2-extendable. In [1] the members of this family which are 2-extendable were char-
acterized. We complete this direction of study in the present paper by focusing on
the 3-extendability property. Although not all 4-connected even toroidal quadran-
gulations are 3-extendable, we will characterize precisely which ones are. In so doing
we provide a complete characterization of all maximally extendable toroidal graphs.
Such a characterization is unknown for any other surface.

We adopt the following standard notation. The neighborhood of vertex v will
be denoted by N(v) and {v} ∪ N(v) by N [v]. Also if S, T ⊆ V (G) and S ∩ T = ∅,
we denote by δ(S, T ) the set of edges with one endvertex in S and the other in
T . Further, we let δ(S) = δ(S, V (G) − S), q(S, T ) = |δ(S, T )| and q(S) = |δ(S)|.
Additional notation and terminology will be introduced as needed. For all other
background material, we direct the reader to [1], [4] and [6].

∗ Qiuli Li is supported by NSFC grant (no. 11401279).
† Heping Zhang is supported by NSFC grant (no. 11371180).
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2 Preliminary Results

In order to present our results on 4-connected quadrangulations of the torus, we will
require a more detailed analysis of the structure of these graphs. Although this was
first accomplished by Altshuler [2], we will follow, for the most part, the presentation
due to Nakamoto and Negami. (Cf. [9, 10, 11].)

The universal covering space of a torus is homeomorphic to the x− y plane IR2.
Let G̃ be the union of the vertical and horizontal lines through the points of IR which
have integral coordinates; that is,

G̃ = {(x, y) ∈ IR2|x, y ∈ ZZ}.

Let Ĝ denote the infinite 4-regular and 4-face-regular graph induced by G̃. We will
denote by �(m,n, t) the set of all translations T(α,β) of IR

2 onto IR2 defined by

T(α,β)

(
x

y

)
=

(
x

y

)
+ α

(
0

m

)
+ β

(
n

−t

)
, (2.1)

wherem and n are positive integers, α, β ∈ ZZ and t is a non-negative integer. Then �
is a group under composition of translations and all members of � leave Ĝ invariant.

The orbit space IR2

�(m,n,t)
of the group is homeomorphic to a torus and the projection

Ĝ
�(m,n,t)

is a 4-regular and 4-face-regular graph on the torus. Altshuler [2] has shown

that these graphs are precisely the graphs Q(m,n, t) described as follows. Form a
cylinder of length n and cross-sectional cycles of length m and then identify the ends
of the cylinder with a “twist” of t units. (Note that in Equation 2.1 the “twist”
always occurs along the y-axis (i.e. in the “m”-direction).)

As an example, see the graph Q(4, 5, 1) displayed in Figure 2.1.

Figure 2.1. The quadrangulation Q(4, 5, 1)

We will always assume that m ≥ 3 to exclude loops and parallel edges. For the
same reason, we will also assume 0 ≤ t ≤ m − 1 and, when n = 1, that m ≥ 5 and
2 ≤ t ≤ m − 2, while if n = 2, we assume 1 ≤ t ≤ m − 1. Finally, since we are
concerned with perfect matchings throughout this paper, we will also assume that
mn is even.
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Note that we will sometimes want to single out graphs of the type Q(m,n, t) which
contain triangles. We will denote this class by 3Q and note that 3Q consists of all
toroidal quadrangulations of the form Q(3, n, t), Q(m, 3, 0), Q(m, 2, 1), Q(m, 2, m −
1), Q(m, 1, 2) and Q(m, 1, m− 2).

We will have need of the following result.

Theorem 2.1. Let G be a connected graph minimally embedded on the torus. If G1

is a non-planar subgraph of G, then G− V (G1) is plane.

Proof. Suppose to the contrary thatG−V (G1) is not plane. ThenG−V (G1) contains
a non-contractible cycle C of G. Then G1 can be embedded on a cylinder which arises
from cutting the torus along C. But then G1 is planar, a contradiction.

Def.: A set of edges X in a graph G is said to be a cyclic edge-cut if G−X contains
at least two components each of which contains a cycle.

Def.: A graph G is said to be cyclically k-edge-connected if there exists no cyclic
edge-cut X in G with |X| < k. The maximum value of k for which a graph G is
cyclically k-edge-connected is called the cyclic edge-connectivity of G and is denoted
by cλ(G).

Lemma 2.2. [1] cλ(Q(m,n, t)) = 8, except for the members in class 3Q, in which
case cλ(Q(m,n, t)) = 6.

Corollary 2.3. [1] If G = Q(m,n, t) contains a cyclic edge-cut S of size 8 and if one
of the components of G−S is non-planar, then the other component is a quadrangle.

Def.: If G′ is a connected induced subgraph of some G = Q(m,n, t) such that
q(V (G′), V (G)− V (G′)) = k, we call the subgraph G′ a k-shooter (in G).

Corollary 2.4. [1] If G = Q(m,n, t) and G contains a 4-shooter G′, then either G′

or G−G′ is a singleton.

Lemma 2.5. [1] A quadrangulation G of the torus is 4-regular if and only if it is
4-connected.

The following is a corollary of a theorem of Berge [3].

Theorem 2.6. Every 4-connected 4-regular even graph is 1-extendable.

The characterization of those 4-connected even toroidal quadrangulations which
are 2-extendable was obtained in [1] and we state it next for the sake of completeness.

Theorem 2.7. [1] Let G = Q(m,n, t) with mn even. Then G is 2-extendable if and
only if G does not belong to any of the following three classes:

(i) {Q(3, 2, 1), Q(3, 2, 2), Q(m, 1, 2), Q(m, 1, m− 2)}; or
(ii) {Q(m, 2, 2), Q(m, 2, m− 2)|m odd and m ≥ 5}; or
(iii) {Q(m, 1, m/2 + 1), Q(m, 1, m/2− 1)|m/2 odd and m ≥ 6}.
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Finally, we shall need the following well-known definition from matching theory.

Def.: A graph G is said to be factor-critical if G− v contains a perfect matching for
all v ∈ V (G).

3 The Main Result

First, we require two lemmas about the structure of a plane component which is also
a k-shooter.

Lemma 3.1. If H be a k-shooter subgraph of G = Q(m,n, t), then k is even.

Proof. Clearly k =
∑

v∈V (H)(4 − degH(v)) =
∑

v∈V (H) 4 − ∑
v∈V (H) degH(v) =

4|V (H)| − 2|E(H)| and is thus even.

Lemma 3.2. Let H be a k-shooter of some Q(m,n, t). If the embedding of H inher-
ited from Q(m,n, t) is plane, then, for k = 6, 8, 10, 12 and 14, H is one of the graphs
listed in the proof below. Moreover, none of these graphs is factor-critical.

Proof. First, we show that H is not annular (i.e., it has only one facial walk such
that this walk does not bound a face of Q(m,n, t)). Suppose to the contrary that
H contains at least two cycles C1 and C2 which are not facial cycles of Q(m,n, t).
Without loss of generality, assume that C1 is the outer boundary ofH . Let ki, i = 1, 2,
be the number of edges joining vertices of Ci and vertices of Q(m,n, t)− V (H). Let
�i be the length of the walk Ci. Then k1 = �1 + 4 and k2 = �2 − 4 since each Ci is a
boundary walk. So k = k1 + k2 = �1 + �2 ≥ 16 since �1, �2 ≥ 8, and this contradicts
the assumption that k ≤ 14.

Since H is not annular, H has only one boundary cycle, say C1. But then
k = k1 = �1 + 4.

If k = 4, then it can be easily seen that H is a single vertex.

If k = 6, then H is an edge.

If k = 8, then H is either a quadrangle (when it contains a cycle) or a path of
length 2 otherwise.

If k = 10, then if H does not contain a cycle, it is a path of length 3 or a K1,3

(claw), and if it does contain a cycle, it is the union of two quadrangles which share
a single edge or it is a quadrangle with a pendant edge.

If k = 12, then if H is cycle-free, it must be one of the three trees with four
edges since the length of the boundary walk is 8. If H contains a cycle, but has a
cutvertex, it is easy to check that it must be one of the six graphs shown in Figure
3.1.

If, on the other hand, H contains a cycle, but no cut vertices, then it must be
one of the three graphs shown in Figure 3.2.

It is easy to check that none of the graphs found for k = 4, 6, 8, 10 and 12 above
is factor-critical.
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Figure 3.1.

Figure 3.2.

It remains to treat the case when k = 14.

Figure 3.3.

Let Int(C) be the subgraph ofH induced by the vertices of H lying in the interior
of C. Since k = 14, it follows that l = 10 and q(Int(C)) ≤ 6. There are thus six
possibilities for H . Of these, four have q(Int(C)) = 0, but all are even and hence
not factor-critical. If q(Int(C)) = 4, we obtain the graph shown in Figure 3.3 which
is not factor-critical either.

The one remaining possibility for H has q(Int(C)) = 6. It is a 12-vertex graph
isomorphic to a 4× 3 grid and is hence even. But then it is not factor-critical.

The main theorem of this paper is now presented.

Theorem 3.3. Let G be a member of Q(m,n, t) with |V (G)| even. Then G is 3-
extendable if and only if G does not belong to one of the following classes:

(1) 3Q;

(2) {Q(m, 2, 2), Q(m, 2, m− 2)|m ≥ 5};
(3) {Q(m, 1, m

2
− 1), Q(m, 1, m

2
+ 1)|m even and m ≥ 10};

(4) {Q(m, 4, 0)|m odd and m ≥ 3};
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(5) {Q(m, 2, m
2
)|m

2
odd and m ≥ 6};

(6) {Q(m, 1, m
4
), Q(m, 1, 3m

4
)|m

4
even and m ≥ 16};

(7) {Q(m, 4, 2), Q(m, 4, m− 2)|m odd and m ≥ 3};
(8) {Q(m, 2, m

2
+ 1), Q(m, 2, m

2
− 1)|m

2
even and m ≥ 8};

(9) {Q(m, 1, m+2
4

), Q(m, 1, 3m−2
4

)|m+2
4

even and m ≥ 14};
(10) {Q(m, 1, m−2

4
), Q(m, 1, 3m+2

4
)|m−2

4
even and m ≥ 18};

(11) {Q(m, 4, 4), Q(m, 4, m− 4)|m odd and m ≥ 5};
(12) {Q(m, 2, m

2
+ 2), Q(m, 2, m

2
− 2)|m

2
odd and m ≥ 10};

(13) {Q(m, 1, m
4
+ 1), Q(m, 1, 3m

4
− 1)|m

4
odd and m ≥ 20};

(14) {Q(m, 1, 3m
4
+ 1), Q(m, 1, m

4
− 1)|m

4
odd and m ≥ 20};

(15) {Q(m, 2, m− 4), Q(m, 2, 4)|m odd and m ≥ 7};
(16) {Q(m, 1, m

2
− 2), Q(m, 1, m

2
+ 2)|m

2
even and m ≥ 20};

(17) {Q(m, 3, m− 2), Q(m, 3, 2)|m ≥ 6};
(18) {Q(m, 1, m−2

3
), Q(m, 1, 2m+2

3
)|m even , m−2

3
an integer and m ≥ 20};

(19) {Q(m, 1, 2m−2
3

), Q(m, 1, m+2
3

)|m even , m+2
3

an integer and m ≥ 22};
(20) {Q(m, 2, 3), Q(m, 2, m− 3)|m ≥ 12}.

Proof. First we must show that if G belongs to any of the twenty classes, then G is
not 3-extendable.

(1) If G ∈ 3Q, then G contains (non-contractible) triangles. Hence G cannot be
3-extendable from the well-known result (cf. [12]) that for a vertex v of degree n+ t
in an n-extendable graph G, G[N(v)] does not contain a matching of size t. Here we
have set n = 3 and t = 1, to obtain the desired result.

The details of the remaining nineteen cases may be found in an Appendix at the
end of the paper.

Now to prove the converse, let us suppose G is not 3-extendable. We must show
that G belongs to one of the twenty classes listed above.

Suppose, then, that e1, e2 and e3 are three independent edges which do not extend
to a perfect matching. Then by a variation on Tutte’s theorem (cf. Exercise 3.3.18(b)
of [8] or Theorem 2.2.3 of [6]) there exists a set S ⊆ V (G)− V (e1)− V (e2)− V (e3)
such that G − S − V (e1) − V (e2) − V (e3) consists of at least |S| + 2 components
each of which is factor-critical (and hence odd). Let K = S ∪V (e1)∪ V (e2)∪ V (e3).
Note that if G is not 2-extendable, then by Theorem 2.7, G belongs to one of the
classes detailed in parts (1), (2) and (3) of the statement of the theorem. If G
contains a triangle, it belongs to 3Q. So we may assume that G is 2-extendable and
triangle-free. Hence G−K consists of precisely |S|+ 2 factor-critical components.

By the 4-regularity of G we have q(K, V (G) −K) ≤ 4|S| + 18 = 4|K| − 6, and
by the 4-connectivity of G, we have q(V (G) − K,K) ≥ 4(|S| + 2) = 4|S| + 8 =
4(|K| − 6) + 8 = 4|K| − 16.

Since G is 4-regular, q(K,G−K) is even, and hence there are six cases to consider:
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Case 1: q(K,G−K) = 4|K| − 16;

Case 2: q(K,G−K) = 4|K| − 14;

Case 3: q(K,G−K) = 4|K| − 12;

Case 4: q(K,G−K) = 4|K| − 10;

Case 5: q(K,G−K) = 4|K| − 8;

Case 6: q(K,G−K) = 4|K| − 6.

Case 1. In this case each factor-critical component Gi, 1 ≤ i ≤ |S|+2, of G−K
is a 4-shooter and hence a singleton by Corollary 2.5. Hence |E(G[K])| = 8.

We claim that every face which contains an edge in G[K] must contain either two
(adjacent) edges or four edges in G[K]. (This observation will be subsequently used
repeatedly.) This is easy to see, for suppose that F = abcda is a face and ab ∈ G[K],
but bc /∈ G[K]. Thus vertex c must be one of the singleton odd components, call it
Gi. But then the edge cd also joins Gi to G[K] and hence cannot lie in G[K], but
vertex d does lie in G[K]. Hence the edge da is in G[K]. This proves the claim.

We distinguish cases based on the degrees of vertices in G[K]. We shall refer
to dG[K](v) as the K-degree of v. First note that G[K] cannot have more than two
vertices of K-degree 4 (since |E(G[K])| = 8). If G[K] has precisely two vertices of
K-degree 4, then there cannot be a matching of size 3 in G[K]. Thus we have at
most one vertex of K-degree 4 in G[K].

1.1: Suppose there is a vertex of K-degree 4 in G[K]; call it v.

y

u v z

w

F F

FF

1 3

2

x

Figure 3.4.

1.1.1: Suppose first that there is exactly one face containing vertex v and having
all four incident edges in G[K]. Call this face F . Label the vertices and faces of the
graph G as in Figure 3.4 and recall that G does not contain triangles nor does it
have parallel edges. This implies that face F1 does not contain any other of the six
edges of G[K] shown in Figure 3.4 nor do faces F2 and F3.

Since G[K] has exactly one vertex of K-degree 4, we claim that neither of the
remaining two edges of G[K] can be incident with vertex w. Indeed, suppose one of
these remaining edges of G[K] is incident with w, call it wx. Then both faces F1

and F3 contain one edge of G[K] so far. There remains only one edge of G[K] to
consider; call it e. If e is incident with y, then F3 contains at most one edge of G[K],
a contradiction. If e is incident with x, then F1 contains at most one edge of G[K],
again a contradiction.



R.E.L. ALDRED ET AL. /AUSTRALAS. J. COMBIN. 63 (2) (2015), 268–296 276

Now since neither of the remaining two edges of G[K] is incident with w, one
of them must be incident with vertex y and the other incident with vertex z. (See
Figure 3.5 where the edges bearing arrows are to be identified in the sense of the
arrows.)

F’

w
FF 2

y

e’

zv e’’

z

e F1

Figure 3.5.

Consider now the face F ′ adjacent to face F1. Since every face containing one
edge in G[K] contains at least two adjacent edges in G[K], face F ′ contains one
more edge other than the edge e (where e is the boundary edge common to F ′ and
F1). But G does not contain triangles or parallel edges, so it must be the case that
e′ = e′′.

v

v v

Figure 3.6.

For the other cases, (that is, the rotations of the configuration in Figure 3.4
through 90, 180 and 270 degrees), we have the configurations of Figure 3.6 and similar
analyses apply. It may be checked that the configuration obtained in Figure 3.5 can
only occur in Q(m, 1, m

2
− 1), Q(m, 1, m

2
+1), Q(m, 2, 2) or Q(m, 2, m− 2). But these

classes belong to our list of twenty.

1.1.2: If there are exactly two faces containing v each with all four edges in G[K],
then up to symmetry, there are two cases as in Figure 3.7.

For the configuration (i) of Figure 3.7, consider the edge e in G[K]. Then the
other face containing the edge e not shown in Figure 3.7 must contain a second edge
in G[K] which must be adjacent to e. But then this edge must be e1 or e2 as shown
in (i) of Figure 3.8. However, nine edges of G[K] now appear, so some two of them
must be identical. No matter which pair of edges are identified, we are led to the
existence of triangles or multiple edges, a contradiction.
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(ii)

v v

e

(i)

Figure 3.7.

2
v

(ii)

e1 e2

e’

u

e

v

e

(i)

e

1e

Figure 3.8.

For Case (ii) in Figure 3.7, via a discussion similar to that above, we see that
G[K] must contain e1 or e2. (See (ii) of Figure 3.8.) If G[K] contains e1, then
multiple edges or a triangle must appear, a contradiction. Hence G[K] contains e2
and to avoid triangles or multiple edges, e2 must be identical to e′. But then there
are two vertices u and v in G[K] each having degree 4, a contradiction.

1.1.3: If there are at least three faces containing v with all their edges in G[K],
we can show that triangles or multiple edges must exist, and again contradictions
result.

1.1.4: Suppose there is no face containing v with all its edges in G[K]. Let S be
the set of all edges of G[K] which are not incident with v. Then |S| = 4. So assume
that S = {e1, e2, e3, e4}. The subgraph G′ consisting of these four edges does not
have a K-degree 4 vertex. Moreover, G′ does not have a K-degree 3 vertex either,
for suppose it did. Let w be such a vertex of K-degree 3 in G′ and assume that w is
incident with e1, e2 and e3 as shown in Figure 3.9.

2 F

e e

e1

2 3

1

w

fF

Figure 3.9.

Let f be the remaining edge incident with w which is not in G[K]. So f /∈ G[K].
But then it is impossible for faces F1 and F2 to share the one remaining edge of the
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eight edges in G[K].

So each vertex of G′ has degree 2 or 1. Since every face containing an edge of
G[K] contains precisely two edges of G[K], G′ has no vertices of K-degree 1. Thus
G′ is a cycle of length 4 and since the four edges of G′ cannot bound a face by the
hypothesis of this subcase, G′ must be one of the four configurations shown in Figure
3.10. (Here again the arrows indicate identification.)

(4)

(1)

(3)

(2)

Figure 3.10.

One can easily check that such configurations can exist only in Q(m, 1, m
2
−

1), Q(m, 2, m − 2), Q(m, 1, m
2
+ 1) and Q(m, 2, 2). Again these classes appear in

our list of twenty.

1.2. Suppose then that there is no vertex of degree 4 in G[K]. But suppose
there are vertices of degree 3 in G[K]. Let v be such a vertex. Then there are four
possible structures at v in G, as shown in Figure 3.11. Consider Configuration (i).
(The other three configurations in the figure are settled similarly.)

(iv)

v v v v

(i) (ii) (iii)

Figure 3.11.

If there is no face with all four edges in G[K], then the possible structures of
G[K] are shown in Figure 3.12.

To show that these four structures are, in fact, the only ones possible, we have
to make clear that when extending face boundary edges in G[K] as in Figure 3.12,
if the edge a appears, then the edge b must be present and if the edge x appears,
then the edge y must be present also. These two proofs are similar; we give only the
former one.

Consider Figure 3.13. First note that all solid edges in the figure are distinct;
for otherwise there would be triangles or multiple edges. Suppose that the edge a is
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b

a

(1) (2) (3) (4)

v

v
v

vv v v

x

y

x

y y

xx

y

Figure 3.12.

present, but the edge b is not present. Then the edge c lies in G[K] and hence the
edge d also lies in G[K] (since there is no vertex of K-degree 4 in G[K]). Consider
the face F . This boundary of this face must contain two adjacent edges of G[K]. So
either the edge h or the edge i must belong to G[K].

Suppose h belongs to G[K]. Then either h = a or h = d. If h = a, then the
boundary of face F must contain the edge c = c′ and hence the boundary of F
contains four edges from G[K], a contradiction. On the other hand, if h = d, then
vertex u′ = u and hence u is a vertex of K-degree 4, again a contradiction. So h
does not belong to G[K].

So the edge i belongs to G[K]. Hence either i = a or i = d. But if i = a, we have
a triangle, which is impossible. So i = d. But then vertex u′ has K-degree 3 which
is impossible.

f
a

k h

b c

e’ d

i

g
e

c’

u

v
u’

F

Figure 3.13.

For Case (1) in Figure 3.12, we have that(
1
0

)
+

(
1
0

)
+

(
1
0

)
+

(
1
0

)
= α

(
0
m

)
+ β

(
n
−t

)
.

So n = 4/β and t = αm/β and keeping in mind that 0 ≤ t ≤ m − 1, it must
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be the case that n = 4, t = 0 or n = 2, t = m
2
or n = 1, t = m

4
or n = 1, t = m

2
or

n = 1, t = 3m
4
. If n = 1, t = m

2
, multiple edges appear, a contradiction.

Suppose first that n = 4, t = 0. If m is odd, Q(m, 4, 0) is a member of Class (4)
of our list of twenty exceptional classes.

Therefore, suppose m is even; that is, we consider Q(m, 4, 0) with m even. Let
e1, e2 and e3 be any three disjoint edges. If G − ∪3

i=1(V (ei)) contains no perfect
matching and hence contains a vertex set S such that G − [(∪3

i=1V (ei)) ∪ S] has
at least |S| + 2 odd components. Let K = S ∪ (∪3

i=1V (ei)). Then G[K] has the
structure shown in (1) of Figure 3.12. (As an example, we show Q(6, 4, 0) with G[K]
embedded in bold lines in Figure 3.14. Note that e1, e2 and e3 must be three disjoint
edges in this configuration.)

= G[K]

Figure 3.14.

If all three of these edges are vertical in the configuration, it is easy to see that
they must extend to a perfect matching, sincem is even. Otherwise, since they belong
to the configuration of Case (1), it must be the case that one of them is horizontal
and the other two are vertical. But again it is easy to check they extend to a perfect
matching in this case as well. Thus G = Q(m, 4, 0) is, in fact, 3-extendable, contrary
to our initial hypothesis.

Similarly for n = 2, t = m
2
, we obtain that G is not 3-extendable if and only if m

2

is odd and m ≥ 6.

For n = 1, t = m
4
, we obtain that G is not 3-extendable if and only if m

4
is even

and m ≥ 16. By symmetry, Q(m, 1, 3m
4
) is not 3-extendable if and only if m ≥ 16

and 3m
4

is even.

For Case (2) in Figure 3.12, we have that(
4
0

)
+

(
0
−2

)
= α

(
0
m

)
+ β

(
n
−t

)
.

Hence n = 4, t = 2 or n = 2, t = m
2
+ 1 or n = 2, t = 1 or n = 1, t = m+2

4
or

n = 1, t = m+1
2

or n = 1, t = 3m+2
4

.

Consider the case when n = 4 and t = 2. If m is odd, Q(m, 4, 2) is in Class (7) of
our list of twenty classes. If m is even, we claim Q(m, 4, 2) is 3-extendable. To see
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this, consider the configuration of Case (2) embedded in Q(m, 4, 2) and suppose m
is even. See the example shown in Figure 3.15 in which m = 6. It is easy to see from

= G[K]

Figure 3.15.

this figure that it is impossible that three independent edges with two horizontal
and one vertical in G[K] can exist, so we need only check the possibilities that (i)
all three edges to be extended are vertical, (ii) one is horizontal and the other two
are vertical and (iii) all three are horizontal. It is straightforward to check that the
three edges extend to a perfect matching in all three cases.

Consider next the case when n = 2 and t = m
2
+ 1. If m

2
is even and m ≥ 8, the

graphs belong to Class (8). If m
2
is odd, we claim that Q(m, 2, m

2
+1) is 3-extendable.

We illustrate this case with Q(10, 2, 6) shown in Figure 3.16 where once again G[K]
in shown in bold. Checking the 3-extendability is left to the reader.

= G[K]

Figure 3.16.

We must also check Q(m, 2, m
2
+1) when m ≤ 4. But the reader can easily check

that Q(4, 2, 3) contains triangles and hence belongs to Class 3Q.

In the case when n = 2 and t = 1, the graph is again in Class 3Q.

If n = 1 and t = m+2
4

, if m+2
4

is even and m ≥ 14, Q(m,n, t) belongs to Class (9)
of our twenty classes. If, on the other hand, m+2

4
is odd, we leave it to the reader to

check that the graph is 3-extendable. Similarly, it may be checked that the graph is
also 3-extendable when m = 10.
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If n = 1 and t = m+1
2

, to assure that t is an integer, m must be odd. But a graph
with odd number of vertices cannot be 3-extendable.

Finally, if n = 1 and t = 3m+2
4

, if 3m+2
4

is even and m ≥ 18, Q(m,n, t) belongs
to Class (10) of our twenty classes. The reader may check that Q(m, 1, 3m+2

4
) is

3-extendable when 3m+2
4

is odd and also that Q(10, 1, 8) is 3-extendable as well.

For Case (3) in Figure 3.12, we have that
(
4
0

)
+

(
0
2

)
= α

(
0
m

)
+ β

(
n
−t

)
.

Hence n = 4, t = m− 2 or n = 2, t = m
2
− 1 or n = 2, t = m− 1 or n = 1, t = m−2

4

or n = 1, t = m−1
2

or n = 1, t = 3m−2
4

. Similar contradictions are obtained for each
possibility.

For Case (4) in Figure 3.12, we obtain the same result as in Case (1).

For the other three cases in Figure 3.11, we get as possible structures for G[K] the
configurations obtained from the final structures in Figure 3.12 by rotating 90, 180
and 270 degrees clockwise respectively. Then Q(4, n, 0), Q(m, 2, m− 4), Q(m, 1, m

2
−

2), Q(m, 1, m− 2), Q(m, 2, 4), Q(m, 1, 2), and Q(m, 1, m
2
+ 2) are the possible graphs

in which the structures may lie. Contradictions similar to those obtained previously
are obtained in each case. We omit the details.

If G[K] does contain a face F having all of its edges in G[K], there are no vertices
of degree 4, and soG[K] is as in Figure 3.17. Then nine edges appear inG[K], so there
must be a pair of identical edges. But no matter which pair of edges are identified,
we are led to the appearance of triangles or multiple edges, a contradiction.

F

e

Figure 3.17.

1.3. Suppose there is no vertex of degree 3 or 4 in G[K].

Since every face contains either no edges from G[K] or two adjacent edges from
G[K], it can be easily verified that there is no vertex of degree 1 in G[K]. Since
|E(G[K])| = 8, it follows that either G[K] is a union of two disjoint cycles each of
length 4 or a cycle of length 8 shown in Figure 3.18. (In the figure, just one case is
shown; the others are the figures obtained by rotating the first figure by 90, 180, 270
degrees respectively.)

Using similar arguments, we obtain that the possibilities of Q(m,n, t) are (m,n, t)
= (m, 2, 2), (m, 2, m−2), (m, 1, m

2
−1), (m, 1, m

2
+1), (m, 4, 4), (m, 4, m−4), (m, 2, m

2
+
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2), (m, 2, m
2
− 2), (m, 1, m

4
+ 1), (m, 1, 3m

4
− 1), (m, 1, m

4
− 1), (m, 1, 3m

4
+ 1) and some

members in 3Q, all of which lead to contradictions.

(1)                                                                        (2)

..........

Figure 3.18.

Case 2. In this case, there must be exactly one factor-critical component, which
is a 6-shooter, say G1, with the others all 4-shooters and hence singletons. G1 is
factor-critical and 
= K1, so it must contain a cycle ([7, 8]). Let G−G1 = T . Then
4|T | − 2|E(T )| = 6 which implies |E(T )| − |T | = |T | − 3 ≥ 0. Hence T must also
contain a cycle and hence δ(G1) is a cyclic edge-cut of G. But G is not a member
of 3Q, so by Lemma 2.3, cλ(G) = 8. But this contradicts the fact that δ(G1) is a
cyclic edge-cut of size 6. So Case 2 cannot occur.

Before proceeding further, we now insert the following lemma about cylindrical
graphs.

Lemma 3.4. Let G be an induced cylindrical subgraph of Q(m,n, t) with boundary
cycles C1 and C2. Then for each Ci, the number of vertices contributing two shooter
edges equals the number of vertices contributing no shooter edge.

Proof. Without loss of generality, let e be an edge of C1 oriented in the direction
of increasing n. Further, without loss of generality, we may suppose that e passes
through the boundary of the rectangle and that G lies below the cycle C1. (See the
example shown in Figure 3.19.)

m e

e

Ci

G

n

Figure 3.19.
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Since C1 is induced, starting with the edge e, one can traverse C1 so that progress
in the n-direction is non-decreasing. Note that in so doing, the number of right-hand
turns equals the number of left-hand turns. But the number of right-hand turns
equals the number of vertices contributing two shooter edges and the number of left-
hand turns equals the number of vertices contributing no shooter edge and the proof
is complete.

We point out that the cycles C1 and C2 may have common vertices and edges. If
C1 ∩ C2 
= ∅, let v a vertex in the intersection. If v emits two shooter edges e1 and
e2 such that e1 and e2 do not lie on the same side of Ci, i = 1, 2, then we say that v
contributes one shooter edge from each of C1 and C2.

Case 3. In this case, since cλ(G) = 8, there must be a factor-critical component
which is an 8-shooter, say G1, and the others are 4-shooters and hence singletons.

If G1 is embedded in the plane, then by Lemma 3.2, G1 cannot be factor-critical,
a contradiction. If G1 is non-planar, then G− V (G1) is embedded in the plane and
hence a quadrangle by Corollary 2.4. But then there is no matching of size 3 in
G− V (G1), a contradiction.

Thus G1 is planar, but not plane, and hence it can only be a cylindrical graph.
Let C1 and C2 be the two boundary cycles of G1 and let �1 = |C1| and �2 = |C2|.
Since G has no multiple edges and no triangles, �1 ≥ 4 and �2 ≥ 4. Then by Lemma
3.4, �1 + �2 = 8 and it then follows that �1 = �2 = 4. Note that every face of G1

inherited from the embedding of G is a quadrilateral. Hence G1 is bipartite. But
then G1 is not factor-critical, a contradiction. Hence Case 3 cannot occur.

Case 4. In this case, since cλ(G) = 8, there must be a factor-critical component
which is a 10-shooter, say G1, and the other components are 4-shooters and hence
singletons. Also there are five edges in G[K].

If G1 is a plane 10-shooter, then by Lemma 3.2, G1 is not factor-critical, a contra-
diction. If G1 is non-planar, then G− V (G1) is plane by Lemma 3.2 (and of course
a 10-shooter as well). Then since G − V (G1) contains a matching of size 3, again
using Lemma 3.2 it follows that G−V (G1) must be the 6-vertex graph consisting of
two quadrilaterals which share exactly one edge and hence it is even. But G1 is odd,
since it is factor-critical, and hence so is G, again a contradiction.

Thus we need only consider the case when G1 is a cylindrical graph. Adopting
the notation used in Case 3, by Lemma 3.4 we obtain that �1+ �2 = 10. But if either
�1 = 4 and �2 = 6 or vice-versa, then G1 is bipartite and hence not factor-critical.

So we may assume that �1 = �2 = 5.

Let us now define σi to be the number of vertices of Ci contributing two shooter
edges, for i = 1, 2. Let σ = max{σ1, σ2}. Then by the preceding lemma, σ ≤ 5/2.

Our proof for Case 4 now separates into two subcases.

4.1. Suppose σ = 2 and without loss of generality, suppose C1 has two vertices
u and v contributing two shooter edges.
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Then u and v are not adjacent to each other (and neither are the two correspond-
ing vertices which contribute no shooter edge), for otherwise a triangle would be
present, a contradiction.

Let w be a vertex of C1 adjacent to both u and v. If w is a vertex contributing one
shooter edge, then C1 must be as shown in Figure 3.20. But then again, a triangle
must be present and we have a contradiction.

vu w

Figure 3.20.

So we may assume that w is a vertex contributing no shooter edge. Then C1

must be as shown in one of the two configurations of Figure 3.21.

v

u

w v

(b)(a)

u

w

Figure 3.21.

If C1 is as shown in (a), then Q(m,n, t) = Q(m, 2, 3) which is Class (20) in our
list. On the other hand, if C1 is as shown in (b), then Q(m,n, t) = Q(m, 3, 2) which
is Class (17) in our list.

4.2. Suppose then that σ = 1. Let C1 = v0v1v2v3v4v0 such that v0 is a vertex
contributing two shooter edges.

4.2.1. Suppose that v1 is a vertex contributing one shooter edge. By symmetry,
we may also assume that v2 contributes no shooter edge. Then C1 must be embedded
as shown in bold in Figure 3.22.
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v

v

v

v v

0

1

3 42

Figure 3.22.

So Q(m,n, t) = Q(m, 3, 2) which is number 17 in our list of twenty classes.

4.2.2. Next suppose that v1 emits no shooter edge.

Moreover, we may assume that each of v2, v3 and v4 emits exactly one shooter
edge. Let vjwj be the shooter edge incident with vertex vj, for j = 2, 3, 4, 0. Note
that v0 is adjacent to w2 via a shooter edge as well. Then {w2w3, w3w4, w4w0} ⊆
E(G[K]). Let P1 denote the path w2w3w4w0 which lies in G[K]. By symmetry, there
exists a path P2 = w′

2w
′
3w

′
4w

′
0 in G[K] such that every vertex of P2 is adjacent to

a vertex of cycle C2. Then, since |E(P1) ∪ E(P2)| ≤ |E(G[K])| = 5, it follows that
E(P1) ∩ E(P2) 
= ∅.

Let x be the fourth vertex of the face containing path w0v0w2 and denote this
face by Fx. If x ∈ V (G[K]), then the 5-cycle xw2w3w4w0x lies in G[K]. But since
|E(G[K])| = 5, this 5-cycle constitutes all of E(G[K]) and hence E(G[K]) does not
contain a matching of size 3, a contradiction. So x ∈ V (G)− V (G[K]).

If x ∈ V (G1), then it follows that x ∈ C2. So x emits two shooter edges, namely
xw0 and xw2. Let x1 be the fourth vertex of the face containing boundary path
w3w2x, let x2 be the fourth vertex of the face containing boundary path w4w3x1 and
let x3 be the fourth vertex of the face containing boundary path w0w4x2. Note that
x1 is adjacent to w3 ∈ V (G[K]), so either x ∈ V (C2) or x1 ∈ V (G[K]). But we
already concluded in the preceding paragraph that x /∈ V (G[K]). Moreover, x1 has
a neighbor w3 in V (G[K]), so the edge x1w3 is a shooter edge and hence x1 ∈ V (C2).
Similarly, vertices x2 and x3 lie in V (C2). (See Figure 3.23.)

Now recalling what we know to this point, C1 has 2-shooter v0 adjacent to w0

and w2, and each of v2, v3, v4 is a 1-shooter adjacent to w2, w3 and w4, respectively.
Moreover, recall that vertex v1 is a 0-shooter. Turning our attention to cycle C2,
we note that x is a 2-shooter adjacent to w2 and w0, whereas x1, x2 and x3 are each
1-shooters adjacent to w3, w4 amd w0, respectively. (The fifth vertex of C2 must be
a 0-shooter.) This leads us to conclude that P1 = P2.

So all ten shooter edges from G1 terminate in V (P1) and these edges, together
with the three edges of P1, suffice to account for the degree of each of the four vertices
in P1 being four. But then, since G is connected, it must be that P1 = G[K], thus
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v2

F

Figure 3.23.

contradicting the assumption that |E(G[K])| = 5.

Hence x /∈ V (G1) and hence x must be a singleton 4-shooter. Let y be the fourth
neighbor of w3; that is, xy ∈ E(G). Hence y ∈ K and w3y ∈ E(G[K]). So w3 is not
adjacent to any vertex of cycle C2. It then follows that E(P1)∩E(P2) ⊆ {w0w4}. So
|E(P1)∪E(P2)| ≥ 6−|E(P1)∩E(P2)| ≥ 5 and hence |E(G[K])| ≥ |E(P1)∪E(P2)|+
|{w3y}| ≥ 5 + 1 = 6, a contradiction.

4.3. Finally, suppose that σ = 0; that is, every vertex of C1 contributes exactly
one shooter edge. But then it follows that G[K] is a 5-cycle, again contradicting the
assumption that G[K] contains a matching of size 3.

Case 5. In this case, since cλ(G) ≥ 8, there cannot be any 6-shooters among
the odd components of G−K. Moreover, as argued in Case 3, there cannot be any
8-shooter odd components either. Hence there must be exactly one odd component
which is a 12-shooter, say G1, with all other odd components being 4-shooters and
hence singletons. Also there are exactly four edges in G[K].

If G1 were plane, then by Lemma 3.2 it would have to be one of six graphs, none
of which is factor-critical. Hence G1 is not plane.

Suppose G1 is non-planar. Then by Lemma 2.1, G−V (G1) is plane. If G−V (G1)
has at least two components, then by Lemma 3.2, G − V (G1) has no matching of
size 3, a contradiction. So G− V (G1) is connected and hence is a plane 12-shooter.

Suppose G − V (G1) contains no cycles. Then by Lemma 3.2, it must be one of
the three trees on four edges. But none of these trees contains a matching of size 3
and we have a contradiction.

Next suppose G − V (G1) contains a cycle and also a cutvertex. Then again by
Lemma 3.2, there are seven possibilities for G−G1. Four of these are even and hence
impossible. The other three possible graphs each have seven vertices. Now recall that
G−V (G[K]) consists of at least two odd components. Thus six of these seven vertices
make up V (G[K]) and the seventh vertex must be a singleton 4-shooter. But then
it follows that G contains a triangle and we have a contradiction.

So finally suppose G − V (G1) contains a cycle, but no cutvertex. Again, by
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Lemma 3.2, there are three possibilities for G − V (G1). But two of these are even
and hence impossible. So G−V (G1) must be the 9-vertex graph displayed in Figure
3.2.

All eight boundary vertices of G1 have neighbors in G1, so these eight vertices
must lie in K. So |E(G[K])| ≥ 8, contradicting the fact that |E(G[K])| = 4.

So we may assume that G1 is planar, but not plane, that is, it is cylindrical. As
usual, we denote the two boundary walks by C1 and C2. For i = 1, 2, let �i denote
the length of Ci. Since G is triangle-free, by Lemma 3.4 we have �1 + �2 = 12.

If both �1 and �2 are even, it follows that G1 is bipartite and hence not factor-
critical, a contradiction. Furthermore, G contains no triangles, so it must be the case
that one of �1 and �2 is 5 and the other 7. Let us suppose, then, that C1 = v0v1v2v3v4v0
is the 5-cycle. Then arguing as in Case 4, we obtain the configuration shown in Figure
3.23, where three of the four edges of G[K] constitute the path P1.

Consider the vertices x, x1, x2, x3. None of them belong to K. Otherwise, the
four edges of G[K] would induce a tree which does not contain a matching of size
3, a contradiction. So these four vertices all belong to V (G)− V (G[K]) and it then
follows immediately that the path xx1x2x3 is part of C2. Let z be another common
neighbor (different from w0) of x3 and x. Since xw0 and xw2 are both shooter edges,
the edge zx belongs to C2. But since G1 is an induced subgraph, it follows that C2

is a 5-cycle xx1x2x3zx, contradicting the original assumption that C2 is a 7-cycle.
Thus Case 5 cannot occur.

Case 6. In this final case, we first observe that by Case 2 we may suppose
that there is no odd component which is a 6-shooter and by Case 3 there is no
odd component which is an 8-shooter either. The only remaining possibility is that
there is a 14-shooter, call it G1, and the remaining |K| − 5 odd components are all
4-shooters and hence singletons. Also there are precisely three edges in G[K] and
these must be the original matching {e1, e2, e3}.

Suppose first that G1 is a plane graph. Then by Lemma 3.2, G1 is the 11-vertex
graph shown in Figure 3.3. But this graph is not factor-critical, a contradiction.

Suppose next that G1 is non-planar. Then by Lemma 2.1, G− V (G1) is plane.

If G− V (G1) has at least two components, then one of them is a 10-shooter by
Lemma 3.2 and the fact that G[K] ⊆ G− V (G1) contains a matching of size 3.

By Lemma 3.2 again, the 10-shooter Z is the union of two quadrangles sharing a
single edge. Note that every vertex of Z has a neighbor in G1. So E(Z) ⊆ E(G[K])
and hence |E(G[K])| ≥ |E(Z)| = 7, thus contradicting the fact that |E(G[K])| = 3.
Hence G− V (G1) is connected and hence is a plane 14-shooter.

Thus, again by Lemma 3.2, G − V (G1) must be the 11-vertex graph shown in
Figure 3.3. Six of these eleven vertices must be the vertices of the original matching
of size 3. The only remaining possibility is that the remaining five vertices consist
of two vertices in G[K] and three singleton 4-shooters. But the graph G − V (G1)
shown in Figure 3.3 has only two vertices of degree 4, a contradiction.

Thus G1 must be an annular graph. As before, let the two boundary walks be
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denoted by C1 and C2 and let �i denote the length of Ci, for i = 1, 2. As argued
previously, �1 + �2 = 14. So without loss of generality, we may suppose that {�1, �2}
is one of {3, 11}, {4, 10}, {5, 9}, {6, 8} or {7, 7}. First of all {�1, �2} 
= {3, 11} since G
is triangle-free. Furthermore, if {�1, �2} = {4, 10} or {6, 8}, G1 would be bipartite, a
contradiction.

Next, suppose C1 is a 5-cycle and C2, a 9-cycle. Once again, fixing our attention
on the 5-cycle C1 and arguing as in Case 4, we obtain that G[K] is a path of length
3, contradicting the fact that in this Case, G[K] consists three independent edges.

Thus it remains to treat only the case when both C1 and C2 are 7-cycles. To deal
with this case, we begin by stating and proving three claims.

Claim 1: For any edge e ∈ E(G[K]), let F 1
e and F 2

e be the two faces of G containing
e. Then both F 1

e and F 2
e contain an edge belonging to E(C1) ∪ E(C2).

To prove this claim, suppose e = v1v2 ∈ E(G[K]) and denote F 1
e = v1v2v3v4v1,

where v4v1 and v3v2 are shooter edges. Then v3v4 belongs to some odd component of
G− V (G[K]). Note that all components of G− V (G[K]), except G1, are singletons
and hence 4-shooters. So {v3, v4} ⊆ V (G1) and v3v4 ∈ E(G1). Suppose that v3 ∈
V (Ci)− V (Cj) and v4 ∈ V (Cj)− V (Ci), i 
= j. Then all faces of G1 containing the
edge v3v4 in the embedding of G1 inherited from G belong to G1. But this contradicts
the fact that v1v2v3v4v1 is a face of G where v1v2 ∈ E(G[K]). This completes the
proof of Claim 1.

Now suppose e = xy ∈ E(G[K]) and again suppose F 1
e and F 2

e be the faces
containing e.

Claim 2: If E(F 1
e ) ∩ E(Ci) 
= ∅, then E(F 2

e ) ∩ E(Ci) = ∅.
The proof is by contradiction. Without loss of generality, let Ci = C1. Suppose

both E(F 1
e ) ∩ E(C1) 
= ∅ and E(F 2

e ) ∩ E(C1) 
= ∅. Denote C1 by v0v1v2v3v4v5v6v0.
Since G contains no triangles, we may assume that E(F 1

e ) ∩ E(C1) = {v0v1} and
E(F 2

e ) ∩ E(C1) = {v4v5}.
Note that G1 ∪ (F 1

e ∪ F 2
e ) contains three boundary walks, namely, C2, C

1
1 =

v0xv5v6v0 and C2
1 = v1yv4v3v2v1. (See Figure 3.24.)

xv

0
v v
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Figure 3.24.

We now assert that one of C1
1 and C2

1 must be contractible. To prove this, we
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appeal to the following topological result.

Lemma 3.5. Let S be a compact connected subsurface of a torus T having genus zero
with three boundary components. Then at least one of the three boundary components
bounds a disk in T .

Proof. 1 To see this, note that the boundary components of S subdivide T into con-
nected subsurfaces S1, . . . , Sk with S = S1, and each subsurface has a nonempty
boundary consisting of at least one of the boundary components of S. The Euler
characteristic of T is the sum of the Euler characteristics of S1, . . . , Sk, since the Eu-
ler characteristic of the circle is 0. The Euler characteristic of T is 0 and the Euler
characteristic of S is −1; hence at least one of the Si has a positive Euler character-
istic. But the only compact connected surface with nonempty boundary that has a
positive Euler characteristic is the disk which has characteristic 1. Therefore, one of
the boundary components of S bounds a disk as claimed.

Now since C2 is not contractible, one of C1
1 and C2

1 must be contractible by the
preceding Lemma. Without loss of generality, let us assume that C1

1 is contractible
and let G′ denote the plane graph bounded by C1

1 . Since G contains no triangles or
multiple edges, δ({x, y}, V (C1)) = ∅. It then follows that G′ − V (C i

1) 
= ∅. Since
G′ is a plane graph and G is 4-connected, at least four vertices on C i

1 send edges
to G′ − V (C i

1). So there are two consecutive vertices on C1 emitting shooter edges
going to G′ − V (C i

1). So G′ −V (C i
1) contains an edge e′ from E(G[K]). By Claim 1,

both F i
e′ and F 2

e′ contain an edge from E(C1) ∪ E(C2). Note that |C i
1 ∩ C1| ≤ 3 and

E(F i
e′) ∩ (E(C1) ∪ E(C2)) ⊆ C i

1. But this implies that either G′ contains a triangle
or it contains multiple edges, a contradiction. This proves Claim 2.

Note that |E(G[K])| = 3. So let us denote E(G[K]) by {e1, e2, e3} and let F 1
ei

and F 2
ei

be the two faces containing ei, for i = 1, 2, 3. By Claim 2 we may assume
that F j

ei
contains an edge from E(Cj), for j = 1, 2.

Claim 3: |(⋃e∈E(G[K])E(F j
e )) ∩ E(Cj)| = 3, for j ∈ {1, 2}.

By Claim 2, |(⋃e∈E(G[K])E(F j
e )) ∩ E(Cj)| ≤ 3. Note that the shooter edges con-

tained in the boundaries of F j
ei
, i = 1, 2, 3, cannot cross each other in the embedding

ofG. So for any two faces F j
ei
and F j

ek
, i 
= k, it follows that E(F j

ei
)∩E(Cj) 
= E(F j

ek
)∩

E(Cj). So |(⋃e∈E(G[K])E(F j
e ))∩E(Cj)| ≥ 3. Hence |(⋃e∈E(G[K])E(F j

e )∩E(Cj)| = 3
and Claim 3 is proved.

Now, recalling that C1 = v0v1v2v3v4v5v6v0 and E(G[K]) = {e1, e2, e3}, we assert
that

⋃3
i=1(F

1
ei
∩C1) is a path of length 3. If it is not a path, then it contains at least

two components, one of which is an isolated edge. Without loss of generality, assume
that the isolated edge of

⋃3
i=1(F

1
ei
∩ C1) is v0v6 and assume that F 1

e1 contains v0v6.

Since v0v6 is an isolated edge in
⋃3

i=1(F
1
ei
∩C1), both v1 and v5 contribute no shooter

edges to C1. By Claim 1 and Claim 2, both F 1
e2 and F 1

e3 contain an edge from E(C1).

So
⋃3

i=2(F
1
ei
∩ C1) = v2v3v4.

1We are indebted to John Ratcliffe for this proof.
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Since E(G[K]) is a matching, v3 contributes two shooter edges from C1 and both
v2 and v4 contribute at least one shooter edge from C1. (See Figure 3.25.)

v

v
1

v
5

1e

v
6

v0

4v

v
3

2

Figure 3.25.

If both v2 and v4 contribute one shooter edge from C1, then we have the config-
uration shown in Figure 3.26. But then we have a triangle in G, a contradiction.

v

v
5

1e

2
v

6v

v
1

3
v

v4

0

Figure 3.26.

Note that at most one of v2 and v4 contributes two shooter edges from C1. For
otherwise, the face containing v2v3v4 would have size at least 5, a contradiction. So
it follows that one of v2 and v4 contributes two shooter edges associated with C1;
suppose without loss of generality, it is v4. Then we have one of the two configu-
rations shown in Figure 3.27. But both of these contain a triangle and we have a
contradiction. Thus our assertion is proved.

So henceforth we will assume that
⋃3

i=1(F
1
ei
∩C1) = v0v6v5v4. It then follows that

both v6 and v5 contribute two shooter edges from C1, since E(G[K]) is a matching
of size 3. Moreover, neither v1 nor v3 contributes any shooter edge from C1.

Now consider the face containing v0v6v5v4v0. Both v0v4 and v1v3 belong to E(G)
because the face containing v1v0v4v3 contains the edge v1v3 as well. (See Figure
3.28.) But then {v2, v3, v1} spans a triangle in G, a contradiction. So Case 6 cannot
occur and hence the proof of Theorem 3.3 is complete.
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Figure 3.27.
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Figure 3.28.

4 A Closing Remark

In [13] it was proved that if G is a toroidal graph, then either it is not 3-extendable
or else it is a 4-regular quadrangulation. This result, taken together with Theorem
3.3 of the present paper, shows that we have now obtained the complete list of all
toroidal graphs which are 3-extendable.

5 Appendix

For the remaining classes, to specifically describe the three matching edges inG which
do not extend to a perfect matching, we adopt the labeling of Q(m,n, t) shown in
Figure 5.1. Also, with the exception of cases (4) and (5), we have a pair of defining
graphs in each case. As these pairs are symmetric, for brevity, we will supply a
matching M of size 3 and a Tutte set S for G−V (M) for only one of the two graphs
in each pair. The other member of the pair has a symmetric choice for M and S
which we leave to the reader to supply.

(2) If m is odd, then G is not 2-extendable by Theorem 2.7 and hence not 3-
extendable. If m is even, then for the graph Q(m, 2, 2) we choose M = {q2,2q2,3,
q1,2q1,4, q2,5q2,6} and S = {q1,6}.
(3) If m

2
is odd, then it is not 2-extendable by Theorem 2.7 and hence not 3-
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1,1q
2,1q 3,1q

1,1nq - ,1nq
1, 1tq +

1,2q
2,2q 3,2q

1,2nq - ,2nq
1, 2tq +

1, 3tq +

1, 1tq +

1,tq

1, 1tq -

1,3q

1, 1mq -

1,mq

1,1q

2,3q

2, 1mq -

2,mq

2,1q

3, 1mq -

3,mq

3,1q

3,3q
1,3nq -

1, 1n mq - -

1,n mq -

1,1nq -

,3nq

, 1n mq -

,n mq

,1nq

Figure 5.1.

extendable. If m
2

is even, then for the graph Q(m, 1, m
2
− 1) we choose M =

{q1,1q1,m, q1,m
2
q1,m

2
+1, q1,3q1,4} and S = {q1,m

2
+3}.

(4) Let M = {q2,1q2,2, q3,2q3,3, q4,1q4,2} and S = {q1,2, q1,3} ∪ {qj,i | j = 1, 3, and 5 ≤
i ≤ m, i odd } ∪ {qj,i | j = 2, 4, and 4 ≤ i ≤ m− 1, i even}.
(5) Let M = {q1,mq1,1, q1,m

2
q1,m

2
+1, q2,m

2
−1q2,m

2
} and S = {q1,i | m

2
+ 3 ≤ i ≤ m −

2, i even}∪{q2,ixi | |m2 +2 ≤ i ≤ m− 1, i odd}∪{q1,i | 3 ≤ i ≤ m
2
− 2, i odd}∪{q2,i |

2 ≤ i ≤ m
2
− 3, i even}.

(6) For the graph Q(m, 1, m
4
), let M = {q1,m

2
−1q1,m

2
, q1, 3m

4
−2q1, 3m

4
−1, q1,m−1q1,m} and

S = {q1,m
4
−2, q1,m

4
−1} ∪ {q1,i | 2 ≤ i ≤ m

4
− 4, i even} ∪ {q1,i | m

4
+ 1 ≤ i ≤ m

2
−

3, i odd} ∪ {q1,i | m
2
+ 2 ≤ i ≤ 3m

4
− 4, i even} ∪ {q1,i | 3m

4
+ 1 ≤ i ≤ m− 3, i odd}.

(7) For the graph Q(m, 4, 2), let M = {q1,1q1,m, q2m−1q2m, q3,1q3,m} and S = {qij | i =
1, 3 and 3 ≤ j ≤ m−2, j odd}∪{qij | i = 2, 4 and 2 ≤ j ≤ m−3, j even}∪{q4,m−1}.
(8) For the graph Q(m, 2, m

2
+ 1), let M = {q1,mq1,1, q2,mq2,m−1, q1,m

2
+1q1,m

2
+2} and

S = {q2,m
2
, q2,m

2
+1}∪{q1,i | 3 ≤ i ≤ m

2
−1, i odd}∪{q2,i | 2 ≤ i ≤ m

2
−2, i even}∪{q1,i |

m
2
+ 4 ≤ i ≤ m− 2, i even} ∪ {q2,i | m

2
+ 3 ≤ i ≤ m− 3, i odd}.

(9) For the graph Q(m, 1, m+2
4

), let M = {q1,mq1,1, q1,m−2
4
q1,m+2

4
, q1,m

2
+1q1,m

2
+2} and

S = {q1, 3m+2
4

, q1, 3m+6
4

} ∪ {q1,i | 3 ≤ i ≤ m−2
4

− 2, i odd} ∪ {q1,i | 3m+2
4

+ 3 ≤ i ≤
m−2, i even}∪{q1,i | m

2
+4 ≤ i ≤ 3m

4
−6, i odd}∪{q1,i | m+2

4
+2 ≤ i ≤ m

2
−1, i even}.

(10) For the graph Q(m, 1, m−2
4

), let M = {q1,mq1,1, q1, 3m−2
4

q1, 3m+2
4

, q1,m
2
+1q1,m

2
+2} and

S = {q1,m+2
4
, q1,m+2

4
+1} ∪ {q1,i | 3 ≤ i ≤ m+2

4
− 2, i odd} ∪ {q1,i | 3m+2

4
+ 2 ≤ i ≤

m−2, i even}∪{q1,i | m
2
+4 ≤ i ≤ 3m−2

4
−2, i odd}∪{q1,i | m+2

4
+3 ≤ i ≤ m

2
−1, i even}.

(11) For the graph Q(m, 4, 4), let M = {q1,1q1,2, q2,2q2,3, q3,3q3,4} and S =
{q4,1, q1,3} ∪ {q1,i | 5 ≤ i ≤ m, i odd} ∪ {q2,i | 4 ≤ i ≤ m − 1, i even} ∪ {q3,i |
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5 ≤ i ≤ m, i odd} ∪ {q4,i | 4 ≤ i ≤ m− 1, i even}.
(12) For the graph Q(m, 2, m

2
− 2), let M = {q1,mq1,1, q2,mq2,m−1, q1,m

2
q1,m

2
+1} and

S = {q2,m
2
−1, q2,m

2
}∪{q1,i|3 ≤ i ≤ m

2
−2, i odd}∪{q2,i | 2 ≤ i ≤ m

2
−3, i even}∪{q1,i |

m
2
+ 3 ≤ i ≤ m− 2, i even} ∪ {q2,i | m

2
+ 2 ≤ i ≤ m− 3, i odd}.

(13) For the graph Q(m, 1, m
4
+ 1), let M = {q1,mq1,1, q1, 3m

4
q1, 3m

4
+1, q1,m2 q1,

m
2
+1} and

S = {q1,m
4
, q1,m

4
+1}∪{q1,i | 3 ≤ i ≤ m

4
−2, i odd}∪{q1,i | 3m

4
+3 ≤ i ≤ m−2, i even}∪

{q1,i | m
2
+ 3 ≤ i ≤ 3m

4
− 2, i odd} ∪ {q1,i | m

4
+ 3 ≤ i ≤ m

2
− 2, i even}.

(14) For the graph Q(m, 1, m
4
−1), let M = {q1,1q1,2, q1,m

4
+1q1,m

4
+2, q1,m

2
+1q1,m

2
+2} and

S = {q1,m
4
, q1,m

4
+1} ∪ {q1,i | 3 ≤ i ≤ m

4
, i even} ∪ {q1,i | m

4
+ 3 ≤ i ≤ m

2
, i odd} ∪ {q1,i |

m
2
+ 3 ≤ i ≤ 3m

4
, i even} ∪ {q1,i | 3m

4
+ 3 ≤ i ≤ m, i odd}.

(15) For the graph Q(m, 2, 4), let M = {q1,1q2,1, q2,2q1,m−2, q1,m−1q2,m−1} and S =
{q2,4, q1,m} ∪ {q1,i|3 ≤ i ≤ m− 4, i odd} ∪ {q2,i | 6 ≤ i ≤ m− 3, i even}.
(16) For the graph Q(m, 1, m

2
− 2), let M = {q1,m

2
−1q1,1, q1,m

2
q1,m−2, q1,m−1q1,m} and

S = {q1,i | m
2
+ 2 ≤ i ≤ m− 4, i even} ∪ {q1,i | 3 ≤ i ≤ m

2
− 3, i odd}.

(17) For the graph Q(m, 3, 2), let M = {q1,1q1,2, q2,2q2,3, q3,3q1,5} and S = {q1,3, q2,4,
q3,m}.
(18) For the graph Q(m, 1, m−2

3
), let

M = {q1,m−2
3
q1,m, q1,m−5

3
q1, 2m−7

3
, q1, 2m−10

3
q1,m−4}, S = {q1,m−2, q1,m−11

3
, q1, 2m−1

3
}.

(19) For the graph Q(m, 1, m+2
3

), let

M = {q1,m−1
3
q1,m−1, q1, 2m−8

3
q1,m−2, q1,m−13

3
q1, 2m−11

3
}, S = {q1, 2m−2

3
, q1,m−4, q1,m−7

3
}.

(20) For the graph Q(m, 2, m− 3), let

M = {q1,m−4q1,m−5, q2,m−3q2,m−4, q2,m−8q2,m−9}, S = {q1,m−2, q1,m−7, q2,m−6}.
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