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Abstract

Two mesh patterns are coincident if they are avoided by the same set of
permutations. In this paper, we provide necessary conditions for this co-
incidence, which include having the same set of enclosed diagonals. This
condition is sufficient to prove coincidence of vincular patterns, although
it is not enough to guarantee coincidence of bivincular patterns. In addi-
tion, we provide a generalization of the Shading Lemma (Hilmarsson et
al.), a result that examined when a square could be added to the mesh
of a pattern.

1 Introduction

The study of patterns in permutations has grown into a rich subfield of combina-
torics. The original notion of classical patterns—a subsequence of symbols having
a particular relative order—has been expanded to include variations like vincular
∗ Research partially supported by grant 141761-051 from the Icelandic Research Fund.
† Research partially supported by a Simons Foundation Collaboration Grant for Mathematicians.
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patterns [1, 6], bivincular patterns [2], Bruhat-restricted patterns [10], and barred
patterns [9]. Each of these flavors adds its own nuance to the “relative order” re-
quirement of classical patterns. Mesh patterns, which encompass nearly all of the
previously defined flavors were introduced by Brändén and the first author in [3].

The main questions about patterns concern how and when a pattern might be
contained (or avoided) by arbitrary permutations. Two patterns π and σ, perhaps
having different flavors, are coincident if the set of permutations that avoid π is
equal to the set of permutations that avoid σ. Note that this is stronger than
Wilf-equivalence, which requires that the permutations of size n that avoid π is
equinumerous to the permutations of size n that avoid σ, for all n.

It is particularly interesting, and often surprising, when patterns of different types
are coincident. The second author analyzed this phenomenon for vincular and barred
patterns in [7]. In the current paper, we are concerned with the more general category
of mesh patterns, and we analyze how much of a mesh is required to distinguish it
from others. Put another way, we examine which portions of a mesh might be
superfluous. The Shading Lemma of the third author together with Hilmarsson,
Jónsdóttir, Sigurðardóttir, and Viðarsdóttir [5] was the first general result in this
direction. It gives sufficient conditions for when a square can be added to a mesh.
Here we will give a more powerful version of that lemma, which captures almost all
coincidences of small mesh patterns.

Recent work of the second author described when a mesh pattern is coincident
to a classical pattern [8]. This phenomenon is characterized by avoidance of a single
configuration in the mesh, called an enclosed diagonal. In the present work, we
show that enclosed diagonals do, in fact, provide a necessary condition for two mesh
patterns to be coincident, but this property is not sufficient in general. On the other
hand, we do prove that for some families F of mesh patterns, elements of F are
coincident exactly when their enclosed diagonals coincide.

This paper is organized as follows. In Section 2, we recall the definition of a mesh
pattern. In Section 3, previous results are reviewed. In Section 4, we give necessary
conditions for mesh pattern coincidence. In Section 5, we show that common enclosed
diagonals are sufficient to determine coincidence for vincular patterns. Examples of
pattern families for which coincidence is not governed by enclosed diagonals are
given in Section 6, including bivincular patterns. In Section 7, we establish the
Simultaneous Shading Lemma, and future directions of research are discussed in
Section 8.

2 Mesh patterns

The set Sn consists of all bijections from [1, n] = {1, . . . , n} to itself. Each of
these bijections is a permutation, and we can denote w ∈ Sn by the word w =
w(1)w(2) · · ·w(n). Two sequences a1a2 · · · ak and b1b2 · · · bk of real numbers are said
to be order isomorphic if ai < aj if and only if bi < bj for all i, j ∈ [1, k].

Definition 2.1. Fix p ∈ Sk. The permutation w ∈ Sn contains a p-pattern if
there exist indices 1 ≤ i1 < i2 < · · · < ik ≤ n such that w(i1)w(i2) · · ·w(ik) is order
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isomorphic to p. The subsequence w(i1)w(i2) · · ·w(ik) is an occurrence of p in w. If
w does not contain p, then w avoids p.

Definition 2.1 is the classical framework for permutation patterns. The following
example demonstrates this classical containment and avoidance.

Example 2.2. The permutation 42135 contains five occurrences of the pattern 213,
namely 425, 415, 435, 213, and 215. The permutation 42135 avoids the pattern 132.

A permutation w ∈ Sn can also be represented graphically by plotting the points

G(w) =
{
(i, w(i)) : i ∈ [1, n]

}
.

Note that G(w) is a subset of the Cartesian product [1, n]2 = [1, n]× [1, n]. Classical
pattern containment and avoidance can be formulated in terms of these graphs.
Namely, w contains a p-pattern if and only if G(w) contains a copy of G(p), as
shown in the following examples.

G(132) = G(213) =

G(42135) =

Figure 1: The permutations 132, 213, 42135 and their graphs.

Figure 2: A particular occurrence of 213 in 42135.

Example 2.3. In Figure 1, we show the graphs G(132), G(213), and G(42135).
The graph G(42135) contains G(213) in five ways. These correspond to the five
occurrences of 213 in 42135, as discussed in Example 2.2. The copy of G(213) that
corresponds to the occurrence 425 is marked in Figure 2. The graph G(42135) does
not contain G(132), which corresponds to the fact that 42135 avoids the pattern 132.
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Definition 2.4. A mesh pattern is an ordered pair (p, R) where p ∈ Sk is a per-
mutation, and R is a subset of the (k + 1)2 unit squares in [0, k + 1]2. The set R is
the mesh, and elements (squares) of the mesh are indexed by their lower-left corners;
that is, (a, b) ∈ R refers to the square [a, a+ 1]× [b, b+ 1]. The mesh pattern (p, R)
is depicted graphically by drawing G(p) and shading all squares of the mesh R.

(
213, {(0, 3), (1, 2), (1, 3), (3, 0)}) =

Figure 3: A mesh pattern.

To illustrate Definition 2.4, we give a particular mesh pattern in Figure 3.
For a permutation w to contain a mesh pattern (p, R), this w must contain an

occurrence of the classical pattern p that does not “interfere” with the mesh. To
clarify this interference requirement, we must first explain how the mesh of (p, R)
appears in the graph G(w) relative to a particular occurrence of p.

Definition 2.5. Let w ∈ Sn and p ∈ Sk. Suppose that w contains a p-pattern in
positions i1 < i2 < · · · < ik. By convention, we additionally set i0 = p(i0) = 0 and
ik+1 = p(ik+1) = n + 1. Let a, b ∈ [0, k]. The square [a, a + 1] × [b, b + 1] in G(p)
corresponds to the following rectangle in G(w):

[
ia, ia+1

]
×
[
w
(
ip−1(b)

)
, w

(
ip−1(b+1)

) ]
.

Example 2.6. The permutation w = 42135 contains a 213-pattern in positions
{1, 3, 5}. The square [1, 2] × [3, 4] ⊂ [0, 4]2 in G(213) corresponds to the rectangle
[1, 4]× [3, 5] ⊂ [0, 6]2 in G(w). In Figure 4 this particular 213-pattern in w is marked
by circles around the points, and the rectangle [1, 4] × [3, 5] has been outlined and
shaded.

Figure 4: The permutation 42135 with a marked 213-pattern and the rectangle
[1, 4]× [3, 5] outlined and shaded.

Definition 2.7. A permutation w contains a mesh pattern (p, R) if w contains an
occurrence of p for which the subregion of [0, n + 1]2 corresponding to the mesh R
contains no points of G(w). If there is no such occurrence of p in w, then w avoids
the mesh pattern (p, R).
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It is important to observe that the subregion mentioned in Definition 2.7 depends
on the particular occurrence of p in w.

Example 2.8. The permutation 42135 contains five different 213-patterns. On the
other hand, it contains the mesh pattern (213, {(0, 3), (1, 2), (1, 3), (3, 0)}) in only
four ways. These are depicted in Figure 5 where thick lines indicate how the four
squares of the mesh appear in G(42135).

Figure 5: The 4 occurrences, in the permutation 42135, of the mesh pattern
(213, {(0, 3), (1, 2), (1, 3), (3, 0)}).

The remaining occurrence of 213 in 42135 does not obey the restrictions of the
mesh because the shaded region includes the point (1, 4) ∈ G(42135) as shown in
Figure 6.

Figure 6: A 213-pattern in the permutation 42135 that is not an occurrence of the
mesh pattern (213, {(0, 3), (1, 2), (1, 3), (3, 0)}).

Definition 2.9. For a pattern π of any flavor, let Av(π) be the set of permutations
that avoid π and let Cont(π) be the set of permutations that contain π. Similarly, if Π
is a collection of patterns, then Av(Π) =

⋂
π∈Π Av(π) and Cont(Π) =

⋃
π∈Π Cont(π) =(⋃

nSn

) \ Av(Π).

The purpose of this article is to examine when the sets of Definition 2.9 coincide
for two different mesh patterns. This is captured by the following definition.

Definition 2.10. Two patterns π and σ are coincident if Av(π) = Av(σ), or, equiv-
alently, if Cont(π) = Cont(σ). This coincidence will be denoted π � σ.

3 Mesh patterns can be coincident — examples and previous
results

Mesh pattern coincidence is not a rare phenomenon, as demonstrated in Figure 7.
The property underlying this example is the main result of [8], which we will

review in this section. This requires the notion of an enclosed diagonal.



A. CLAESSON ET AL. /AUSTRALAS. J. COMBIN. 63 (1) (2015), 88–106 93

� � �

Figure 7: Mesh patterns coincident with a classical pattern.

Definition 3.1. Let (p, R) be a mesh pattern and let a, b, and c be nonnegative
integers. Then D =

{
(a+ i, b+ i) : i ∈ [0, c]

} ⊆ R is an enclosed NE-diagonal if
{
(a+ i, b+ i) : i ∈ [0, c+ 1]

} ∩G(p) =
{
(a + i, b+ i) : i ∈ [1, c]

}

Similarly, D =
{
(a+ i, b− i) : i ∈ [0, c]

} ⊆ R is an enclosed SE-diagonal if

{
(a+ i, b+ 1− i) : i ∈ [0, c+ 1]

} ∩G(p) =
{
(a + i, b+ 1− i) : i ∈ [1, c]

}
.

If D has either of these types, then D can be called, simply, an enclosed diagonal. The
length of an enclosed diagonal is c+1, and enclosed diagonals of length greater than
one are proper. An enclosed diagonal of length 1 is both an enclosed NE-diagonal
and an enclosed SE-diagonal, and such a square will be called pointless because it
intersects no elements of the graph G(p).

Definition 3.1 is illustrated in Figure 8. We note that our definition of enclosed
notation differs from that of [8] because in the present setting, it is more natural to
associate an enclosed diagonal with the shaded squares of the mesh.

(a+ 1, b+ 1)
(a+ 2, b+ 2)

(a+ c, b+ c)

(a+ c, b+ 1− c)

(a+ 2, b− 1)
(a+ 1, b)

Figure 8: Proper enclosed diagonals in a mesh pattern (p, R). A point is in G(p) if
and only if it is marked •.

Example 3.2. The mesh pattern
(
231, {(1, 1), (2, 0), (3, 1)}) depicted below

has one enclosed diagonal, namely {(2, 0), (3, 1)} ⊂ R. This is an enclosed NE-
diagonal and has length 2.

The next lemma follows immediately from the definition of enclosed diagonals
and shows that these configurations in a mesh pattern are, in a sense, stable.
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Lemma 3.3. Let (p, R) be a mesh pattern.

(a) If R′ ⊆ R, then every enclosed diagonal in the mesh pattern (p, R′) is an enclosed
diagonal in (p, R).

(b) Each square in R belongs to at most one enclosed diagonal.

It will be useful to look at the collection of enclosed diagonals in a given mesh
pattern (p, R), and we will denote this set

enc(p, R).

Previous work by the second author characterized when an entire mesh is super-
fluous; that is, when a mesh pattern is equivalent to its underlying classical pattern.
The coincidences in Figure 7, for example, are explained by this result.

Theorem 3.4 ([8, Theorem 3.5]). A mesh pattern (p, R) is coincident to a classical
pattern if and only if enc(p, R) = ∅. If this is the case, then (p, R) � p.

Theorem 3.4 suggests that enclosed diagonals are the crux to understanding co-
incidence between mesh patterns, and that perhaps mesh patterns are coincident if
and only if they have the same enclosed diagonals. Unfortunately, as the following
example shows, this is not the case.

Example 3.5. The coincidences

� �

follow from the Shading Lemma ([5, Lemma 3.11]), reviewed below. Note, however,
that these three mesh patterns in are not coincident to

,

the mesh pattern containing only the enclosed diagonals. This is because 42513
avoids the first three patterns but contains this last pattern, even though the enclosed
diagonals are {(1, 0)} and {(3, 2)} in each case.

The third author and Hilmarsson, Jónsdóttir, Sigurðardóttir, and Viðarsdóttir
have given sufficient conditions for when (p, R) � (p, R′) where R and R′ differ by
only one square.

Lemma 3.6 (Shading Lemma (northeast) [5, Lemma 3.11]). Let (p, R) be a mesh
pattern. Suppose that the following conditions all hold.

• Neither the square (i, p(i)) nor the square (i− 1, p(i)− 1) is in R.
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• At most one of the squares (i, p(i)− 1) and (i− 1, p(i)) is in R.

• For all x 
∈ {i− 1, i}, if (x, p(i)− 1) ∈ R then (x, p(i)) ∈ R.

• For all y 
∈ {p(i)− 1, p(i)}, if (i− 1, y) ∈ R then (i, y) ∈ R.

Then (p, R) � (p, R ∪ {(i, p(i))}).

Q2

Q4

Figure 9: These are the conditions required to apply Lemma 3.6, where at most one
of Q2 or Q4 is shaded.

Note that there are northwest, southeast, and southwest analogues for Lemma 3.6,
which determine whether the other three squares incident to an element of G(p) can
be added to R in such a way so as to yield a coincident mesh pattern.

Example 3.5 yields the following somewhat surprising result.

Corollary 3.7. Fix a mesh pattern (p, R). The set {R′ : (p, R) � (p, R′)} need not
have a unique smallest element when ordered by set containment of the meshes.

4 Necessary conditions for mesh pattern coincidence

Consider mesh patterns (p, R) and (p′, R′), and suppose that (p, R) � (p′, R′). Then
two conditions must hold – one condition about p and p′, and another about R and
R′.

Lemma 4.1. If (p, R) � (p′, R′), then p = p′.

Proof. Suppose that p is of length k. Let π = (p, R) and π′ = (p′, R′). Clearly,
Sk ∩ Cont(π) = {p}, and Si ∩ Cont(π) = ∅ for all i < k. In other words, there is
a unique element of Cont(π) using a minimal number of symbols, and that element
is p. An analogous statement holds for Cont(π′) and p′. Further, if π � π′ then
Cont(π) = Cont(π′), and thus p = p′.

We now consider coincident mesh patterns (p, R) � (p, R′) with the same under-
lying classical pattern. Example 3.5 shows that having the same enclosed diagonals
is not a sufficient condition for coincidence, but the lemma below shows that it is
necessary.
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Lemma 4.2. If (p, R) � (p, R′), then enc(p, R) = enc(p, R′).

Proof. Fix p ∈ Sk and suppose that π = (p, R) has an enclosed diagonal that does
not exist in (p, R′). Without loss of generality, let this be a NE-diagonal comprised
of D = {(a + i, b+ i) : 0 ≤ i ≤ c} ⊆ R. Then, as a word,

p = p(1) · · · p(a) (b+ 1) (b+ 2) · · · (b+ c) p(a+ c+ 1) · · · p(k),

where p(a) 
= b and p(a+ c+ 1) 
= b+ c+ 1.
Define q ∈ Sk+1 to be the permutation that is order isomorphic to the word

obtained by inserting b + 1/2 between p(a) and p(a + 1) = b + 1 in the word for p.
By construction, the only p-patterns in q are obtained by excluding a single letter
q(x), where a + 1 ≤ x ≤ a + c + 1. Thus there is no way to find an occurrence of p
that can be drawn in G(q) so that the shaded region corresponding to the mesh of
(p, R) does not contain (x, q(x)) ∈ G(q). Therefore q ∈ Av(π).

Now consider the mesh pattern π′ = (p, R′), and take t in [0, c] so that (a+ t, b+
t) 
∈ R′. Then omitting the letter q(a + t + 1) from q yields a p-pattern. For this
occurrence of p, the only element of G(q) we need to worry about is (a+ t+1, q(a+
t + 1)), but this point does not lie in a shaded region corresponding to the mesh of
π′ because (a+ t, b+ t) 
∈ R′. Thus q ∈ Cont(π′), and so π 
� π′.

It is helpful to see an example illustrating the proof of Lemma 4.2.

Example 4.3. Let p = 25134 ∈ S5. Suppose that {(3, 2), (4, 3), (5, 4)} ⊂ R and
(4, 3) 
∈ R′. Let π = (p, R) and π′ = (p, R′). That is,

π = and π′ = ,

where a half-filled square, , indicates a square whose shading status — that is,
whose presence in the mesh — is undeclared. The proof of Lemma 4.2 constructs
the permutation q = 261345 ∈ S6, which has three p-patterns: 26145, 26135, and
26134. In each of these occurrences, there is an element of G(q) located in the region
corresponding to the mesh from π. This is shown below.

On the other hand, because (4, 3) 
∈ R′ the occurrence 26135 of p in q does not share
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this property:

Therefore q ∈ Av(π) and q ∈ Cont(π′).

Lemmas 4.1 and 4.2 give necessary requirements for coincidence of mesh pat-
terns. In Section 5, we explore circumstances under which these conditions are also
sufficient, and in Section 6, we discuss others where they are not.

5 Pattern families that are governed by enclosed diagonals

There are some families of mesh patterns whose coincidence is entirely characterized
by the collection of enclosed diagonals.

Definition 5.1. A mesh pattern (p, R) is vincular if the mesh R is a union of
complete columns. This (p, R) can also be described as the permutation p ∈ Sk

together with “bonds” between p(i) and p(i+ 1) exactly when {(i, y) : 0 ≤ y ≤ k} ⊆
R. Thus a permutation w contains this vincular pattern if and only if w has an
occurrence of p in which all bonded subwords appear consecutively in w.

Figure 10: A vincular pattern.

The mesh pattern in Figure 10 is vincular because its mesh is a union of columns.
It could also be denoted 325 614, with brackets indicating the bonds. Vincular pat-
terns have arisen in many places, including [1, 4, 6, 7]. Here, we show that coincidence
within this family of mesh patterns behaves exactly as one might hope.

Proposition 5.2. Let (p, R) and (p, R′) be vincular patterns where p ∈ Sk. If
enc(p, R) = enc(p, R′), then (p, R) � (p, R′). If, moreover, k > 3, then R = R′ and
so the two patterns are the same.

Proof. Suppose that (p, R) and (p, R′) are vincular patterns with p ∈ Sk and
enc(p, R) = enc(p, R′). The result is easy to check for k ≤ 3, so suppose k > 3.
Each column in the meshes R and R′ contains at least k + 1 − 4 > 0 pointless
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squares, and each of those pointless squares is an enclosed diagonal. Thus we have,
in fact, that the meshes R and R′ are comprised of exactly the same columns and so
R = R′. Coincidence is a reflexive relation, completing the proof.

The example in Figure 11 (see [4, Lemma 2]) shows that when p ∈ Sk and k ≤ 3,
there are indeed pairs of distinct coincidental vincular patterns.

�

Figure 11: Two distinct but coincidental vincular patterns.

Corollary 5.3. Two vincular patterns (p, R) and (p′, R′) are coincident if and only
if p = p′ and enc(p, R) = enc(p′, R′). Moreover, if p ∈ Sk for k > 3, then (p, R) �
(p′, R′) if and only if (p, R) = (p′, R′).

Proof. This follows from Proposition 5.2 together with Lemmas 4.1 and 4.2.

Vincularity is a property of the mesh. The next family we examine can also be
defined by its mesh, this time requiring that the mesh be suitably meager.

Definition 5.4. A mesh pattern (p, R) is isolating if whenever (i, j) ∈ R is not a
pointless square, then the mesh R contains no elements of the form (i ± 1, y) or
(x, j ± 1).

As with vincular patterns, coincidence among isolating patterns is determined
entirely by the set of enclosed diagonals in the isolating pattern.

Proposition 5.5. If (p, R) and (p, R′) are isolating mesh patterns with enc(p, R) =
enc(p, R′), then (p, R) � (p, R′).

Proof. The Shading Lemma of [5] applies directly to show that such isolating patterns
are coincident.

6 Pattern families that are not governed by enclosed diago-
nals

In this section we look at some families of mesh patterns for which common enclosed
diagonals are not enough to determine pattern coincidence. Despite this fact, these
families are not entirely unrelated to those discussed in Section 5.

Recall the definition of vincular patterns from Section 5. This placed a require-
ment on the columns of a mesh but not on the rows, suggesting a certain asymmetry.
Indeed, as studied in [2], a more balanced definition yields another interesting class
of permutation patterns.
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Definition 6.1. Bivincular patterns are mesh patterns in which the mesh is a union
of complete rows and complete columns.

Given their similarity to vincular patterns, one might hope that coincidence
among bivincular patterns can also be fully characterized by enclosed diagonals.
This is not the case, however, as demonstrated below.

Example 6.2. Up to symmetry, the smallest non-coincident bivincular patterns
having the same enclosed diagonals are


� .

The unique enclosed diagonal in each case is {(0, 1), (1, 0)}, but the patterns are
not coincident because 132 contains the first pattern and avoids the second. For
a larger example see Figure 12. The proper enclosed diagonals in each case are


�

Figure 12: Two non-coincident bivincular patterns with the same enclosed diagonals.

{(0, 2), (1, 1)}, {(1, 3), (2, 2)} and {(2, 4), (3, 3)}, and they have the same eleven point-
less squares, but the patterns are not coincident because 345162 contains the first
pattern and avoids the second.

Recall the definition of isolating patterns from Section 5, and consider the fol-
lowing class of patterns that might, initially, appear to be similarly desolate.

Definition 6.3. A mesh pattern (p, R) is sparse if it has at most one shaded square
in each row and each column.

Unfortunately, coincidence within this family of mesh patterns is not solely de-
pendent on the enclosed diagonals in the pattern. That is, there are non-coincident
sparse mesh patterns that have the same enclosed diagonals.

Example 6.4. The mesh patterns π = (231, {(3, 2)}) and σ = (231, {(1, 3), (3, 2)})
are both sparse. Further, they satisfy enc(π) = enc(σ) = {(3, 2)}, but π 
� σ because
25314 contains π but avoids σ.

One might hope that nice geometric properties of the mesh would be enough to
ensure that enclosed diagonals determine coincidence. Unfortunately, even a basic
property like mesh connectivity is insufficient, as demonstrated in Example 6.2 above.
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7 The simultaneous shading lemma

We now give an extension of the Shading Lemma (Lemma 3.6 above), the conditions
of which are depicted in Figure 13.

Corollary 7.1 (Double Shading Lemma (east)). Let (p, R) be a mesh pattern. Let
i be such that the following conditions all hold.

• No square incident to (i, p(i)) ∈ G(p) is in the mesh R.

• For all x, (x, p(i)− 1) ∈ R if and only if (x, p(i)) ∈ R.

• For all y, if (i− 1, y) ∈ R then (i, y) ∈ R.

Then (p, R) � (
p, R ∪ {(i, p(i)), (i, p(i)− 1)}).

Figure 13: The conditions required to apply Corollary 7.1, the Double Shading
Lemma (east).

Proof. First use the northeast variant of the Shading Lemma on (i, p(i)) to establish
that (p, R) � (p, R∪{(i, p(i))}). It is easy to see that we can then apply the southeast
variant of the Shading Lemma to (i, p(i)− 1) to get

(
p, R ∪ {(i, p(i))}) � (

p, R ∪ {(i, p(i)), (i, p(i)− 1)}).
Corollary 7.1 refers to the two squares incident to an element of G(p) on its east

side. There are, of course, analogous statements for the north, west, and south sides
of elements of G(p).

It is interesting to note that there are mesh pattern coincidences that are not
detected by the Shading and Double Shading Lemmas.

Example 7.2. Corollary 7.1 yields

π1 = (12, R1) = � � = (12, R2) = π2.
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It is, however, impossible to use Lemma 3.6 or Corollary 7.1 to prove that any of the
above patterns are coincident to

π3 = (12, R3) = .

On the other hand, the mesh inclusions R1 ⊂ R3 ⊂ R2 imply that Av(π1) ⊆ Av(π3) ⊆
Av(π2). Since Av(π1) = Av(π2), we must have that π3 is, in fact, coincident with all
three of the above mesh patterns.

The following lemma records the phenomenon observed in Example 7.2.

Lemma 7.3 (Closure Lemma). If (p, R) � (p, R′) and R ⊆ S ⊆ R′, then

(p, R) � (p, S) � (p, R′).

We now extend the Shading Lemma even further to allow simultaneous addition
of multiple squares to a mesh. Before stating this precisely, we illustrate the concept.

Example 7.4. Consider the four mesh patterns in Figure 14. Applying the Shad-
ing Lemma (northwest) to (231, R) at (1, 2) ∈ G(231) gives the coincident pattern
(231, R1). On the other hand, applying the Double Shading Lemma (north) to
(231, R) at (2, 3) ∈ G(231) yields the coincident pattern (231, R2). It is easy to ver-
ify directly that these patterns are all coincident to (231, R3) even though iterations
of the Shading and Double Shading Lemmas will not produce this coincidence. For
example, we cannot apply the Double Shading Lemma (north) to (231, R1) at (1, 2)
because of (0, 3) ∈ R1. Similarly we cannot apply the Shading Lemma (northwest)
to (231, R2) at (1, 2) because of (1, 3) ∈ R2.

(231, R) (231, R1) (231, R2) (231, R3)

Figure 14: The four mesh patterns of Example 7.4.

Definition 7.5. Let (p, R) be a mesh pattern. A square that is incident to g ∈ G(p)
but not in R is shadeable from g if it satisfies the conditions of one of the Shading
Lemma variants. A pair of adjacent squares that are both incident to g ∈ G(p) and
both not in R are shadeable from g if they satisfy the conditions of one of the Double
Shading Lemma variants.

Lemma 7.6 (Simultaneous Shading Lemma). Let (p, R) be a mesh pattern with
p ∈ Sk. Fix G ⊆ G(p) and let sg be a square or pair of adjacent squares that are
shadeable from g ∈ G. Then (p, R) � (p, R ∪ S), where S =

⋃
g∈G sg.
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Before giving a proof of Lemma 7.6 we illustrate its idea in the following example.

Example 7.7. Let the two mesh patterns (p, R) and (p, R′) be as in Figure 15.
Let G = {g1, g2, g3} ⊂ G(p) where gi = (i, p(i)). If we let s1 = {(0, 0), (1, 0)},
s2 = {(1, 4), (2, 4)}, and s3 = {(3, 1)}, then R′ = R ∪ s1 ∪ s2 ∪ s3. Note that, for
i ∈ {1, 2, 3}, the square si is shadeable from gi. The Simultaneous Shading Lemma
claims that (p, R) � (p, R′).

(p, R) = (p, R′) =

Figure 15: The two coincident mesh patterns of Example 7.7.

We wish to show that any permutation containing (p, R) also contains (p, R′);
since R ⊂ R′ we already know that Cont(p, R) ⊇ Cont(p, R′). Let w = 482951(10)376
∈ S10 and consider the occurrence 4857 of (p, R) in w. For this to be an occurrence of
(p, R′) in w, we would need to be able to shade the regions corresponding to s1∪s2∪s3
without intersecting elements of G(w). Unfortunately (4, 9) ∈ G(w) intersects the
region [1, 5]× [8, 11] corresponding to s2. If we consider, instead, the occurrence 4957
of p in w, then we would need to worry about (3, 2) ∈ G(w) intersecting the region
[0, 0]× [4, 4] corresponding to s1. So let us, instead, consider the occurrence 2957 of
p in w. Now we must worry about (7, 3) ∈ G(w) intersecting the region [5, 9]× [2, 5]
corresponding to s3. We might then consider the occurrence 2937 of p in w, and
so on. This procedure is illustrated in Figure 16, where dashed rectangles indicate
the regions corresponding to the si and arrows indicate the ensuing re-selection of
the pattern occurrence. The last image in the figure depicts an occurrence of (p, R′)
in w.

Example 7.7 and Figure 16 describe the strategy to the proof of Lemma 7.6, but
we need to show that the procedure terminates.

Proof of Lemma 7.6. Let w be a permutation containing the mesh pattern (p, R).
We want to show that w also contains an occurrence of (p, R′). Fix an occurrence
of (p, R) in w. Each g ∈ G ⊆ G(p) corresponds to some (ig, w(ig)) ∈ G(w) in the
occurrence of (p, R) in w. Together with sg, this point will determine

• the horizontal line y = w(ig) if sg is a pair of horizontally adjacent squares,

• the vertical line x = ig if sg is a pair of vertically adjacent squares, or

• the pair of lines x = ig and y = w(ig) if sg is a single square.
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(a) (b)

(c) (d)

(e) (f)

Figure 16: Maintaining the notation of Example 7.7, these figures depict the discovery
of an occurrence of (p, R′) in w.

�

Figure 17: Two mesh patterns whose coincidence is due to the coincidence of two
smaller embedded mesh patterns.
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For each g ∈ G, let s̃g be the region in w that corresponds to sg, as defined by the
given occurrence of (p, R) in w. If each s̃g is empty then we have already found an
occurrence of (p, R′) in w. Otherwise, fix h ∈ G so that s̃h is nonempty. There are
essentially two different options for sh:

1. sh is a pair of adjacent squares;

2. sh is a single square.

For case (1) suppose that sh is a pair of horizontally adjacent squares that are
north of and incident to h ∈ G(p). Now replace (ih, w(ih)) in the occurrence of (p, R)
by the element of (i′h, w(i

′
h)) ∈ s̃h∩G(w) having the largest y-coordinate. Because sh

was shadeable from h this will produce a new occurrence of (p, R) in w. Also, note
that sh now determines the line y = w(i′h), which is above the previously identified
line y = w(ih).

For case (2) suppose sh is a single square northeast of and incident to h ∈ G(p).
Now replace (ih, w(ih)) in the occurrence of (p, R) by the element of (i′h, w(i′h)) ∈
s̃h ∩G(w) having the largest y-coordinate. (Here we could equally well have chosen
the largest x-coordinate.) Because sh was shadeable from h this will produce a new
occurrence of (p, R) in w. Also, note that sh now determines the lines x = i′h and
y = w(i′h), which are to the right of and above, respectively, the previously identified
lines.

Thus at each step, we shift at most one horizontal line and at most one vertical
line, and each such line can only move in a fixed direction. The graph G(w) is finite,
and so the shifting will have to terminate, at which time {s̃g : g ∈ G}∩G(w) will be
empty. Thus the procedure ends by producing an occurrence of (p, R′) in w.

The Simultaneous Shading Lemma explains, among other things, the coincidences
discussed in Example 7.4. The Simultaneous Shading Lemma together with the Clo-
sure Lemma are powerful enough to explain every coincidence among mesh patterns
of 1 or 2 letters, except for the coincidence

γ1 = � = γ2,

and its symmetries. It is easy to verify that a permutation w contains either of γ1
and γ2 if and only if w can be written as a direct sum w = u ⊕ v of two nonempty
permutations u and v. Under certain conditions the coincidence between γ1 and γ2
implies coincidences of larger patterns, where γ1 and γ2 appear as embedded patterns.
An example of this is given in Figure 17 above.

8 Future research

The tools we derived in this paper go some way toward characterizing coincidence of
mesh patterns, but they are not a complete answer. We have written tests to apply
our results to all mesh patterns of small lengths, partitioning them into coincident
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classes, and not all coincidences can be detected by the methods described in this
paper. For example, the following coincidence cannot be proved by the Simultaneous
Shading Lemma, nor by the additional use of some of the other techniques addressed
above.

Example 8.1. Consider the following two mesh patterns below.

π = (123, R) = � = (123, R′) = π′

Because R ⊂ R′, we have that Av(π) ⊆ Av(π′). Now suppose w has an occurrence of
π indexed by i1 < i2 < i3. If the region corresponding to the square (2, 1) does not
intersect G(w) for this occurrence, then it is an occurrence of π′ as well. If that region
does intersect G(w), then let g ∈ G(w) be the rightmost element of that intersection.
If there are no elements of G(w) northeast of g and also south of w(i2) (given the
choice of g, such points would necessarily be in the region corresponding to (3, 1) for
this occurrence), then {(i1, w(i1)), g, (i3, w(i3))} is an occurrence of π′ in w. On the
other hand, suppose there are such points. If they are in descending order and h is
the leftmost (greatest) among them, then {(i1, w(i1)), g, h} is an occurrence of π′ in
w. If they are not in descending order, then we can apply the Simultaneous Shading
Lemma to an ascent among them, producing the occurrence of π′ that we seek.

We are left, then, with two questions. Under what conditions are two arbitrary
mesh patterns coincident? Is it possible to describe the maximal set of mesh patterns
for which coincidence depends only on enclosed diagonals?
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