AUSTRALASIAN JOURNAL OF COMBINATORICS
Volume 63(1) (2015), Pages 41-57

Roman domination with respect to nondegenerate
graph properties: vertex and edge removal

VLADIMIR SAMODIVKIN

Department of Mathematics, UACEG
Hristo Smirnenski Blv. 1, 1046 Sofia
Bulgaria
vl.samodivkin@uacg.bg or vl.samodivkin®@gmail.com

Abstract

For a graph property P and a graph G, a subset S of the vertices of G is
a P-set if the subgraph induced by S has the property P. A P-Roman
dominating function on a graph G is a labeling f : V(G) — {0, 1,2} such
that every vertex with label 0 has a neighbor with label 2 and the set of all
vertices with label 1 or 2 is a P-set. The P-Roman domination number
vpr(G) of G is the minimum of ¥,cy () f(v) over such functions. In this
paper we present results on changing and unchanging of vpr(G) when a
graph is modified by deleting an edge or a vertex. Some known results
for the ordinary Roman domination number are extended and generalized
to vpr(G). The P-Roman bondage number bpr(G) is the cardinality of
a smallest set of edges whose removal from G results in a graph with
P-Roman domination number not equal to vpr(G). We obtain upper
bounds in terms of (a) edge degree and maximum degree, (b) average de-
gree and maximum degree, (c) orientable/non orientable genus and max-
imum degree, and (d) Euler characteristic, girth and maximum degree,
for the P-Roman bondage number of a graph on topological surfaces.
We also prove that for any graph G, which admits a 2-cell embedding on
a surface with non-negative Euler characteristic, either bpr(G) < 15 or
15 < b'pR(G) < A(G) - 3.

1 Introduction

All graphs considered in this article are finite, undirected, without loops or multi-
ple edges. We denote the vertex set and the edge set of a graph G by V(G) and
E(G), respectively. The subgraph induced by S C V(G) is denoted by G[S]. The
complement of a graph G is denoted by G. Let P,, C, and K, denote the path,
cycle and complete graph with n vertices, respectively. For any vertex x of a graph
G, Ng(z) denotes the set of all neighbors of = in G, Ng[z] = Ng(x) U {z} and the
degree of z is dg(z) = |Ng(z)|. For a subset A C V(G), let Ng(A) = UpeaNe(2)
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and Ng[A] = Ng(A) U A. For a graph G, let x € X C V(G). A vertex y € V(G) is
an X-private neighbor of x if Ng[y] N X = {z}. The X-private neighborhood of z,
denoted png|x, X], is the set of all X-private neighbors of x. The distance between
two vertices z,y € V(G) is denoted by dg(z,y).

Let Z denote the set of all mutually nonisomorphic graphs. A graph property is
any non-empty subset of Z. We say that a graph G has the property P whenever
there exists a graph H € P which is isomorphic to G. For example, we list some
graph properties:

e O ={H €T: H is totally disconnected};

eC={H €Z: H is connected};

o7 ={H €Z: H is without isolates};

e F={H¢€ZI: His a forest};

e UK = {H € T : each component of H is complete};

e Df={HeZI: A(H)<k}.

A graph property P is called hereditary (induced-hereditary), if from the fact that
a graph G has the property P, it follows that all subgraphs (induced subgraphs) of
G also belong to P. A property is called additive if it is closed under taking disjoint
unions of graphs. A property P is called nondegenerate if @ C P. Note that:
(a) O, F and D* are nondegenerate, additive and hereditary properties; (b) UK is
nondegenerate, additive, induced-hereditary and is not hereditary; (c) C is neither
additive nor induced-hereditary nor nondegenerate; (d) 7 is additive but neither
induced-hereditary nor nondegenerate. Further, an additive and induced-hereditary
property is always nondegenerate. Any set S C V(G) such that the subgraph G[S]
possesses the property P is called a P-set. For a survey on this subject we refer to
Borowiecki et al. [4].

A dominating set for a graph G is a subset D C V(G) of vertices such that every
vertex not in D is adjacent to at least one vertex in D. The minimum cardinality of
a dominating set is called the domination number of G and is denoted by v(G). The
concept of domination in graphs has many applications to several fields. Domination
naturally arises in facility location problems, in problems involving finding sets of
representatives, in monitoring communication or electrical networks, and in land
surveying. Many variants of the basic concepts of domination have appeared in the
literature. We refer to [13, 14] for a survey of the area.

The domination number with respect to the graph property P, denoted by yp(G),
is the smallest cardinality of a dominating P-set of a graph G. Note that there
may be no dominating P-set of G at all. For example, all graphs having at least
two isolated vertices are without dominating P-sets, where P € {C,7}. On the
other hand, if a property P is nondegenerate then every maximal independent set
is a dominating P-set and thus vp(G) exists. This fact will be used in the sequel,
without specific reference. A dominating P-set of G with cardinality vp(G) is called
a vp(G)-set. The concept of domination with respect to any graph property P was
introduced by Goddard et al. [6] and has been studied, for example, in [15], [24],
[25] and elsewhere. Note that 7o(G), ¢(G), 77(G), 7#(G) and vp:(G), are the
well known as the independent domination number i(G), the connected domination
number 7.(G), the total domination number 7;(G), the acyclic domination number
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7.(G) and the k-dependent domination number v*(G), respectively (see [13]).

A variation of domination called Roman domination was introduced by ReVelle
[20, 21]. Also see ReVelle and Rosing [22] for an integer programming formulation
of the problem. The concept of Roman domination can be formulated in terms of
graphs. A Roman dominating function (RDF) on a graph G is a vertex labeling
f:V(G) — {0,1,2} such that every vertex with label 0 has a neighbor with label
2. For an RDF f, let V/ = {v € V(G) : f(v) = i} for i = 0, 1, 2. Since this
partition determines f, we can equivalently write f = (Vof ; Vlf ; V2f ). The weight
F(V(G)) of an RDF f on G is the value Yoy () f(v), which equals |V//| +2[Vi|. Let
P be nondegenerate property and let G be a graph. We define a Roman dominating
function f = (VJ;V{: VJ) on G to be a P-Roman dominating function, or just P-
RDF, if V{/ UV} is a P-set. The P-Roman domination number vpz(G) of G is the
minimum weight of a P-RDF on G. A P-RDF with minimum weight in a graph G will
be referred to as a ypp-function on G. Note that vzr(G), vor(G), ver(G) and vrr(G)
are well known as the Roman domination number [5], the independence Roman
domination number (denoted by ig(G)) [1, 16], the connected Roman domination
number [11] and the total Roman domination number [11].

In this paper we concentrate on P-Roman domination when a property P is
nondegenerate. From the above definitions we immediately obtain the following
observation.

Observation 1. Let O C P, C Py C 7 and let G be a graph. Then

Yr(G) = 12r(G) < 92 r(G) < Vp,r(G) < Yor(G) = ir(G). (1)

For convenience we omit the subscript Z.

The rest of the paper is organized as follows. Sections 2 and 3 contain known
and preliminary results, respectively. It is often of interest to know how the value
of a graph parameter is affected when a small change is made in a graph. In this
connection, here we consider this question in the case ypr(G) when a vertex or an
edge is deleted from G. In Section 4 some known results for the ordinary Roman
domination number are extended and generalized to vpr(G). We also give necessary
and sufficient conditions for a graph G to satisfy ypr(G—v) < vpr(G) for each vertex
v of G. In Section 5, we find all graphs G for which vpr(G — €) > ypr(G) for every
edge e € F(G). One measure of the stability of the P-Roman domination number of
a graph G under edge removal is the P-Roman bondage number bpr(G) which is the
cardinality of a smallest set of edges whose removal from G results in a graph with P-
Roman domination number not equal to ypr(G). We obtain upper bounds in terms
of (a) edge degree and maximum degree, (b) average degree and maximum degree, (c)
orientable/non orientable genus and maximum degree, and (d) Euler characteristic,
girth and maximum degree, for the P-Roman bondage number of a graph. We also
prove that for any graph G, which admits a 2-cell embedding on a surface with non
negative Euler characteristic, either bpr(G) < 15 or bpr(G) < A(G) — 3.
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2 Known results

The following results are important for our investigations.

An orientable compact 2-manifold Sy, or orientable surface Sy, (see [23]) of genus h
is obtained from the sphere by adding A handles. Correspondingly, a non-orientable
compact 2-manifold N, or non-orientable surface N, of genus ¢ is obtained from
the sphere by adding ¢ crosscaps. Compact 2-manifolds are called simply surfaces
throughout the paper. The Euler characteristic is defined by x(S,) =2 —2h, h > 0,
and x(N,) =2—¢, ¢ > 1. The Euclidean plane S, the projective plane Ny, the torus
S1, and the Klein bottle Ny are all the surfaces of nonnegative Euler characteristic.

Let

ha(z) = 20+ 13 for0< <3 ho(z) = 8 forx =0
W7 Y 4 +7 forz>3 ’ 27T 445 fora>1

20+ 11 forl1 <z <2
ki(x) =<4 2c0+9 for3<x<5 and ky(x) :{
20 +7 for z > 6.

8 forx=1
2¢x +5 for z > 2.

Theorem A (Ivanco [8]). If G is a connected graph of orientable genus g and min-
imum degree at least 3, then G contains an edge e = xy such that dg(z) + dg(y) <
hi(g). Furthermore, if G does not contain 3-cycles, then G contains an edge e = zy

such that de(x) + da(y) < ha(g).

Theorem B (Jendrol’ and Tuhérsky [9]). If G is a connected graph of minimum
degree at least 3 on a nonorientable surface of genus g > 1, then G contains an edge
e = xy such that dg(z)+da(y) < ki1(g). Furthermore, if G does not contain 3-cycles,
then dg(z) + da(y) < kao(9).

Theorem C. Let G be a connected graph embeddable on a surface M whose Euler
characteristic x(M) is as large as possible and let 6(G) > 5. Then G contains an
edge e = xy with dg(x) + dg(y) < 11 if one of the following holds:

(i) (Wernicke [28] and Sanders [27], respectively) M € {Sy, N; }.
(ii) (Jendrol’ and Voss [10]) M € {S;, Ny} and A(G) > 7.
A path w,v,w is a path of type (i, 7, k) if dg(u) <1, dg(v) < j, and dg(w) < k.

Theorem D (Borodin, Ivanova, Jensen, Kostochka and Yancey [3]). Let G be a
planar graph with 6(G) > 3. If no 2 adjacent vertices have degree 3 then G has a
3-path of one of the following types:

(3,4,11) (3,7,5) (3,10,4) (3,15,3) (4,4,9) (6,4,8) (7,4,7) (6,5,6).

Observation E (Rad and Volkmann [19]). If G is a graph, then yr(G —¢) > vr(G)
for any edge e € E(G).

Theorem F (Rad and Volkmann [18]). If G is a claw-free graph, then yr(G) =
ir(G).
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Theorem G (Adabi, Targhi, Rad and Moradi [1]). For any graph G of order n,
ir(G) < n. Further, the equality holds if and only if G = mKy U K, for some non
negative integers m,l with n = 2m + [.

The average degree ad(G) of a graph G is defined as ad(G) = 2|E(G)|/|V(G)].

Theorem H. (Hartnell and Rall [7]) For any connected nontrivial graph G, there
exists a pair of vertices, say u and v, that are either adjacent or at distance 2 from
each other, with the property that dg(u) + de(v) < 2ad(G).

The girth of a graph G is the length of a shortest cycle in G; the girth of a forest
is oo.

Lemma I (Samodivkin [26]). Let G be a connected graph embeddable on a surface
M whose Euler characteristic x is as large as possible and let the girth of G is k < co.

Then: . ok 1 \
)= =2 ey

3 Preliminary results

Observation 2. Let G1,Gs, ..., Gy be mutually vertexr disjoint graphs and G =

(a) If P is nondegenerate and additive then ypr(G) < Zle vrr(Gi).
(b) If P is nondegenerate and induced-hereditary then ypr(G) > S vpr(Gy).
(¢) If P is additive and induced-hereditary then vpr(G) = Zle vrr(G;).

Proof. (a) Let f; = (Vof"; Vlfi; sz’) be a ypr-functionon G;,i = 1,2,..., k. Since P is
additive, f = (UF_, Vi, UF_ v/ UR_ Vi) is a P-RDF on G and 4 (G) < f(V(G)) =
k k

>oim1 Ji(V(Gh)) = 32, 1er(Gy).

(b) Let f be aypr(G)-function and let f; = (ViNV(G,), Vi NV (G,), Vi nV (&),
1 =1,2,...,k. Since P is induced-hereditary, f; is a P-RDF on G;. This implies

k k k

1p(G) = F(V(G)) = 22 F(V(GY) = 2oy [ilV(G)) 2 22isy ver(Gi).

(¢) Any additive and induced-hereditary property is clearly nondegenerate. It
immediately follows by (a) and (b) that ypr(G) = 3¢ vpr(G)). O

By similar way we obtain:

Observation 3. Let Gy and Gy = K (s > 1) be vertex disjoint graphs and G =
G1 UG,.

(a) If P is nondegenerate and closed under union with K; then ypr(G) <
’pr(Gl)+8.

(b) If P is nondegenerate and induced-hereditary then ypr(G) > vpr(G1) + s.
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(c) If P is closed under union with Ky and induced-hereditary then vpr(G) =
vpr(G1) + 5.

The next lemma plays a key role in the proofs of the many of our results.

Lemma 4. Let a property P be nondegenerate and induced-hereditary. Let G be
a graph and f = (V{: VI V) a P-RDF on G with VI # V(G). Then there is a
P-RDF g — (V3 Vi3 V3) on G such that g(V(G)) < F(V(G)), Vi € V§, Vi € V¥,
Vi €V and E(G]V? UVY)) = E(G[V{)). Furthermore:

(i) Vi is a P-set,
(i1) if f is a ypr-function on G then g is a ypg-function on G, and

(ii) if VQf 18 a Q-set, where Q@ C T and Q 1is closed under union with K then both
Vs and VP UVY are Q-sets and g is a Q-RDF on G.

Proof. Since P is induced-hereditary, sz is a P-set. Let hy = (VJ"; V{"'; Vi), where
Vi = Ne(V) = v, vln = v/ — Ng(V) and V" = V. Hence hy is an RDF on
G with VJ/ C VI, v C VY, F(V(G)) > hi(V(G)) and no edge joins Vi and V™.
Since P is induced-hereditary, hy is a P-RDF on G and V)" is a P-set. If V" is
empty or independent then g = h;. Assume there are adjacent u,v € Vlhl. Then a
function hy = (V5'2; V{*2; Vi), where V) = V" U (Ng(v) N V"), V2 = V" — Ng[v]
and V2 = V" U{v} is a P-RDF on G such that V" C V2, V2 C v v C v,
ho(V(G)) < hi(V(G)), no edge of G joins V{* and V2, |V| < |V/"'| and G[VJ]
is isomorphic to G[Vy"] U K;. If V™ is not independent we continue this process
until we get a P-RDF hy = (Vi*; V" V)*) on G, where V;"* is either empty or
independent. Set g = hy.

(i) Since V¥ € Vi UV and VY UV is a P-set, VY is a P-set too (P is induced-
hereditary).

(i) 7pr(G) < g(V(G)) < F(V(G)) = vpr(G).

(iii) We already know that V' C V¥ and E(G[VY UVY]) = E(G[V{]). Since Q is
closed under union with K7, both Vi’ and V{’ U VY are O-sets. O

Corollary 5. Let O C Py C Py € T and let G be a graph. Let Py be closed
under uniton with Ky and Py induced-hereditary. If there is a vyp,r-function f =
(Vi VI Vi) on G such that Vi is a Py-set then vp, r(G) = vp,r(G).

Proof. By Lemma 4, there is a yp, g-function g = (VZ; V% V) on G such that Vy/ C
Ve, v v vPuvy — Vi is independent and no edge of G joins Vi UVY — V4 and
sz . Since P; is closed under union with K; and sz is a Pi-set, VY U VY is a Py-set
which implies g is a P;-RDF. Hence yp,r(G) < vp,r(G) < g(V(G)) = vp,r(G). O

Observation 6. (/5] when P =7T) Let a property P be nondegenerate and induced-
hereditary. Let f = (Vi V5 VS be any vpr(G)-function. Then A(G[V{]) < 1 and
no edge of G' joins Vlf and VQf. If |Vlf| is a minimum then Vlf is independent and if
in addition G is isolate-free then Vof U VQf s a vertex cover.
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Proof. Suppose u,v,w € Vi and wv,ow € E(G). Then g = (V{ U {u,w}; Vi —
{u,v,w}; V' U {v}) is an RDF on G with g(V(G)) = f(V(G)) — 1. Since P is
induced-hereditary, g is a P-RDF on G, a contradiction. Thus A(G[V{]) < 1. If
eV and y € VJ are adjacent then h = (V{ U {z};V{ — {2};V{) is a P-RDF
on G with h(V(G)) = f(V(G)) — 1, a contradiction. If z,t € V] are adjacent then
= (V{ u{z}: Vi = {zt}: V) U{t}) is a P-RDF on G with I[(V(G)) = f(V(Q))
and |V < [V{|. Hence if |V//| is a minimum then V; is independent. Since the
complement of an independent set of an isolate-free graph is a vertex cover, the
result follows. O

Observations 1, 2, 3 and 6 will be used in the sequel without specific reference.

Proposition 7. Let a property P be nondegenerate. For any graph G of order n,
1 <vpr(G) < n. Moreover: (a) vpr(G) =1 if and only if G = K1, (b) vpr(G) = 2
if and only if either G = Ko or A(G) =n—1>1, and (c) ypr(G) = n if and only
if A(G) < 1.

Proof. (a) and (b): Obvious.
(c) If A(G) <1 then clearly vpr(G) = n. If vpr(G) = n then ix(G) = n and the
result follows by Theorem G. O

Observation 8. Let a property P be nondegenerate. Then vpr(Cy) = [2n/3] and

Proposition 9. Let a property P be nondegenerate. For any graph G, ([5] when
P =1)vp(G) < vpr(G) < 29p(G). Moreover, vp(G) = ypr(G) if and only if G

has no edges.

Proof. Let f = (V§: V/; Vi) be any vpr(G)-function. Then Vi UV is a dominating
P-set of G. Hence, yp(G) < |V [+|V | < [V |+21VY | = vpr(G). 1 4p(G) = vpr(G)
then Vy/ = (0 which implies Vi = 0. Therefore yp(G) = vpr(G) = [V{| = [V(G)|.
But then G has no edges. Clearly, if G has no edges then vp(G) = vpr(G) = |V (G)].

Now, let D be a minimum dominating P-set of G. Then g = (V(G) — D, 0, D) is
a P-RDF on G and 27p(G) = 2|D| > vpr(G). O

We will say that a graph G is a P-Roman graph (P is nondegenerate) if ypg(G) =
29p(G). Any nonempty n-order graph having a vertex of degree n — 1 is a P-Roman
graph. All Roman paths and cycles are Py, Csi, Psrio, and Csiio (by Observation
8). Results on Roman graphs (P = Z) may be found in [5].

4 Vertex removal

In this section we examine the effects on the P-Roman domination number when a
graph is modified by deleting a vertex. According to the effects of vertex removal on
the P-Roman domination number of a graph G, let

o Vor(G) = {v € V(G) [ 7pr(G — v) > 7pr(G)}

o Vor(G) ={v € V(G) | 7pr(G —v) < ypr(G)},
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o Vor(G) ={v e V(G) | vpr(G — v) = vpr(G)}-
Clearly {Vpr(G), VRR(G), VARr(G)} is a partition of V(G).

Theorem 10. Let a property P be induced-hereditary and closed under union with
Ky, and let G be a graph of order at least 2. For any vertex v in a graph G, vpr(G) —
1 <vpr(G —v). Moreover:

(i) If ypr(G) =1 = vpr(G — v) then there is a ypg-function f = (V{; V5 Vi) on
G — v such that all vertices in Vlf are isolated in (G — v)[Vlf U VQf] and one of
the following holds:

(i.1) Ne(v) CV{ and g = (VI Vi U{w}; Vi) is a ypr-function on G;

(i.2) all neighbors of v but one, say w, belong to Vof, flw)y =1, g = (Vof U
{w}; Vi —{w}; Vi U{v}) is a ypr-function on G and pnglv, V] = {v, w}.

(it) If there is a ypr-function [ = (VI Vi V) on G such that f(v) = 1 then
Ypr(G —v) =pr(G) — 1.

(iii) Let f = (VI VI V) be a vpg-function on G such that f(v) = 2 and
mglo, V] = {v,u}. Then vpr(G —v) = ypr(G) — 1, Na_yu] C V{, h =
(Vi — {u}; Vi U {u}; Vi — {v}) is a ypgr-function on G — v, and | = (V§' U
{v} —{u}: Vi Vi U{u} —{v}) is a ypr-function on G with pnglu, V}] = {u,v}.
If P is closed under union with Ky then p = (VJ —{u}; V{ U{u,v}: Vi — {v})
is a ypr-function on G.

Proof. Theorem 10 is true when vpr(G) = |V(G)|, because of Proposition 7(c). So,
let vpr(G —v) < vpr(G) < |V(G)|. We shall prove simultaneously that ypg(G —
v) = vpr(G) — 1 and that (i) holds. Since ypgr(G — v) < |V(G — v)|, there is
a ypg-function on G — v, say ty, with nonempty V;°. Note that no edge joins
v and Vy for each ypg-function t on G — v - otherwise t; = (V§ U {v}; V};V4)
is a P-RDF on G with #,(V(G)) = t(V(G — v)), a contradiction. By Lemma 4
there exists a ypgr-function h = (VJ; V};; VJ!) on G — v such that all vertices in
V] are isolated in (G — v)[V{* U Vi!]. If all neighbors of v are in V" then since
P is closed under union with Ky, [ = (VJ;; V* U {v}; V') is a P-RDF on G with
[(V(GQ)) = vpr(G —v) + 1 < vpr(G). Hence ypr(G) — 1 = 4pr(G — v) and (i.1)
holds. Now, let Ng(v)NV* = {zy,...,z;}. Since P is induced-hereditary and closed
under union with Ky, g = (VIU{zy,..., 2} V' —{x1, ..., 2 }; VI U{v}) is a P-RDF
on G and vpr(G) < g(V(GQ)) = vpr(G —v) —k+2 < vpr(G) — k + 2. Hence k =1
which leads to vpr(G) — 1 = ypr(G — v) and g is a ypg-function on G. By the very
definition of ¢ it immediately follows that png[v, Vi] = {v,2z;}. Thus (i.2) holds.

(i) Define h = (VJ; i/ — {v}; V§). Then h is a P-RDF on G — v with h(V (G —
v)) =vpr(G) — L.

(iii) Since v € pnglv, Vi], v is isolated in G[Vi/ UVY]. Since u € pnglv, Vi], uv is
the only one edge, which joins u and sz . Assume M is the set of all neighbors of u
which belong to Vi If M # 0 then g = (Vi UM U{v} —{u}; Vi) = M; Vi U{u} —{v})
is a P-RDF on G with ¢(V(G)) < f(V(G)) = vpr(G) - a contradiction. Hence
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Ng_ou] € V{. But then h is a P-RDF on G — v with h(V (G —v)) = g(V(G)) —1 =
Ypr(G) =1 = vpr(G —v) and [ is a P-RDF on G with [(V(G —v)) = f(V(G)) =
vpr(G). By the definition of I and pnglv, V§] = {v,u} it follows pnglu, VJ] =
{v,u}. If P is closed under union with K, then since Ng({u,v}) — {u, v} C VJ and
pnclv, Vi = {v,u}, it follows that p is a P-RDF on G with p(V(G)) = f(V(G)) =
Vrr(G). m

For each nondegenerate property P we define the following class of graphs G:
CVhp: pr(G — S) < vpr(G) for any set S C V(G) with |S| = k.

Remark 11. Let a property P be nondegenerate. Any n-order graph G, n > 2, with
vpr(G) = n is in CVEy for every k, 1 <k <n—1 (by Proposition 7(c)). All cycles
belonging to the class CVig are Cypyq and Cspyo (by Observation 8).

An immediate consequence of Theorem 10 is the following characterization of the
class CV3p.

Corollary 12. Let a property P be induced-hereditary and closed under union with
K. A graph G is in CVpy if and only if for every vertex v € V(G) one of the
following holds:

(i) there is a ypgr-function f, on G with f,(v) =1;
(i) there is a ypgr-function h, on G such that hy(v) = 2 and pnglv, Vo] = {v, u}.

If, in addition, P is closed under union with Ky then G is in CV3y if and only
if (i) holds for every vertex v of a graph G.

The class C'Vj was introduced by Rad and Volkmann [19]. Since Z is induced-
hereditary and closed under union with K; and with K5, as an immediately conse-
quence of Corollary 12 we have the following result due to Hansberg et al. [12]: G is
in C'V}} if and only if (i) holds for every vertex v of a graph G.

Proposition 13. (/19] when P = I) Let a property P be induced-hereditary and
closed under union with K1, and let v be a vertex of a graph G. If v € VA,(G) then
for every ypr-function f = (Vi'; Vil Vi) on G, f(v) = 2 and |pna[v, ViTN V| > 3.

Proof. Let f = (V§;V/; V) be any ypp-function on G. If v € Vj then f; = (V{ —
{v}; V{ = {v}; V) is a P-RDF on G — v of weight at most vpz(G) - a contradiction.

Assume | M| < 2, where M = pnglv, V{/|nV{. Then fo = (V/ —M; V/ UM,V —
{v}) is an RDF on G — v and fo(V(G —v)) < vpr(G). If V> = V(G — v) then
Ypr(G —v) < [V(G —v)| = fo(V(G —v)) < vpr(G), a contradiction. Thus V5 is
not empty and it clearly is a P-set. But then there is a P-RDF f3 on G — v with
f3(V(G —wv)) < fo(V(G —v)) (by Lemma 4) - a contradiction. O

Corollary 14. ([19] when P = T) Let a property P be induced-hereditary and closed
under union with Ki. If u and v are vertices of a graph G, v € Vp5(G) and u €
VAr(G) then u and v are nonadjacent.
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Proof. Proposition 13 implies f(u) = 2 for every ypg-function f on G. By Theorem
10 it follows that all neighbors of v belong to Vj for some vpg-function g on G. O

In the case when a property P is induced-hereditary and closed under union with
K, Corollary 14 allow us to give a new definition of the class CV2p:
CVag: vpr(G —v) # ypr(G) for each v € V(G).

5 Edge removal

Here we present results on changing of ypr(G) when an edge is deleted from G. When
we remove an edge from a graph GG, the Roman domination number with respect to
the property P can increase or decrease. For instance, if G is a star K ,, p > 3, and
{K1,2K;} C P C T then ypr(G) = 2 and ypr(G —¢) = 3 for all e € E(G). If a
graph G is obtained by three stars K, and three edges ey, €2, e3 joining their centers
then vzr(G) =4+ p and yzr(G — ¢;) = 6, i = 1,2,3. So the edge set of G can be
partitioned into

o Efp(G) = {e € E(G) | 7pr(G — ¢) > vpr(G)},

o Epp(G) ={e € E(G) | vpr(G —€) <pr(G)},

o Epx(G) = {e € E(G) | vpr(G —¢) = vpr(G)}.

Note that Observation E implies E};(G) is empty for every graph G.

Theorem 15. Let a property P be hereditary and closed under union with K. Let
e = xy be an edge of a graph G.

(1) Then ypr(G —e) < ypr(G) + 1.

(ii) If there is a vypr-function f on G — e such that (f(x), f(y)) # (2,2) then
1rr(G) < Ypr(G —€).

(iii) If (f(x), f(y)) = (2,2) for some vypr-function f on G — e then vpr(G) —
min{d¢(z), dc(y)} + 3 < vpr(G — €).

If ex € E(G) then ypr(G) — 1 < ypr(G +e1).

Proof. (i) Let f = (V§; V/; V) be any ypp-function on G. If {f(z), f(y)} # {0,2}
then since P is hereditary, f is a P-RDF on G — e which implies 7pr(G — ¢€) <
f(V(G —e)) = vpr(G). Let without loss of generality f(z) = 0 and f(y) =
Then g = (V' — {z};V{/ U {2}; V) is an RDF on G — zy, with ¢(V (G — zy)) =
F(V(G)+1 = vpr(G) + 1. Since P is hereditary, Vy is a P-set. Now by Lemma 4,
there is a P-RDF h on G — zy with h(V (G — xy)) < g(V(G — xy)) = vpr(G) + 1.
By (i) it immediately follows that if e; € E(G) then vpr(G) — 1 < vpr(G + €1).
(ii) and (iii): Let [ = (V}; V; Vi) be any vypgr-function on G — zy. Hence [ is
an RDF on G. If one of I(x) and I(y) is 0 then [ is a P-RDF on G. If V{ = V(G)
then vpr(G) < |[V(G)| = |V]| = vpr(G —¢). So let V{ is not empty. If i(z) = 1
and I(y) # 0, or visa versa then by Lemma 4 it follows that there is a P-RDF [; on
G with [1(V(G)) < I(V(G)) = (V(G — zy)). It remains the case I(z) = I(y) =
Define an RDF Iy on G as follows: ly(x) = 0, lr(v) = 1 if v € pnglz, VJ] NV} and
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lr(v) = 1(v) - otherwise. Hence Iy(V(G)) = 1(V(G —zy)) — 2+ |png_zy[z, Va] NV} <
vpr(G — 2y) — 2 4+ da_ypy(x) = ypr(G — 2y) — 3 + dg(x). The result follows, since
Lemma 4 implies the existence of a P-RDF I3 on G with l3(V(G)) < L(V(G)). O

Corollary 16. Let a property P be hereditary and closed under union with K.
Let e = xy be an edge of a graph G. If min{dg(x),dg(y)} < 3 then ypr(G) <
vpr(G—e€) < vpr(G)+1. In particular, if A(G) < 3 then E(G) = Ef5(G)UESL(G).

For every graph G and every nondegenerate property P, we define the Roman
bondage (minus Roman bondage, plus Roman bondage, respectively) number with
respect to the property P, denoted bpr(G) (bpi(G), bpr(G), respectively) to be the
cardinality of a smallest set of edges U C E(G) such that vpr(G — U) # vpr(G)

(vpr(G = U) < vpr(G), 7pr(G — U) > ypr(G), respectively). If ypr(G —U) >
ver(G) (vpr(G —U) < vpr(G), respectively) for all U C E(G), we write bpp(G) =
0 (bjp(G) = oo, respectively).

Observation 17. Let P C T be nondegenerate and let G be a nonempty graph.
(i) Then b7p(G) = oo and bix(G) = bzr(G) = br(G).
(i) If A(G) =1 then bpp(G) = bhr(G) = bpr(G) = .
(i) If A(G) < 2 then bpr(G) = 0o and bsx(G) = bix(G) = br(G).
(iv) If A(G) > 2 then b5(G) < 0o and bpr(G) < .
(v) For the cycle of order n,

if n =2 (mod 3),

bpr(Cn) = 00 and by (Cu) = bpa(Cn) otherwise.

I
—N
DN

)

(vi) For the path of order n > 3,

_ 2 ifn=2 (mod 3),
bpr(Pn) = 00 and b;SR(Pn) = bpr(Py) = { 1 jtherwz’sé. )

)

Proof. (i) By Observation E, v7r(G — €) > y7r(G) for every edge e € E(G).

(ii) The result immediately follows from Proposition 7(c).

(iii) If 7" is a graph with A(7T") < 2 then yg(T') = ir(T") (by Theorem F) which
implies Yz(T) = ypr(T). Hence bjp(G) = bin(G) = br(G) and bsp(G) = b7p(G) =
o (by (1))

(iv) By Proposition 7(c), vpr(G) < |V(G)| = vpr(G — E(G)).

(v)=(vi) bpr(Ch) = bpp(FP,) = oo because of (iii). The required results for
bisr(Cy) and bp(P,) provided P = Z due to Rad and Volkmann [17]. The rest
follows immediately by (iii). O

The star S, of order n, n > 1, is a tree on n vertices with one vertex of degree
n — 1 and the other n — 1 having vertex degree 1.
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Theorem 18. Let a property P be hereditary and closed under union with K. Let
G be a nonempty graph of order n, bj,(G) = k < oo and the deletion of any k edges
results in a graph with increased P-Roman domination number. Then one of the
following holds.

(i) k =1 and G is a nonempty forest in which each component is a star different

from Ss.
(ii) k=2 and G = K3 UK, _3.

Proof. Case 1: k = 1. Let f be a ypr-function on G. If uv is an edge of G then
{f(u), f(v)} ={0,2} - otherwise f is a P-RDF on G — uv, a contradiction. Assume,
without loss of generality, f(v) = 2 and f(u) = 0. It immediately follows that
Ng(v) C V{. 1If there are vertices w € V(G) — {v} and & € Ng(v) which are
adjacent then f is a P-RDF on G — xw - a contradiction. Thus the components of
G are stars. Clearly G has no Sy as a component. Furthermore, if S, &k > 3, is a
component of G and e € E(S}) then obviously vpr(G) < vpr(G — €).

Case 2: k = 2. Then for each edge e € E(G), G — e is a forest in which each
component is a star different from S;. Since k # 1, G has exactly one component,
say (1, which has edges; moreover GG is not a star. First let Gy —e=S,. If r > 4
then k = 1, a contradiction. If = 3 then Gy = Kj. Since 2 = 755(K3) = vh5(Ps) <
Yhr(K2 U Ki) = 3, the result follows.

Now let G1 —e = S, U S,, where 1 < p < ¢, p# 2 and ¢ > 3. Since bj,(P)) = 1,
(p,q) #(1,3). If (p=1and g >4) or (p > 3 and ¢ > 3) then for any pendent edge
e; € E(S; —e), G — ey is neither a star nor a union of stars - a contradiction.

Case 3: k > 3. If k = 3 then for any edge e € E(G), G —e = K3 UK, _3; but
this is clearly impossible. Hence there are none for higher values of k. O

For each nondegenerate property P we define the following class of graphs G:

CERpr: vpr(G —€) > vpr(G) for every edge e € E(G).

The following reformulation of Theorem 18(i) gives a complete characterization
of the class CERpg.

Corollary 19. Let a property P be hereditary and closed under union with Ky. A
graph G is in the class CERpg if and only if G is a nonempty forest in which each
component is a star different from Ss.

For any subset U C V(G), by Ey we denote the set of all edges each of which
joins U and V(G) — U.

Theorem 20. Let a property P be hereditary and closed under union with K. Let
G be a connected graph.

(i) If v € VRR(G) UVEL(G) then vpr(G — Egy) > vpr(G).

(i) If © € VAR(Q) then 1 < vpr(G — ) — vpr(G) < dg(z) — 2 and for any subset
S - E{x} with ‘S‘ > dg(.%') — ")/'pR(G — ’U) —F’VPR(G), ’}/'pR(G — S) > ")/'pR(G)
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(iii) If Von(G) # V(G) then bpr(G) < bpy(G) < min{de(u)—1pr(G—u)+7pr(G) |
u € VE(G) UVAR(G)} < AG).

(iv) If bjp(G) > A(G) then a graph G is in CVpp.

Proof. (i) We have vpp(G — Ef)) = vpr(G —v) + 1 > vpr(G).

(ii) Assume p = vpr(G — x) — ypr(G). Let f be any ypg-function on G. Since
p > 0, by Proposition 13 it follows that f(z) = 2. Consider an RDF h = (V| —
Ng(x); VI U (Ng(z) — Vi): Vi — {2}) on G — x. Since V' is a P-set, Lemma 4
implies the existence of a P-RDF [ on G — z with [((V(G — z)) < h(V(G — x)).
But then vpr(G) + p = vpr(G — ) < L(V(G — 2)) < vpr(G) + de(z) — 2. Hence
1 <p <dg(z)—2. For any set S C Ey,y with |S| > dg(z) —p we have ypp(G —S) >
1Pr(G = Efwy) — [Eay| + 15| = (vpr(G —2) + 1) — de(2) + (de(z) —p) = vpr(G) +1,
where the first inequality follows from Theorem 15.

(iii) The result follows immediately by (i) and (ii).

(iv) Immediately by (iii). O

We remark that Theorem 20(iv) shows that the class C'V3, will play an important
role in the study of the plus bondage number with respect to property P.

Given a graph G of order n, let G be the graph of order 5n obtained from G by
attaching the central vertex of a copy of Ps, to each vertex of G.

Proposition 21. Let a property P be nondegenerate and let G be a graph of order
n. Then:

(i) G is a P-Roman graph with ’773(@) = 2n and 7733(@) = 4n;
(ii) V(G) = Vo UVE, and V2, = V(G);
(iii) [2] br(G) = §(G) + 2.

Proof. Clearly the set S of all support vertices of a graph G form a vp(é)—set. Hence
’773(@) = 2n and by Proposition 9, 7733(@) < dn. Since vpr(Ps) = ypr(PU Py) = 4,
we have vpg(G) = 4n. Since f = (V(G)—S: 0: S) is a ypp-function on G, Proposition
13 implies V(G) = Vi U V5. 0

Proposition 21 shows that the bound in Theorem 20(iii) is attainable for all graphs
G when P =1.

Theorem 22. Let a property P be hereditary and closed under union with K. Let G
be a connected graph and x,y, z a path of length 2 in G. Let H be the graph obtained
from G by removing the edges incident with x,y or z with exception of yz and all
edges between y and Ng(x) N Ng(y). Then there is a verter uw € Ng(x) N Ngly] such
that ypr(H + zu) < ypr(H). In particular ([17] when P =T),

bpr(G) < |E(G)| = |E(H)| < da(x) + da(y) + da(z) — 3 — [Na(z) N Na(y)]-
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Proof. Let f = (Vof;Vlf;VQf) be any vypp-function on H. Since z is isolated in
H, f(z) = 1. If f(y) = 2 then ¢ = (V{ U {z};V{ — {2};V)) is a P-RDF on
H + xy of weight less than vypr(H). If f(y) = 1 then f(z) = 1 and h = (Vj U
{z,2}; V) —{x,y,2}; V/ U{y}) is a P-RDF on H + 2y with weight less than ypg(H).
Suppose f(y) = 0. If f(z) = 1 then there is ¢ € Ny(y) with f(t) = 2. But
then | = (Vi U {z};V/ — {2};V)) is a P-RDF on H + at with weight less than
vpr(H). It remains the case f(y) = 0 and f(z) = 2. Suppose T is the set of
all neighbors of y in H which belong to V. As Ny(y) N'Vy = {z} then ¢ =
Vi uTu{z, 2} —{y}; Vi =T — {«};V/ U{y} — {2}) is a P-RDF on H + zy with
weight less than vpr(H ).

Thus, bpr(G) < |E(G)| — |E(H)| and the result follows. O

Theorem 23. Let a property P be hereditary and closed under union with K. Let
G be a planar graph with minimum degree 6(G) > 4.

(i1) Let for each path x,y,z in G if dg(y) = 4 then neither {dg(x),dc(2)} = {6,8}
nor dg(x) = dg(z) = 7. Then bpr(G) < 14.

Proof. The results follow by combining Theorem D and Theorem 22. O

For any edge e = zy € E(G), let {(e) = dg(x)+dg(y)—2 and let {(G) = min{&(e)
: e € E(G)}. The parameter £(G) is called the minimum edge-degree of G.

Theorem 24. Let a property P be hereditary and closed under union with K; and
let G be a connected graph with A(G) > 2.

(1) Then bpr(G) < &(G) + A(G) — 1.

(i1) If G is of orientable genus g and §(G) > 3, then bpr(G) < hi(g) + A(G) — 3.
Furthermore, if G does not contain 3-cycles, then bpr(G) < ha(g) + A(G) — 3.

(111) If G is of nonorientable genus G and 6(G) > 3, then bpr(G) < k1(g)+A(G)—3.
Furthermore, if G does not contain 3-cycles, then bpr(G) < ko(9) + A(G) — 3.

(iv) Then bpr(G) < 2ad(G) + A(G) — 3.

(v) Let G be embeddable on a surface M whose Euler characteristic x is as large
as possible. If G has order n and girth k < oo then:
4k X

bra(G) < ——5(1 =) + A(G) =3,

Proof. (i) Since A(G) > 2, there is a path z,y, z in G such that (zy) = £(G). Now,
by Theorem 22 we have bpr(G) < dg(x) + da(y) + da(z) —3 < &(G) +da(z) — 1 <
£(G) + A(G) — 1.

(ii) Combining (i) and Theorem A we obtain the required.

(iii) The result follows by combining Theorem B and (i).
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(iv) If G is a complete graph then clearly bpr(G) < A(G). Hence we may assume
G has nonadjacent vertices. Theorem H implies that there are 2 vertices, say =
and y, that are either adjacent or at distance 2 from each other, with the property
that dg(z) + dg(y) < 2ad(G). Since G is connected and A(G) > 2, there is a
vertex z such that xyz or xzy is a path. In either case by Theorem 22 we have
brr(G) < dg(z) + da(y) + da(2) — 3 < 2ad(G) + A(G) — 3.

(v) Lemma I and (iv) together imply the result. O

Theorem 25. Let a property P be hereditary and closed under union with K;.
Let G be a connected graph 2-cell embedded on a surface with non negative Fu-
ler characteristic. Let V<5 = {v € V(GQ) | dg(v) < 5}, Gs¢ = G — Vs and
A = {u € V(Gs¢) | dg-y(u) < 6 and |[Ng(u) N V<s| = k}. Then exactly one of
the following holds: B

(ZZ) A2 = (Z); A23 = UZZBAi 7& 0 and 15 < b'pR(G) < Hlln{dc;(u) | u e A23} -3 <
A(G) - 3.

Proof. 1f 2 < A(G) < 6 or Ay is not empty then Theorem 22 implies bpr(G) < 15.
Assume now that each vertex of degree at most 6 in G>¢ has no more than one
neighbor in V. It immediately follows that 0(G>g) > 5. First assume §(G>g) = 5.
By Theorem C, there is an edge zy € E(G>g) such that dg. (x) + da,(y) < 11.
Hence dg(x) + dg(y) < 13. Let without loss of generality dg.,(7) < dg-,(y). Then
 has exactly one neighbor in Vs, say v. By Theorem 22 applied to the path v, z,vy
we have bpr(G) <5+13—3 = 15. Now let §(G>6) > 6. But then G>¢ is a 6-regular
triangulation on the torus or in the Klein bottle. If G = G>¢ then Theorem 22
leads to bpr(G) < 13. If G # Gs¢ then G has a path z,y, z where dg(z) < 5, and
both x and y are in the same face of the triangulation. Again by Theorem 22 we
obtain bpr(G) < 7+ 7+5 —3 —2 = 14. Assume now that A(G) > 7, Ay = 0,
Ass # 0 and 15 < bpr(G). Let u € Asz and vy, vg,v3 € Ng(u) N Ves. Denote
by E; the set of all edges of G which are incident to at least one of vy, vy and wvs.
Since bpr(G) > 16, vpr(G — E1) = vpr(G). Clearly, for any ~vypg-function f on
G — E1, f(v1) = f(ve) = f(vs) = 1. If there is a ypg-function g on G — E; with
g(u) # 0 then g1 = (V5 U {v, 09,03} VY — {u,v1,v9,v3}; V5 U {u}) is a P-RDF
on (G — Ey) U {uvy, uve, uvs} with weight less than g(V(G — Ey)) = vpr(G), a
contradiction. Thus, for any ypg-function g on G — Ey, g(u) = 0.

Let G, be the graph obtained from G by deleting all edges incident to u with
exception of uvy,uvy and uwvs. If h is a ypgr-function on G — E; then hy = ((Voh U
{v1,v9,v3}) — {ul; VP — {v1,v9,v3}; VI U {u}) is a P-RDF on G, and vpr(G) =
h(V(G = Er)) > h(V(Gu))- O

We conclude with the following question.

Question 1. Let a graph G admit a 2-cell embedding on a surface with non negative
Euler characteristic and let a property P be hereditary and closed under union with
K. Is it true that bpr(G) < 157
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Note that in [2], Akbari, Khatirinejad and Qajar recently proved that br(G) < 15

provided G is a planar graph.
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