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Abstract

Let σ be a partition of the positive integer r. A σ-hypergraph H =
H(n, r, q|σ) is an r-uniform hypergraph on nq vertices which are parti-
tioned into n classes V1, V2, . . . , Vn each containing q vertices. An r-subset
K of vertices is an edge of the hypergraph if the partition of r formed by
the non-zero cardinalities |K ∩ Vi|, 1 ≤ i ≤ n, is σ.

In earlier works we have considered colourings of the vertices of H
which are constrained such that any edge has at least α and at most β
vertices of the same colour, and we have shown that interesting results
can be obtained by varying α, β and the parameters of H appropriately.
In this paper we continue to investigate the versatility of σ-hypergraphs
by considering two classical problems: independence and matchings.

We first demonstrate an interesting link between the constrained col-
ourings described above and the k-independence number of a hypergraph,
that is, the largest cardinality of a subset of vertices of a hypergraph not
containing k+ 1 vertices in the same edge. We also give an exact compu-
tation of the k-independence number of the σ-hypergraph H. We then
present results on maximum, and sometimes perfect, matchings in H.
These results often depend on divisibility relations between the parame-
ters of H and on the highest common factor of the parts of σ.

1 Introduction

Let V = {v1, v2, ..., vn} be a finite set, and let E = {E1, E2, ..., Em} be a family of
subsets of V . The pair H = (V,E) is called a hypergraph with vertex-set V (H) = V ,
and with edge-set E(H) = E. When all the edges are of the same size r, we say
that H is an r-uniform hypergraph. A σ-hypergraph H = H(n, r, q | σ), where σ is
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a partition of r, is an r-uniform hypergraph having nq vertices partitioned into n
classes of q vertices each. If the classes are denoted by V1, V2,...,Vn, then a subset K
of V (H) of size r is an edge if the partition of r formed by the non-zero cardinalities
| K ∩ Vi |, 1 ≤ i ≤ n, is σ. The non-empty intersections K ∩ Vi are called the parts
of K, and s(σ) denotes the number of parts. It is maybe worth noting that these σ-
hypergraphs can be considered as a generalization of complete r-partite hypergraphs.
The first two authors introduced σ-hypergraphs in [8], studying a particular instance
of Voloshin colourings of these r-uniform hypergraphs (see [19] for a detailed study of
these colourings). The chromatic spectra and other properties were further studied
in [9, 10]. In this paper, we turn our attention to some classic properties of graphs
and hypergraphs, and investigate these properties for σ-hypergraphs.

A set of vertices of a hypergraph is said to be independent if it contains no
edges. The independence number α(H) of a hypergraph H is the size of a largest
independent set of vertices of H. The problem of finding the maximum independent
set in a graph, and also in hypergraphs, is a well-known NP -hard problem in Graph
Theory (as described in [13]).

We also consider the following variation of independence: a set of vertices S in
an r-uniform hypergraph H is said to be k-independent, for 1 ≤ k ≤ r − 1, if for
every edge E ∈ E(H), |E ∩ S| ≤ k. The largest cardinality of a k-independent set
is denoted αk(H). We observe that (r − 1)-independence is the classical notion of
independence defined above and hence α(H) = αr−1(H), while 1-independence is
sometimes called strong independence. To prevent confusion, we stress here that our
notion of k-independence in r-uniform hypergraphs is different to the notion of the
k-independence number in graphs (see [7, 11]).

We then consider matchings in σ-hypergraphs. Given an r-uniform hypergraph
H, a matching is a set of pairwise vertex-disjoint edges M ⊂ E(H). A perfect
matching is a matching which covers all vertices of H. Graphs which contain a
perfect matching are characterised by a theorem of Tutte (as cited in [17]), but
deciding whether an r-uniform hypergraph contains a perfect matching is an NP-
complete problem for r ≥ 3, as discussed in [13]. We denote the size of a largest
matching in an r-uniform hypergraph H by ν(H). If H has a perfect matching, then

ν(H) = |V (H)|
r

, and clearly ν(H) ≤ |V (H)|
r

.
This paper is organised as follows. We first consider independence and k-in-

dependence in σ-hypergraphs. We start by looking at an interesting link between
k-independence and the upper and lower chromatic numbers χα,β and χα,β respec-
tively, for a constrained colouring of a σ-hypergraph, which is studied extensively
in [1, 2, 3, 4, 5, 6, 10]. A constrained colouring, or t-(α, β)-colouring is a type of
hypergraph colouring of the vertices using t colours such that each edge has at least
α and at most β colours appearing on its vertices. This type of colouring was first
defined in [2]. The lower chromatic number χα,β is defined as the least number k
for which H has a k-(α, β)-colouring. Similarly, the upper chromatic number χα,β
is the largest k for which H has a k-(α, β)-colouring. This serves as further moti-
vation to study these parameters in detail. We then present an exact computation
for the k-independence number in σ-hypergraphs. We then move on to matchings
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in σ-hypergraphs and present tight bounds for ν, as well as conditions for the ex-
istence of and constructions of perfect matchings. We conclude with some further
considerations and open questions for maximum matchings.

2 Independent sets in σ-hypergraphs

In this section we develop some lemmas and tools that lead to Theorem 2.8, in
which we present a complete, effective and easily computable formula for the k-
independence number αk for σ-hypergraphs. Some examples are given after this
theorem is proved.

An important, though simple, link between the k-independence number of hyper-
graphs and the upper and lower (α, β)-chromatic number, χα,β and χα,β respectively,
serves as our starting result and motivation, as it connects the current work to pre-
vious work in [2, 8, 9, 10], which concentrated on (α, β)-colourings of σ-hypergraphs.
This is similar in concept to the C-stability number as an upper bound for χ in
mixed hypergraphs [18, 19].

We first prove a simple lemma to be used in this proposition.

Lemma 2.1. Let 1 ≤ x1 ≤ x2 ≤ . . . ≤ xk be positive integers with

k∑
j=1

xj ≤ q.

Then for every t, 1 ≤ t ≤ k,
t∑

j=1

xj ≤
tq

k
.

Proof. For t < k, by the monotonicity of the terms,

1

t

t∑
j=1

xj ≤
1

t+ 1

t+1∑
j=1

xj

which implies that

1

t

t∑
i=1

xi ≤
1

k

k∑
i=1

xi ≤
q

k

and hence
t∑

j=1

xj ≤
tq

k
.

Proposition 2.2. Let H be an r-uniform hypergraph which admits an (α, β)-colour-
ing. Then

αβ(H) ≥ χα,β(H) ≥ χα,β ≥
(α− 1)|V (H)|

α(H)
.
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Proof. Consider an (α, β)-colouring of H using χα,β(H) colours. Consider a set of
vertices D formed by choosing one vertex from each colour class, so that |D| =
χα,β(H). Since this is valid (α, β)-colouring of H, by defnition each edge has at
most β different colours appearing in it, and hence |E ∩D| ≤ β, ∀E ∈ E(H). Thus
αβ(H) ≥ χα,β(H) ≥ χα,β, by the definition of the αβ independence number.

For the last part, let A1, A2, . . . , Ap, where p = χα,β(H), be a partition of V (H)
into monochromatic colour classes with |A1| ≤ |A2| ≤ . . . ≤ |Ap|. Clearly, the union
of any α − 1 colour classes form an independent set, otherwise there would be an
edge with at most α−1 colours, a contradiction. Hence such a union has cardinality
at most α(H).

Now let χα,β(H) = p = m(α − 1) + z, where 0 ≤ z ≤ α − 2. Then we have m
sets of α − 1 colour classes, and each such set has cardinality at most α(H), and
hence the sum of the cardinality of these classes is at most mα(H). The remaining z

colour classes have total cardinality at most zα(H)
α−1

, by Lemma 2.1, using q = α(H),
k = α− 1 and z = t, and noticing that these z classes are the smallest z classes.

Thus

|V (H)| =
p∑
j=1

|Aj| ≤ mα(H) +
zα(H)

α− 1
=
α(H)

α− 1
(m(α− 1) + z) =

α(H)p

α− 1
,

and hence

p = χα,β(H) ≥ (α− 1)|V (H)|
α(H)

.

In particular, the above Proposition gives a necessary condition for the existence
of an (α, β)-colouring of an r-uniform hypergraph.

Corollary 2.3. Let H be an r-uniform hypergraph. If |V (H)| > α(H)αβ(H)

α−1
, then no

(α, β)-colouring of H exists.

Proof. The lower and upper bounds χα,β and χα,β must lie between (α−1)|V (H)|
α(H)

and

αβ(H) respectively. Hence if

(α− 1)|V (H)|
α(H)

> αβ(H), that is |V (H)| > α(H)αβ(H)

α− 1
,

then no (α, β)-colouring of H exists.

We now prove a lemma inspired by the well-known rearrangement inequality (as
cited in [16]).

Lemma 2.4. Let H = H(n, r, q | σ) be a σ-hypergraph with σ = (a1, . . . , as) and
a1 ≥ a2 ≥ . . . ≥ as ≥ 1. Let B be a subset of V (H) and let Bi = B∩Vi with |Bi| = bi
where b1 ≥ b2 ≥ . . . ≥ bn. Let E∗ be an edge with part Ai of cardinality ai of σ
located in Vi, such that Ai ⊂ Bi or Bi ⊂ Ai when ai < bi or ai ≥ bi respectively for
every 1 ≤ i ≤ s. Then |E∗ ∩B| = max{|E ∩B| : E ∈ E(H)}.
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Proof. Consider the case when an edge E has some part Ai 6∈ V1, . . . , Vs. Then some
class Vj, j = 1 . . . s, contains no element from E. The part Ai is located in some Vz
where z > s, hence bj ≥ bs ≥ bz.

Let EJ be the edge with the part Ai located in Vj (with maximum intersection
with Bj), and with all other parts as in edge E. Then

|EJ ∩B| = |(EJ \ Ai) ∩B)|+ |Bj ∩ Ai|
= |(E \ Ai) ∩B|+ |Bj ∩ Ai|
≥ (E \ Ai) ∩B|+ |Bz ∩ Ai|

and hence |EJ ∩B| ≥ |E ∩B| since bj ≥ bz.
Therefore, we need only consider edges whose parts are located in V1, . . . , Vs, with

maximum intersection with the parts of B.
Now suppose there exists i, 1 ≤ i ≤ s, such that Ai is not located in Vi and let i

be the smallest such value. Then some part Aj is located in Vi, where i < j. Also
Ai is located in some Vz for z ≥ i+ 1. Observe first that ai ≥ aj and bi ≥ bz.

Let us replace the position of the parts Ai and Aj to get an edge EZ so that Ai
is now located in Vi with maximum intersection with Bi and Aj is now located in Vz
with maximum intersection with Bz. We need to consider the following cases:

i. Consider the case when bi ≥ ai and bz ≥ aj. Then clearly

|Ai ∩Bi|+ |Aj ∩Bz| ≥ |Aj ∩Bi|+ |Ai ∩Bz| and hence |EZ ∩B| ≥ |E ∩B|

ii. Consider the case when bi ≥ ai and bz ≤ aj. Then clearly

|Aj ∩Bz| = |Ai ∩Bz| and |Aj ∩Bi| ≤ |Ai ∩Bi|,

and once again

|Ai ∩Bi|+ |Aj ∩Bz| ≥ |Aj ∩Bi|+ |Ai ∩Bz| hence |EZ ∩B| ≥ |E ∩B|.

iii. Consider the case when bi < ai and bz ≥ aj. Then |Ai ∩Bi|+ |Aj ∩Bz| = bi + aj
while

|Ai ∩Bz|+ |Aj ∩Bi| = min{ai, bz}+ min{aj, bi} = bz + aj,

since ai > bi ≥ bz ≥ aj. Hence |EZ ∩B| ≥ |E ∩B|.

iv. Finally, consider the case when bi < ai and bz < aj. Then

|Ai ∩Bi|+ |Aj ∩Bz| = bi + bz while

|Ai ∩Bz|+ |Aj ∩Bi| = min{ai, bz}+ min{aj, bi} ≤ bz + bi,

again giving |EZ ∩B| ≥ |E ∩B|.

Hence we can relocate the part Ai which was located in Vj (for some j > i), and
put it in Vi. Then the smallest i for which Ai is not optimally located in Vi has
increased, and we can repeat the process until Ai is located in Vi for all 1 ≤ i ≤ s,
giving the edge E∗ as required.
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Consider the σ-hypergraph H = H(n, r, q | σ), with σ = (a1, . . . , as), and a1 ≥
a2 ≥ . . . ≥ as ≥ 1.

Let 1 ≤ k ≤ r − 1. Consider the sequence B = (b1, b2, . . . , bn), where b1 ≥ b2 ≥
. . . ≥ bs ≥ . . . ≥ bn, and for j ≥ s = s(σ), bj = bs, and q ≥ max{a1, b1}. Then this
sequence is said to be (q, k, σ)-feasible if

s∑
i=1

min{ai, bi} = k.

Lemma 2.5. Let B = (b1, b2, . . . , bn) be a (q, k, σ)-feasible sequence. Then there
exists t = t(B) ≥ 1 such that bt < at while for j < t, bj ≥ aj.

Proof. If such t = t(B) does not exist, then

s∑
i=1

min{ai, bi} =
s∑
i=1

ai = r > k,

a contradiction.

Lemma 2.6. For a given partition σ = (a1, . . . , as) where

s∑
i=1

ai = r,

there exists at least one (q, k, σ)-feasible sequence for all values of k such that 1 ≤
k ≤ r − 1.

Proof. Consider the sequence where bi = ai for 1 ≤ i ≤ s, and bj = bs = as for j > s.
Now consider the new sequence obtained by setting bj = bs − 1 for j ≥ s. Then

s∑
i=1

min{ai, bi} = r − 1,

giving an (q, r − 1, σ)-feasible sequence.
Now let us assume 1 ≤ t < r− 1, and let (b1, . . . , bs, . . . , bn) be a (q, t, σ)-feasible

sequence. If bs > 0, then the sequence obtained by subtracting 1 from bi, for s ≤ i ≤ n
is a (q, t − 1, σ)-feasible sequence. Otherwise for some value of i, 1 ≤ i < s, bi > 0.
Let j be the largest such index. Then the sequence (b1, b2, . . . , bj − 1, 0, . . . , 0) is a
(q, t− 1, σ)-feasible sequence.

Hence, by induction, there exists a (q, k, σ)-feasible sequence for all 1 ≤ k ≤ r−1.

A (q, k, σ)-feasible sequence B∗ = (b∗1, . . . , b
∗
n) is said to dominate the (q, k, σ)-

feasible sequence B = (b1, . . . , bn) if b∗i ≥ bi for all 1 ≤ i ≤ n and

n∑
i=1

b∗i >

n∑
i=1

bi.

A (q, k, σ)-feasible sequence B is maximal if it is not dominated by any (q, k, σ)-
feasible sequence B∗.

Let M(q, k, σ) be the set of all maximal (q, k, σ)-feasible sequences.
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Lemma 2.7. Let σ = (a1, . . . , as) with a1 ≥ a2 ≥ . . . ≥ as ≥ 1 be a partition of r.
Let B = (b1, . . . , bn) be a (q, k, σ)-feasible sequence. If B is not a maximal (q, k, σ)-
feasible sequence then it can be extended to a maximal (q, k, σ)-feasible sequence B∗ =
(b∗1, . . . , b

∗
n) which dominates B.

Proof. Suppose B is not a maximal (q, k, σ)-feasible sequence.
Then by definition of maximality there is a (q, k, σ)-feasible sequence B∗ that

dominates it, which means that for some i, 1 ≤ i ≤ s , we can replace bi by b∗i = bi+1,
preserving

s∑
j=1,j 6=i

min{aj, bj}+ min{ai, b∗i } = k

and monotonicity, and keeping q ≥ max{a1, b1} (or q ≥ max{a1, b
∗
1} if i = 1), and

in case i = s, we also replace bj by b∗j = bs + 1 for j ≥ s. This gives the sequence
B∗ = (b∗1, . . . , b

∗
n) which is (q, k, σ)-feasible and is such that b∗i ≥ bi for all 1 ≤ i ≤ n,

q ≤ max{a1, b
∗
1} and

n∑
i=1

b∗i >
n∑
i=1

bi

.
This process can be repeated but must terminate, since each time we increase

n∑
i=1

b∗i

by at least 1, and trivially bi ≤ q for 1 ≤ i ≤ n, hence

n∑
i=1

b∗i ≤ qn.

Therefore the process gives a maximal (q, k, σ)-feasible sequence B∗, such that

n∑
i=1

b∗i >
n∑
i=1

bi

.

We now present our main result for k-independence in σ-hypergraphs.

Theorem 2.8. Consider H = H(n, r, q | σ) with σ = (a1, . . . , as) where a1 ≥ a2 ≥
. . . ≥ as ≥ 1 and let 1 ≤ k ≤ r − 1. Then

αk(H) = max{q(t(B)− 1) +
s∑
i=t

bi + (n− s)bs : B ∈M(q, k, σ)}.
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Proof. Let B be k-independent set of maximum cardinality in H. Let Bi = B ∩ Vi
and let bi = |Bi|, and we assume, without loss of generality, that q ≥ b1 ≥ b2 ≥ . . . ≥
bn ≥ 0. By Lemma 2.4 we can consider just the edge E∗ and look at its intersection
with B.

Let us consider b1, b2, . . . , bn. For j ≥ s = s(σ) we may take bj = bs, otherwise
B is not maximal since the maximum intersection of an edge with any s classes is
not larger than the intersection of E∗ with the first s classes, by Lemma 2.4. Since
we are considering E∗, we assume the Ai is located in Vi with optimal (maximum)
intersection with Bi.

We observe that

|E∗ ∩B| =
s∑
i=1

|Ai ∩Bi| =
s∑
i=1

min{ai, bi} ≤ k

since B is k-independent. Hence, for some integer t, t ≤ s we have bt−1 ≥ at−1 but
bt < at, by Lemma 2.5.

Since B is of maximum cardinality then

|E∗ ∩B| =
s∑
i=1

|Ai ∩Bi| = k,

otherwise, by Lemma 2.4, for all edges E ∈ E(H), |E ∩ B| ≤ |E∗ ∩ B| < k and
we can add a vertex to B in Bt where t is the smallest index for which bi < ai, to
get a set B∗, which is still monotonic since either t ≥ 2 and bt−1 ≥ at−1 ≥ at > bt
or t = 1 in which case b1 is the largest element anyway. Therefore B∗ is such that
|E∗ ∩B∗| = |E∗ ∩B|+ 1 ≤ k, contradicting the maximality of B.

Therefore we can conclude that (b1, b2, . . . , bn) is a (q, k, σ)-feasible sequence. We
may assume the B is in fact a maximal (q, k, σ)-feasible sequence, otherwise by
Lemma 2.7, B may be extended to a maximal (q, k, σ)-feasible sequence B∗ since
we are assuming q ≥ max{a1, b1}. This gives a k-independent set with cardinality
greater than |B|, contradicting the maximality of the k-independent set B.

Now for every j < t = t(B) (as defined in Lemma 2.5), min{aj, bj} = aj. By the
maximality of B, for j < t, bj and q are equal, because otherwise we can add vertices
to Bj to get B∗ with |E∗ ∩ B∗| = |E∗ ∩ B| = k and |B∗| ≥ |B|, a contradiction to
the maximality of B. Then

|B| = (t− 1)q +
s∑
i=t

bi + (n− s)bs,

which implies

αk(H) = max{q(t(B)− 1) +
s∑
i=t

bi + (n− s)bs : B ∈M(q, k, σ)}.
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Note: One can observe that the computation of αk(H) depends only on the
structure of σ since the number of created maximal (q, k, σ)-feasible sequences as
well as the number of linear inequalities to be solved depend only on σ, and hence it
is independent of the number of vertices and edges in H. Therefore for fixed r this
is done in O(1) time.

Corollary 2.9. If H = H(n, r, q | σ), then the independence number of H is

α(H) = max{(j − 1)q + (aj − 1)(n− j + 1) : j = 1, . . . , s = s(σ)}.

Proof. It is clear that for an r-uniform hypergraph, α(H) = αr−1(H). Therefore by
Theorem 2.8,

α(H) = max{q(t(B)− 1) +
s∑
i=t

bi + (n− s)bs : B ∈M(q, r − 1, σ)}.

Now a (q, r − 1, σ)-feasible sequence (b1, b2, . . . , bn) is such that

s∑
i=1

min{ai, bi} = r − 1.

A maximal (q, r − 1, σ)-feasible sequence must be of the form

(b1, b2, . . . , bn) = (q, q, . . . , q, aj − 1, aj − 1, . . . , aj − 1)

since:

1. If bj ≤ aj − 2, for some j, 1 ≤ j ≤ s , then

s∑
i=1

min{ai, bi} ≤ r − 2,

contradicting the fact proved in Theorem 2.8 that

|E∗ ∩B| =
i=s∑
i=1

min{ai, bi} = r − 1.

2. If bi = ai − 1 and bj = aj − 1 for 1 ≤ i < j ≤ s then again

s∑
i=1

min{ai, bi} ≤ r − 2,

a contradiction.
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Hence, for precisely one index j, 1 ≤ j ≤ s, bj = aj − 1 and for all other indices,
bi = q if i < j while bi ≤ aj − 1 if i > j. But then

s∑
i=1

min{ai, bi} ≤ a1+, . . . ,+aj−1 + (aj − 1)(s− j + 1) ≤ r − 1,

and equality holds if and only if ak = aj − 1 for j ≤ k ≤ s, for otherwise the sum is
at most r − 2.

So, all maximal (q, r − 1, σ)-feasible sequences must have the form (b1, . . . , bn)
= (q, q, . . . , q, aj − 1, aj − 1, . . . , aj − 1) for some j , 1 ≤ j ≤ s. Note, however, that
not every sequence of this form is in fact a maximal (q, r−1, σ)-feasible sequence. So
this form is necessary but not sufficient for a maximal (q, r− 1, σ)-feasible sequence.
Therefore,

α(H) = max{q(j − 1) + (aj − 1)(n− j + 1) : j = 1, . . . , s},

as stated.

Example 2.10. Consider H = H(n, 9, q | σ) where σ = (4, 3, 2). Let us consider
αk(H) for k = 6, 7, 8.

k=8
We compute α8(H) = α(H). Then the maximal (q, 8, σ)-feasible sequences are:

1. (3, 3, 3, . . . , 3) when t = 1, giving

n∑
i=1

bi = 3n.

2. (q, 2, 2, . . . , 2) when t = 2, giving

n∑
i=1

bi = q + 2(n− 1).

3. (q, q, 1, . . . , 1) when t = 3, giving

n∑
i=1

bi = 2q + n− 2.

Hence α(H) = max{3n, q + 2n − 2, 2q + n − 2}. If n ≥ q then α(H) = 3n. For
q > n, 2q + n− 2 > q + 2n− 2 and hence in this case, α(H) = 2q + n− 2.

k=7
We now consider α7(H). Then the maximal (q, 7, σ)-feasible sequences are:
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1. (3, 2, 2, . . . , 2) when t = 1, giving

n∑
i=1

bi = 3 + 2(n− 1) = 2n+ 1.

2. (q, 2, 1, 1, . . . , 1) when t = 2, giving

n∑
i=1

bi = q + 2 + n− 2 = q + n.

3. (q, q, 0, . . . , 0) when t = 3, giving

n∑
i=1

bi = 2q.

Hence, if n ≥ q, α7(H) = 2n+ 1 while if n < q, α7(H) = 2q.

k=6
We now consider α6(H). Then the maximal (q, 6, σ)-feasible sequences are:

1. (3, 3, 0, . . . , 0) or (3, 2, 1, . . . , 1) or (2, 2, . . . , 2) when t = 1 giving

n∑
i=1

bi = 6,
n∑
i=1

bi = 3 + 2 + n− 2 = n+ 3, and
n∑
i=1

bi = 2n

respectively. Since n ≥ 3, the maximum is 2n.

2. (q, 2, 0, 0, . . . , 0) or (q, 1, 1, . . . , 1) when t = 2 giving

n∑
i=1

bi = q + 2 and
n∑
i=1

bi = q + n− 1

respectively. Again, since n ≥ 3, the maximum is q + n− 1.

3. None when t = 3.

Hence, if n ≥ q − 1, α6(H) = 2n while if n < q − 1, α6(H) = q + n− 1.

3 Matchings and σ-hypergraphs

We now consider matchings in σ-hypergraphs. For the purpose of this section, we
need to give more structure to the vertices of the hypergraph H = H(n, r, q | σ)
with σ = (a1, a2, . . . , as), and a1 ≥ a2 ≥ . . . ≥ as. The classes making up the
vertex set are ordered as V1, V2, . . . , Vn and, within each Vi, the vertices are ordered
as v1,i, v2,i, . . . , vq,i. We visualise the vertex set V (H) as a q× n grid whose first row
is v1,1, v1,2, . . . , v1,n. We sometimes refer to the vertices v1,i, v2,i, . . . , vk,i as the top k
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vertices of the class Vi, and to vq−k+1,i, vq−k+2,i, . . . , vq,i as the bottom k vertices of Vi.
The vertices vk,i and vk+1,i are said to be consecutive in Vi. The class V1 is called the
first class of vertices, and Vn is the last class; Vi and Vi+1 are said to be consecutive
classes. A set of vertices contained in h consecutive rows and k consecutive classes
of V (H) is said to be an h× k subgrid of V (H).

A matching Mc is said to be in canonical form if for every part aj in every edge
E, the vertices in aj are consecutive in that class. Any vertices not in the matching
are all consecutive at the top, or bottom, of each respective class. It is easy to see
that a maximum matching of H can be rearranged into one in canonical form.

Lemma 3.1. Let H = H(n, r, q | σ) be a σ-hypergraph with σ = (a1, a2, . . . , as),
a1 ≥ a2 ≥ . . . ≥ as. Let M be a maximum matching in H. Then M can be changed
into a matching Mc in canonical form.

Proof. Consider M, a maximum matching—consider the vertices in the part aj in an
edge E ∈ M taken from the class Vt. The vertices in this class can be reordered by
some permutation so that the vertices in aj are consecutive in the class Vt. This can
be applied to every part ai in E and creates a new edge Ec which can replace edge
E in the matching. This process can be repeated for every edge in M , without any
effect on the already created new edge, to create a new matching Mc in which the
vertices of every part in every edge are consecutive in their respective class.

In a similar way, the unmatched vertices in any class can be rearranged so that
they are consecutive in their respective class, and are the top or bottom vertices in
this class.

We will use the well-known theorem by Frobenius in several places, and thus we
state it here:

Theorem 3.2. Let a1, a2 be positive integers with gcd(a1, a2) = 1. Then for n ≥
(a1 − 1)(a2 − 1), there are nonnegative integers x and y such that xa1 + ya2 = n.

3.1 Divisibility Conditions

In this section we look at divisibility conditions between certain parameters of a
σ-hypergraph which imply the existence of certain types of matchings. We start off
with a result which gives a simple sufficient condition for the existence of a perfect
matching in a σ-hypergraph.

Lemma 3.3. Consider H = H(n, r, q | σ), where σ = (a1, . . . , as), n ≥ s. If r | q,
then H has a perfect matching.

Proof. It is clear that we need only show that the top r × n grid of vertices of H
afford a perfect matching. Therefore consider only the top r vertices in each of the
classes V1, V2, . . . , Vn. Let each column of r vertices be partitioned into s consecutive
parts of sizes a1, a2, . . . , as. The part ai in Vj will be referred to as the ith part in Vj.
The edge E1 is formed by taking the top a1 vertices from V1, the second part of size
a2 from V2 and so on, “in diagonal fashion”. This is repeated for E2 by “shift one



Y. CARO ET AL. /AUSTRALAS. J. COMBIN. 63 (1) (2015), 12–33 24

class to the right”, taking the top a1 vertices from V2, the second part from V3 etc.
In general, the edge Ej, 1 ≤ j ≤ n, takes the first part from Vj, the second part from
Vj+1 and in general the kth part from Vj+k−1, for 1 ≤ k ≤ s, with addition modulo
n. This gives a perfect matching of the top r × n grid consisting of n edges.

In contrast with the above result we next show that certain σ-hypergraphs do
not have a perfect matching, and that in a maximum matching there may be many
unmatched vertices. We define gcd(σ) = gcd(a1, . . . , as) for σ = (a1, . . . , as).

Lemma 3.4. Let H = H(n, r, q | σ), where σ = (a1, . . . , as), n ≥ s and q ≥ r.
Suppose gcd(σ) = d ≥ 2, and q = t (mod d) where 1 ≤ t ≤ d − 1. Then in
a maximum matching of H, there are at least tn vertices left unmatched. Hence
ν(H) ≤ n(q−t)

r
.

Proof. Every edge in a maximum matching has all its parts divisible by d ≥ 2. So
the parts of every edge in a maximum matching cover 0 (mod d) vertices in each
class, and hence in each class there are at least t vertices left unmatched. As there
are n classes we have at least nt vertices unmatched.

We now present a result which, in the next section, will allow us to “expand” a
maximum matching in a σ-hypergraph to one in another σ-hypergraph with more
vertices.

Lemma 3.5. Let H = H(n, r, q | σ) with σ = (a1, a2, . . . , as), gcd(σ) = d ≥ 2 and
q = md + t where 0 ≤ t ≤ d − 1. Let Hm = H(n, r,md | σ) be the σ-hypergraph
obtained from H by deleting the top t rows of the grid V (H). Let H∗ = H(n, r

d
,m |

σ∗) be a σ∗-hypergraph where σ∗ is a partition of r
d

such that σ∗ = (a1
d
, a2
d
, . . . , as

d
).

Then,

1. Given a matching M in H, there is a corresponding matching M∗ in H∗.

2. Given a matching M∗ in H∗, there is a corresponding matching M in H.

3. Hence, ν(H) = ν(Hm) = ν(H∗).

Proof. Let M∗ be a maximum matching in H∗, with cardinality |M∗|. We “expand”
every vertex in H∗ by replacing it with d consecutive vertices. This gives a new
σ-hypergraph Hm = H(n, r,md | σ), and M∗ becomes a matching M in Hm with
|M | = |M∗|, hence clearly ν(H) ≥ ν(Hm) ≥ ν(H∗).

Now consider M , a maximum matching in H with cardinality |M |. By Lemma
3.4, this matching leaves at least t unmatched vertices in each class. By Lemma
3.1, there exists another maximum matching Mc in which all vertices in every part
of every edge in Mc are consecutive in their respective classes, and in which the
unmatched vertices are all consecutive at the top of their respective class.

So the top t vertices remain unmatched and henceMc is also a maximum matching
in Hm and now replacing each d consecutive vertices of Hm by a single vertex, we get
H∗ = H(n, r

d
,m | σ∗) with a corresponding matching M∗ such that |M∗| = |Mc| =

|M |. Hence ν(H) = ν(Hm) ≤ ν(H∗).
Therefore ν(H) = ν(Hm) = ν(H∗).
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3.2 Rectangular Partitions

We define σ to be a rectangular partition if all of its parts are equal. In this study we
shall consider matchings of σ-hypergraphs where σ is rectangular. In view of Lemma
3.4, we shall start with the rectangular partition all of whose parts are equal to 1.

Lemma 3.6. Let H = H(n, r, q | σ), where σ = (1, 1, . . . , 1), and assume n ≥ (r+1)2

and q ≥ r. Then there is a maximum matching in which the number of vertices left
unmatched is exactly p, which is the value of nq (mod r), and hence

ν(H) =
⌊nq
r

⌋
.

Proof. Let nq = mr + p, where 0 ≤ p ≤ r − 1. What is required is to show that we
can find a perfect matching for these mr vertices leaving us only with p unmatched
vertices as required.

First, consider any z × r array or block of vertices of H. Construct edges
E1, E2, . . . , Ez where each Ei consists of the ith row of the z × r array. This gives a
matching which covers this array.

Now consider any r× (r+ 1) array. This time we define the edges E1, E2, . . . , Er
as follows: Ei consists of all the ith row in the r × (r + 1) array except for the ith

vertex in that row. The edge Er+1 is then made up of the r vertices which have been
left out. Again E1, E2, . . . , Er+1 is a perfect matching of the r × (r + 1) array. Now
we combine these two constructions with Theorem 3.2. If n ≥ r(r − 1), there exist
non-negative integers a and b such that n = ar+ b(r+ 1). Therefore, by splitting up
an r×n grid of vertices into a grids of size r×r and b grids of size r× (r+1), we can
use the above constructions to cover the whole r × n grid with a perfect matching.

Now let us move down the grid of vertices of H. Suppose q = rk + t, where
0 ≤ t ≤ r − 1. The above construction can be repeated for every one of the k r × n
grids, giving a matching which leaves out the remaining t× n grid consisting of the
bottom t vertices of each class Vi We shall now see how we can cover by a matching
many of these vertices.

Starting from the bottom left of the grid of vertices making up V (H), we can
cover any t × r array as we did above in the first construction for a matching of a
z × r grid. Therefore, if n = dr + g, 0 ≤ g ≤ r − 1, we can cover the bottom t× dr
grid in this way, leaving a t × g grid unmatched in the bottom right corner of the
q × n grid V (H). Now, how many of these tg remaining vertices can we cover by a
matching? To see this we need to modify some of the matchings we have constructed
so far.

Consider the top grid of size r × n. In such a grid there are at least r grids of
size r× r or r× (r+ 1) since n ≥ (r+ 1)2. Take the first vertex v of the first edge E1

in the first block and replace it with any vertex v′ from the t× g grid of unmatched
vertices, giving us the edge E ′1 = E−v+v′. Repeat this by replacing the first vertex
in the first edge of the second block with some unmatched vertex in the t× g array.
Doing this for all the first edges in each of the first r blocks uses r vertices from the
t× g array but creates r unused vertices. However no two of these vertices are in the
same column, therefore they form another new edge.
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This procedure can be repeated by replacing every second vertex of the same set
of edges with some unused vertex from the t × g array, and again wih every third
vertex etc. We know that n ≥ (r + 1)2. Hence we have at least r arrays of order
r × r and/or r × (r + 1) which contain at least r2 edges spread across at least r
blocks. Replacing a vertex in the t× g unmatched grid requires one such edge. We
group the vertices in the t× g grid into collections of r vertices, and in each such set
we replace the first vertex using an untouched edge from the first block, the second
vertex using i an untouched edge from the second block and so on. Since we have less
than (r−1)2 vertices in the t×g grid, and at least r2 edges in the blocks, this process
can be carried to the end when less then r vertices remain unmatched. That is, the
number of unmatched vertices is equal to tg reduced mod r. But t = q (mod r) and
g = n (mod r), therefore the number of unused vertices is nq reduced mod r, that
is p, as required.

We can now use Lemmas 3.4, 3.5 and 3.6 to tackle general rectangular partitions.

Theorem 3.7. Let H = H(n, r, q | σ), where σ = (∆,∆, . . . ,∆), and let n ≥ (r+1)2

and q ≥ r∆. Then

ν(H) =

⌊
n(q − q(mod∆))

r

⌋
.

Proof. Let us consider ∆ ≥ 2, since the case ∆ = 1 has already been considered in
Lemma 3.6. Let q = m∆ + t, where t = q (mod ∆) so 0 ≤ t ≤ ∆− 1 and m ≥ r. By
Lemma 3.4, a maximum matching will leave at least t vertices unmatched in each
class, that is a total of nt vertices. Hence let us consider then the σ-hypergraph
Hm = H(n, r,m∆ | σ) and also let H∗ = H(n, s,m | σ∗), where σ∗ = (1, 1, . . . , 1)
and s = s(σ) = r

∆
. By Lemma 3.5, ν(H) = ν(Hm) = ν(H∗).

Now since n ≥ (r + 1)2 and m ≥ r > s, we know, by Lemma 3.6, that H∗

has a maximum matching M∗, with ν(H∗) = bmn
s
c. Let mn = fs + z, where

0 ≤ z ≤ s− 1, then there are z unmatched vertices in H∗, which correspond to z∆
unmatched vertices in the corresponding matching M , in Hm, by Lemma 3.5, where
z = mn (mod s) = n(q−t)

∆
(mod s), and hence z∆ = n(q − t) (mod s). Now in Hm

there are in total nm∆ vertices, and nm∆ = fs∆+z∆ = fr+z∆, hence fr vertices
are matched leaving z∆ ≤ (s−1)∆ < r vertices unmatched, hence M is a maximum
matching in Hm and in H by Lemma 3.5.

So, in H = H(n, r, q | σ), there are tn+ z∆ vertices unmatched and hence

|M | = ν(H) =
nq − nt− z∆

r
=
nq − nt− [(nq − nt)(mods)]

r

=
bnq−nt

s
cs

r
=
bnq−nt

s
c

∆
=

⌊
n(q − q(mod∆))

r

⌋
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3.3 r-good partitions

In view of Lemma 3.4, we now turn our attention to σ-hypergraphs in which σ is not
rectangular but for which gcd(σ) = 1, and we try to reduce the number of vertices
left unmatched. We shall see below that for such partitions we can get a maximum
matching that leaves a relatively small number, in terms of r, of unmatched vertices.

Consider H = H(n, r, q | σ), where σ = (a1, . . . , as). We call σ an r-good partition
if there exists a subsequence π of σ such that

∑
aj∈π aj is coprime to r. A necessary

condition for a partition σ to be r-good is that gcd(σ) = 1. But this is not a sufficient
condition as can be seen for σ = (33, 45, 55, 77) and r = 210.

Let us now consider some important properties of r-good partitions.

Lemma 3.8. Let σ = (a1, a2, . . . , as) be an r-good partition of r. Then there exist
disjoint sets A and B such that:

1. A ∪B = {1, 2, . . . , s}.

2. If

a =
∑
j∈A

aj and b =
∑
j∈B

aj,

then gcd(a, b) = gcd(a, r) = gcd(b, r) = 1.

3. Let L = lcm(a, b). Then gcd(L, r) = 1, and L ≤ r2−1
4
.

Proof. Clearly, if we set A = {i : ai ∈ π} and B = {i : ai 6∈ π}, then A ∪ B =
{1, 2, . . . , s}, A and B are disjoint, and a =

∑
j∈A aj and b =

∑
j∈B aj are such that

gcd(a, b) = gcd(a, r) = gcd(b, r) = 1. If L is the lowest common multiple of a and b
then gcd(L, r) = 1 by simple number theory.

Now L ≤ ab, where a+ b = r. The product ab is maximum if a = b = r
2

and a+ b
is even. But since a and r are coprime and b and r are also coprime, min{a, b} ≤ r

2
−1

and max{a, b} ≥ r
2

+ 1 and hence L ≤ r2−4
4

.
If on the otherhand, r is odd, then the maximum product ab is attained when

min{a, b} = r−1
2

and max{a, b} = r+1
2

, giving L ≤ r2−1
4

.

Let us now consider a general situation where an r-good partition can be used to
give a perfect matching in H(n, r, q | σ).

Lemma 3.9. Consider H = H(n, r, q | σ) where σ is an r-good partition with sets
A and B and numeric values a, b and L as described in Lemma 3.8. If r|n and L|q,
then H has a perfect matching, that is ν(H) = nq

r
.

Proof. Let σa = {aj : j ∈ A} and σb = {aj : j ∈ B}. Consider r classes V1, V2, . . . , Vr
and take L vertices from each of these classes to form an L× r grid of vertices. Let
us divide this into two grids of sizes L× a and L× b. Consider the L× a grid: this
can be divided into L

a
square grids of size a × a, and we can pack, by Lemma 3.3,

a sets of σa into each of these a × a grids, and a total of L copies of σa. Similarly,
the L× b grid can be divided into L

b
square grids of size b× b, and we can pack, by
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Lemma 3.3, b sets of σb into each of these b× b grids, and a total of L copies of σb.
Hence each set of vertices for σa can be matched with a set of vertices of σb giving
an edge of H. Hence we have a perfect matching in an L × r grid. If r|n and L|q,
then we can divide the vertices into a number of L × r grids of vertices and pack
each one as described, giving a perfect matching.

We now state and prove our main theorem. We use two classic results in this
proof. Firstly we use Theorem 3.2, and secondly we use the concept of a Diagonal
Latin Square (DLS). A DLS of order i is an i× i array containing every integer from
0 to i − 1 in every row, every column and on the main diagonal. It is known that
there exists a DLS of order i × i for i ≥ 3. Using this result we can define a DLS
matching as follows:

Let R be an r × s subarray of V (H) for the σ-hypergraph H = H(n, r, q | σ)
where σ = (a1, a2, . . . , as). Let D be a DLS whose entries are a∗1, a

∗
2, . . . , a

∗
s (as shown

in Figure 1). Corresponding to D we can define a perfect matching of R as follows.
Partition the entries of the ith column of R into parts of size a1, a2, . . . , as such that
these parts occur in the same order as the corresponding symbols a∗1, a

∗
2, . . . , a

∗
s appear

in the ith column of D. Now, taking the parts a1, a2, . . . , as, one from each column
of R, gives an edge of H , and these edges together form a perfect matching in R
such that each edge corresponds to a row of D, and hence the parts corresponding
to the a∗i which run down the main diagonal of D are in different edges. These parts
will be referred to as the parts in the main diagonal of the DLS matching. We call
this perfect matching a DLS matching. Figure 1 gives an example of a 9 × 3 DLS
matching when σ = (4, 3, 2).

If T is an r × st subgrid of V (H), then we can divide T into t grids of size r × s
and we can construct a DLS matching for each of these subgrids. We also call this
a DLS matching of T .

Theorem 3.10. Consider H = H(n, r, q|σ) where σ is an r-good partition. Let a, b
and L be as described in Lemma 3.8. Then

1. If r|q and n ≥ s, or r|n and q ≥ (L−1)(r−1), then H has a perfect matching,
that is ν(H) = qn

r

2. If q ≥ L(r − 1) and n ≥ s, then there is a matching in H that leaves at most

 L(r − 1)2 vertices unmatched, that is ν(H) ≥ qn−L(r−1)2

r
.

3. If q ≥ L(r2 − 1), s(σ) ≥ 3 and n ≥ s + r, then there is a matching in H that

leaves at most (r − 1)2 vertices unmatched, that is ν(H) ≥ qn−(r−1)2

r
.

Proof. 1. If r|q and n ≥ s, then by Lemma 3.3, H has a perfect matching.
If r|n and q ≥ m = (L−1)(r−1), then clearly gcd(a, b) = gcd(a, r) = gcd(b, r) =

gcd(L, r) = 1 by elementary number theory. Then by Theorem 3.2, if q ≥ (L−1)(r−
1), there exist non-negative integers x and y such that q = xL + yr. Hence we can
separate the nq vertices into two grids: one which is xL×n, and one which is yr×n.
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Figure 1: The corresponding 9 × 3 DLS matching M for σ = (4, 3, 2), where ∗
represents vertices in part a1 of size 4, � represents vertices in part a2 of size 3, and
• represents vertices in part a3 of size 2

The former grid has a perfect matching by Lemma 3.9, while the latter has a perfect
matching by Lemma 3.3. Hence H has a perfect matching if q ≥ m = (L−1)(r−1).

2. Suppose now that q ≥ m + r − 1 and n ≥ s. Consider the q × n grid
of vertices. For each r × n grid there is a perfect matching by Lemma 3.3. We
take as many such r × n grids as possible, as long as the left over grid is at least
m× n = (L− 1)(r− 1)× n. So, when this process of packing r× n grids is stopped
we are left with a q1 × n grid of unmatched vertices, for some integer q1 such that
(L− 1)(r − 1) ≤ q1 ≤ m+ (r − 1) = (L− 1)(r − 1) + (r − 1) = L(r − 1) (otherwise
we can pack one more strip). Now we use the fact that q1 ≥ m and hence it is in the
range where the q1 × n subgrid has a perfect matching if r|n . Let n = tr + b such
that 0 ≤ b ≤ r− 1. Then the q1× tr grid has a perfect matching, leaving bq1 vertices
unmatched. But b ≤ r − 1 and q1 ≤ L(r − 1), hence bq1 ≤ L(r − 1)2.

3. Suppose now that q ≥ L(r2 − 1) = L(r − 1)(r + 1) = (m + r − 1)(r + 1) ≥
m+ r− 1 = (L− 1)(r− 1) + (r− 1) = L(r− 1) and n ≥ s+ r. Let f be the largest
integer such that n = fs+ h, h ≥ r. Clearly f ≥ 1. For each r× n subgrid of V (H)
there is a perfect matching by Lemma 3.3. We construct this matching such that it
forms a DLS matching for the r × fs subgrid made up of f grids of size r × s. The
remaining r× h part, where r ≤ h ≤ (r+ s− 1) is given any perfect matching which
is possible by Lemma 3.3.
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Starting with the first r rows of V (H), we take as many such r× n grids as long
as the left over grid is at least m×n = (L− 1)(r− 1)×n. Let the remaining grid be
q1×n — then m = (L−1)(r−1) ≤ q1 ≤ m+(r−1) = (L−1)(r−1)+(r−1) = L(r−1)
(otherwise we can take one more r×n grid). Let n = tr+ b such that 0 ≤ b ≤ r− 1.
Since q1 ≥ m, then by part 1 of this theorem, the q1× tr grid has a perfect matching,
leaving q1 × b vertices unmatched, where b ≤ r − 1 and q1 ≤ L(r − 1). Hence
bq1 ≤ L(r − 1)2. Now let q1 = pr + z, where 0 ≤ z ≤ r − 1. Clearly if p = 0 then
bq1 ≤ (r − 1)2 as stated. So let us assume p ≥ 1. We now show how to match more
vertices from this remaining grid. We first observe that since b ≤ r − 1, we have at
least (n−r+1)

s
= f DLS matchings of size r× s whose columns are distinct from those

of the unmatched grid. We take r vertices in a column in the unmatched grid and
partition them into parts of size a1, a2, . . . , as. We take a DLS and replace a part
consisting of a1 vertices from the main diagonal of the matching by the corresponding
part from the r vertices in the unmatched columns, and so on. Every original edge
remains a valid one under this exchange. But now a1, . . . , as in the original DLS
matching are not used. But by the structure of the DLS matchings they form a valid
edge. Hence every DLS matching reduces the number of unmatched vertices by r,
and if we have sufficiently many DLS matchings, we can match pr×b vertices leaving
exactly z × b vertices unmatched. We need exactly pb DLS matchings for this. Now
pb = b (q1−z)

r
< q1 ≤ L(r − 1) . So with f = n−h

s
and g = q−q1

r
we need fg ≥ q1. In

particular since q ≥ L(r − 1)2 = (r + 1)L(r − 1) ≥ (r + 1)q1 and n ≥ r + s, we get
f ≥ 1, g ≥ rq1

r
= q1 and fg ≥ q1, which is the number of DLS matchings required.

Hence we can conclude that there will be at most (r − 1)2 vertices left unmatched,

and hence ν(H) ≥ qn−(r−1)2

r
.

NOTE: For s(σ) = 2 and σ an r-good partition, we can work in a very similar
way without the use of a DLS matching. Very breifly we proceed as follows. Let M
be an r× 2 grid containing two edges in the matching, the first edge made up of the
top a1 vertices in the first columns of M and the top a2 vertices in the second column
of M . The other vertices of M form the second edge of the matching. This M is
the analogue of the previous DLS matching. Now let C be an unmatched column
of r vertices which, in V (H), is not in any of the two columns containing M . The
matching can be augmented to include the vertices of C: form an edge using the
top a1 vertices in the first column of M together with the top a2 vertices in C, and
another edge using the top a2 vertices of the second column of M together with the
bottom a1 vertices of C. Thus r unmatched vertices can be matched in this way, and
if n = r + 2 and q ≥ L(r2 − 1), we get exactly the same resultas for s(σ) ≥ 3.

4 Conclusion

In our earlier work [8, 9, 10] we used σ-hypergraphs in order to throw more light
on colourings of mixed hypergraphs [19] and, more generally, constrained colourings
of hypergraphs. There we found that these hypergraphs were a very flexible tool
for investigating parameters such as the upper and lower chromatic numbers and
phenomena such as gaps in the chromatic spectrum of constrained colourings. In this
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paper we have started to investigate the versatility of σ-hypergraphs in the study of
two other classical areas of hypergraph theory, independence and matchings.

Our first motivation for this work was a very pleasing link between constrained
colourings and independence numbers which holds for general uniform hypergraphs.
We believe that the relationship between the independence numberαβ(H) andα(H),
and the upper and lower chromatic numbers χα,β and χα,β given in Proposition 2.2
shows a facet of constrained colourings which has not been investigated before. In
Theorem 2.8 we see the advantage of the extra structure afforded by σ-hypergraphs.
This structure enabled us to obtain a complete formula for the k-independence num-
ber of σ-hypergraphs whose computation is independent of the size of the hypergraph
but depends only on the structure of σ and, in fact, for fixed r, can be computed in
O(1) time.

When it comes to the consideration of matchings in a σ-hypergraph H, our results
generally depend on elementary number-theoretic relations between the parameters
of H and between the parts of σ. Under some simple conditions on the parameters
of H it is easy to show that it has a perfect matching and, under less restrictive
conditions but assuming all the parts of σ are equal, we were able to compute the
exact number of vertices which are left out of a maximum matching and hence
the size of such a matching. For more general σ we showed that, if the greatest
common factor of its parts is at least 2, then most often a perfect matching is not
possible. When this greatest common factor is 1, we were able to determine a good
approximation for the number of vertices left out of a maximum matching provided
the sum of some parts of σ is coprime with r, the size of the edges of H.

As we have seen, the maximum k-independence problem for σ-hypergraphs can be
computed exactly, while on the other hand, for the maximum matching problem for
σ-hypergraphs we have complete solution in some cases, and in other cases, we have
given a tight approximation for the number of vertices left unmatched. It seems that
improving upon our tight approximations and maybe even getting exact solutions is
a worthy problem to consider.

In colourings of mixed hypergraphs, some of the strongest and most general
results were obtained when the underlying hypergraph had the very regular combi-
natorial structure of a design, as in [12, 14, 15]. The existence of such hypergraphs
is, however, usually very restricted. On the other hand, σ-hypergraphs have a much
less restrictive structure. In [8, 9, 10] we showed that, nevertheless, this structure is
rich enough to yield interesting general results on colourings of mixed hypergraphs
and (α, β)-constrained colourings.
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