Partitioning a cyclic group into well-dispersed subsets with a common gap sequence

Tomoki Nakamigawa
Department of Information Science
Shonan Institute of Technology
1-1-25 Tsujido-Nishikaigan, Fujisawa
Kanagawa 251-8511
Japan
nakami@info.shonan-it.ac.jp

Abstract

Let k, ℓ and n be positive integers with $n=k \ell$. Let $\boldsymbol{a}=\left\{a_{1}, a_{2}, \ldots, a_{\ell}\right\}$ be a multiset of positive integers with $a_{1}+a_{2}+\cdots+a_{\ell}=n$. Let $\mathbb{Z}_{n}=$ $[0, n-1]$ be the cyclic group of order n.

A partition of \mathbb{Z}_{n} into k parts $T_{1}, T_{2}, \ldots, T_{k}$ is called a well-dispersed partition with a gap sequence \boldsymbol{a}, if (1) the cardinality of $T_{i} \cap[(j-1) k, j k-$ 1] is 1 for $1 \leq i \leq k, 1 \leq j \leq \ell$ and (2) a set of ℓ distances of consecutive elements of T_{i} coincides with \boldsymbol{a} as a multiset for $1 \leq i \leq k$.

Amongst other results, it is proved that if k is a power of 2 , then there exists a well-dispersed partition with a gap sequence $\{1,2, \ldots, 2 k-1\}$.

1 Introduction

Let k, ℓ and n be positive integers with $n=k \ell$. Let \mathbb{Z} be the set of integers, and let \mathbb{Z}_{n} be the cyclic group of order n. We regard \mathbb{Z}_{n} as $[0, n-1]=\{0,1, \ldots, n-1\}$.

For a subset $T=\left\{x_{1}, x_{2}, \ldots, x_{k}\right\} \subset[0, n-1]$, where $x_{1}<x_{2}<\cdots<x_{k}$, we define a gap sequence of T as a multiset of positive integers $x_{2}-x_{1}, \ldots, x_{k}-x_{k-1}, x_{1}-x_{k}+n$. Note that if $k=1$, then the gap sequence of $T=\left\{x_{1}\right\}$ is just $\{n\}$.

Our aim is to find a partition of $\mathbb{Z}_{n}=T_{1} \cup T_{2} \cup \cdots \cup T_{k}$ such that a gap sequence of T_{i} is common for $1 \leq i \leq k$.

A related problem is finding a partition of integers \mathbb{Z} into subsets of common gaps. Let a and b be positive integers with $a>b$. It is known that there exists a finite interval $I \subset \mathbb{Z}$ such that I is partitioned into $I=T_{1} \cup T_{2} \cup \cdots \cup T_{k}$, where each T_{i} is a translation of $\{0, a, a+b\}$ or a translation of $\{0, b, a+b\}$ [2]. Let $a=\lambda b+r$ with $\lambda \geq 1,0 \leq r<b$. In this partition, it is known that the cardinality of the shortest interval I is at most $5 a+c_{\lambda} b+r$, where $c_{\lambda} \equiv \lambda(\bmod 6)$ with $2 \leq c_{\lambda} \leq 7$
[1, 3]. Related problems are discussed in [4]. Let $T=\left\{x_{1}, \ldots, x_{n}\right\} \subset \mathbb{Z}$. We call a multiset $x_{2}-x_{1}, x_{3}-x_{2}, \ldots, x_{n}-x_{n-1}$ a gap sequence of T. One interesting unsolved problem is as follows.

Problem 1 [4] For any sequence of positive integers $a_{1}, a_{2}, \ldots, a_{n-1}$, can \mathbb{Z} be partitioned into a family of n-sets with a common gap sequence a_{1}, \ldots, a_{n-1} ?

Problem 1 is open, even for $n=4$.
In this paper, we consider \mathbb{Z}_{n} instead of \mathbb{Z} as an underlying space. The aim of the paper is to study a problem of partitioning \mathbb{Z}_{n} into a family of subsets with a common gap sequence.

We note a connection between a partition of \mathbb{Z} and a partition of \mathbb{Z}_{n}. Let $\mathbb{Z}_{n}=$ $[0, n-1]=T_{1} \cup \cdots \cup T_{k}$ be a partition with a common gap sequence $\boldsymbol{a}=\left(a_{1}, \ldots, a_{\ell}\right)$. Then we have a partition of \mathbb{Z} with a common gap sequence $\boldsymbol{a}^{\prime}=\boldsymbol{a} \backslash\left\{a_{u}\right\}$ for any u with $1 \leq u \leq \ell$. Indeed, we can lift a partition of \mathbb{Z}_{n} to a partition $\mathbb{Z}=$ $\cup_{1 \leq i \leq k}\left(\mathbb{Z}_{n}+T_{i}\right)$. Each $\mathbb{Z}_{n}+T_{i}$ has a partition in \mathbb{Z} into copies of S with a gap sequence \boldsymbol{a}^{\prime}, where the distance between consecutive copies is a_{u}.

Now we introduce an additional condition for a partition of \mathbb{Z}_{n}. For $1 \leq j \leq \ell$, we put $B_{j}=\{x \in[0, n-1]:(j-1) k \leq x \leq j k-1\}$, which is the j-th run of size k. We call a partition $\mathbb{Z}_{n}=[0, n-1]=T_{1} \cup \cdots \cup T_{k}$ a well-dispersed partition with a gap sequence $\boldsymbol{a}=\left\{a_{1}, \ldots, a_{\ell}\right\}$, if (1) $\left|T_{i} \cap B_{j}\right|=1$ for $1 \leq i \leq k, 1 \leq j \leq \ell$ and (2) a gap sequence of T_{i} coincides with \boldsymbol{a} for $1 \leq i \leq k$.

For positive integers k, ℓ and $n=k \ell, \mathcal{G}_{k, \ell}$ denotes a family of multisets $\boldsymbol{a}=$ $\left\{a_{1}, \ldots, a_{\ell}\right\}$ such that there exists a well-dispersed partition of $\mathbb{Z}_{n}=T_{1} \cup \cdots \cup T_{k}$, where a gap sequence of T_{i} is \boldsymbol{a} for $1 \leq i \leq k$. Furthermore, we define $\mathcal{G}_{k}=\cup_{\ell=1}^{\infty} \mathcal{G}_{k, \ell}$.

It is convenient for us to denote a well-dispersed partition $\mathbb{Z}_{n}=T_{1} \cup \cdots \cup T_{k}$ by a matrix $M=\left(m_{i, j}\right)_{1 \leq i \leq k, 0 \leq j \leq n-1}$ having k rows and n columns. For $1 \leq i \leq k$ and $0 \leq j \leq n-1$, if $j \in T_{i}$, then set $m_{i, j}=1$, and otherwise set $m_{i, j}=0$. Then the i-th row of M corresponds to T_{i} for $1 \leq i \leq k$, and M is a concatenation of permutation matrices $M_{0}, M_{1}, \ldots, M_{\ell-1}$ of size k. We write M as $M=M_{0}\left|M_{1}\right| \cdots \mid M_{\ell-1}$.

	M_{0}			M_{1}			M_{2}			
T_{1}	1	0	0		1	0	0	0		1
T_{2}	0	1	0		0	1	1	0		0
T_{3}	0	0	1		0	0	0		0	0

Figure 1. A well-dispersed partition of \mathbb{Z}_{9} into a family of subsets with a common gap sequence $\{1,4,4\}$.

Example 1 Let $k=3$ and $\ell=3 . \mathbb{Z}_{9}=[0,8]$ can be partitioned into $\mathbb{Z}_{9}=T_{1} \cup T_{2} \cup T_{3}$, where $T_{1}=\{0,4,8\}, T_{2}=\{1,5,6\}, T_{3}=\{2,3,7\}$. Then the partition is a welldispersed partition with a gap sequence $\boldsymbol{a}=\{1,4,4\}$. Hence we have $\{1,4,4\} \in \mathcal{G}_{3,3}$ (see Fig. 1).

Before closing this section, we will fix some notation on multisets. Let $\boldsymbol{a}=$ $\left\{a_{1}, \ldots, a_{\ell}\right\}$ and $\boldsymbol{b}=\left\{b_{1}, \ldots, b_{\ell^{\prime}}\right\}$ be multisets. For two scalars s and $t, s \boldsymbol{a}+t$ denotes a multiset $\left\{s a_{i}+t: 1 \leq i \leq \ell\right\}$. The disjoint union of \boldsymbol{a} and \boldsymbol{b} is defined as $\boldsymbol{a} \uplus \boldsymbol{b}=\left\{a_{1}, \ldots, a_{\ell}, b_{1}, \ldots, b_{\ell^{\prime}}\right\}$. The sum of \boldsymbol{a} and \boldsymbol{b} is defined as $\boldsymbol{a}+\boldsymbol{b}=\left\{a_{i}+b_{j}\right.$: $\left.1 \leq i \leq \ell, 1 \leq j \leq \ell^{\prime}\right\}$.

2 Main Results

We will first show some observations for \mathcal{G}_{k} and constructions of well-dispersed partitions.

Observation 1 Let $\boldsymbol{a}=\left\{a_{1}, \ldots, a_{\ell}\right\} \in \mathcal{G}_{k, \ell}$. Then we have
(1) $a_{1}+\cdots+a_{\ell}=k \ell$, and
(2) $1 \leq a_{i} \leq 2 k-1$ for $1 \leq i \leq \ell$.

Suppose that $\boldsymbol{a}, \boldsymbol{b} \in \mathcal{G}_{k}$. Let $P=P_{0}\left|P_{1}\right| \cdots \mid P_{\ell_{1}-1}$ and $Q=Q_{0}\left|Q_{1}\right| \cdots \mid Q_{\ell_{2}-1}$ be matrices corresponding to well-dispersed partitions with gap sequences \boldsymbol{a} and \boldsymbol{b}, respectively. We may assume $P_{0}=Q_{0}$, since we can interchange two rows of Q, if necessary. Then $M=P \mid Q$ corresponds to a well-dispersed partition with a gap sequence $\boldsymbol{a} \uplus \boldsymbol{b}$.

Observation 2 If $\boldsymbol{a}_{i} \in \mathcal{G}_{k, \ell_{i}}$ for $i=1,2$, then we have $\boldsymbol{a}_{1} \uplus \boldsymbol{a}_{2} \in \mathcal{G}_{k, \ell_{1}+\ell_{2}}$.
For $k=2$, we have $\{1,3\} \in \mathcal{G}_{2,2}$, since $\mathbb{Z}_{4}=[0,3]=\{0,3\} \cup\{1,2\}$. We also have $\{2\} \in \mathcal{G}_{2,1}$. Hence, by Observation 2, it follows that for $k=2$, the conditions (1) and (2) of Observation 1 are sufficient for a gap sequence of \mathcal{G}_{2}. However, for $k \geq 3$, the conditions (1) and (2) of Observation 1 are not sufficient for a gap sequence of \mathcal{G}_{k}. For example, we have $\{1,2 k-1\} \notin \mathcal{G}_{k, 2}$ for $k \geq 3$.

Let σ be a permutation of $\{1,2, \ldots, k\}$ such that σ consists of a single cycle, and let P_{σ} be a permutation matrix of size k whose (i, j) entry is $\delta_{\sigma(i), j}$ for $1 \leq i, j \leq k$. We define $M=I\left|P_{\sigma}\right| P_{\sigma}^{2}|\cdots| P_{\sigma}^{k-1}$, where I is the identity matrix of size k. Then M corresponds to a well-dispersed partition.

Observation 3 Let σ be a permutation of $\{1,2, \ldots, k\}$. If σ consists of a single cycle, then $\boldsymbol{a}=\{\sigma(i)-i+k: 1 \leq i \leq k\} \in \mathcal{G}_{k, k}$.

Example 2 Let $k=7$ and $\sigma=(1726354)$, denoted by cycle notation. Then we have a well-dispersed partition $\mathbb{Z}_{49}=[0,48]=\{0,13,15,26,30,39,45\} \cup\{1,12,16,25$, $31,35,48\} \cup\{2,11,17,21,34,36,47\} \cup\{3,7,20,22,33,37,46\} \cup\{4,10,14,27,29,40,44\}$ $\cup\{5,9,18,24,28,41,43\} \cup\{6,8,19,23,32,38,42\}$.

Hence, we have $\{2,4,4,6,9,11,13\} \in \mathcal{G}_{7,7}$.

Next, let us consider a reflection of each run. Let us define a permutation matrix R of size k such that (i, j) entry of R is $\delta_{i, k+1-j}$ for $1 \leq i, j \leq k$. For a matrix $P=P_{0}\left|P_{1}\right| \cdots \mid P_{\ell-1}$ corresponding to a well-dispersed partition with a gap sequence \boldsymbol{a}, let us define $Q_{i}=P_{i} R$ for $1 \leq i \leq \ell-1$. Then $Q=Q_{0}\left|Q_{1}\right| \cdots \mid Q_{\ell-1}$ corresponds to another well-dispersed partition.

Observation 4 If $\boldsymbol{a} \in \mathcal{G}_{k, \ell}$, then we have $2 k-\boldsymbol{a} \in \mathcal{G}_{k, \ell}$.
Example 3 We have $\{2,7,9\} \in \mathcal{G}_{6,3}$, because $\mathbb{Z}_{18}=[0,17]=\{0,9,16\} \cup\{1,8,17\} \cup$ $\{2,11,13\} \cup\{3,10,12\} \cup\{4,6,15\} \cup\{5,7,14\}$. By considering reflections of three runs $[0,5],[6,11],[12,17]$, we have $\mathbb{Z}_{18}=\{5,8,13\} \cup\{4,9,12\} \cup\{3,6,16\} \cup\{2,7,17\} \cup$ $\{1,11,14\} \cup\{0,10,15\}$. Hence, we have $\{3,5,10\} \in \mathcal{G}_{6,3}$.

In a well-dispersed partition of run size k, every gap size is at most $2 k-1$. Hence, it is a natural question whether $[1,2 k-1]$ is contained in \mathcal{G}_{k} or not. For $k=3$, by using a computer, we have $[1,5] \notin \mathcal{G}_{3}$. The main result of the paper is that there exist infinitely many k such that $[1,2 k-1] \in \mathcal{G}_{k}$.

Theorem 5 Let b be a non-negative integer. Let $k=a 2^{b}$. If $a=2,5,6,7$, then $[1,2 k-1] \in \mathcal{G}_{k}$.

This is an open problem for other cases.
Problem 2 For $k \neq 3$, is $[1,2 k-1]$ contained in \mathcal{G}_{k} ?

3 Proof of Theorem 5

The key ingredient for the proof is the following lemma.
Lemma 6 Let $\boldsymbol{a}=\left\{a_{1}, \ldots, a_{\ell}\right\} \in \mathcal{G}_{k, \ell}$ and $\boldsymbol{b}=\left\{b_{1}, \ldots, b_{\ell^{\prime}}\right\} \in \mathcal{G}_{k^{\prime}, \ell^{\prime}}$. If ℓ and ℓ^{\prime} are relatively prime, then $\boldsymbol{c}=k^{\prime}(\boldsymbol{a}-1)+\boldsymbol{b} \in \mathcal{G}_{k k^{\prime}, \ell \ell^{\prime}}$.

Proof of Lemma 6. Let $n=k \ell$ and $n^{\prime}=k^{\prime} \ell^{\prime}$. Let $P=P_{0}\left|P_{1}\right| \cdots \mid P_{\ell-1}$ be a $k \times n$ matrix corresponding to a well-dispersed partition of \mathbb{Z}_{n} with a gap sequence \boldsymbol{a}. Similarly, let $Q=Q_{0}\left|Q_{1}\right| \cdots \mid Q_{\ell^{\prime}-1}$ be a $k^{\prime} \times n^{\prime}$ matrix corresponding to a welldispersed partition of $\mathbb{Z}_{n^{\prime}}$ with a gap sequence \boldsymbol{b}. For $0 \leq t \leq \ell \ell^{\prime}-1$, we define a permutation matrix M_{t} of size $k k^{\prime}$ as $M_{t}=P_{i} \otimes Q_{j}$, the Kronecker product of P_{i} and Q_{j}, where $i \equiv t(\bmod \ell)$ with $0 \leq i \leq \ell-1$ and $j \equiv t\left(\bmod \ell^{\prime}\right)$ with $0 \leq j \leq \ell^{\prime}-1$. Furthermore, we define a $\left(k k^{\prime}\right) \times\left(n n^{\prime}\right)$ matrix M as $M=M_{0}\left|M_{1}\right| \cdots \mid M_{\ell \ell^{\prime}-1}$.

We claim that M corresponds to a well-dispersed partition of $\mathbb{Z}_{n n^{\prime}}$ with a gap sequence \boldsymbol{c}. Indeed, firstly, M is a concatenation of $\ell \ell^{\prime}$ permutation matrices of size $k k^{\prime}$. Secondly, let a row of M, the i-th row with $0 \leq i \leq k k^{\prime}-1$, be fixed. Let $i=i_{1} k^{\prime}+i_{2}$, with $0 \leq i_{1} \leq k-1,0 \leq i_{2} \leq k^{\prime}-1$. For every pair of gaps $a \in \boldsymbol{a}$ and
$b \in \boldsymbol{b}$, there exists a pair of indices α and β such that a is the α-th gap of the i_{1}-th row of P (the gap between two 1's contained in $P_{\alpha-1}$ and P_{α}) and b is the β-th gap of the i_{2}-th row of Q (the gap between two 1's contained in $Q_{\beta-1}$ and Q_{β}). Put t with $0 \leq t \leq \ell \ell^{\prime}-1$ as $t \equiv \alpha(\bmod \ell)$ and $t \equiv \beta\left(\bmod \ell^{\prime}\right)$. Then, the t-th gap of the i-th row of M (the gap between two 1's contained in M_{t-1} and $\left.M_{t}\right)$ is $k^{\prime}(a-1)+b$.

Hence, in each row of M, we have gaps $k^{\prime}\left(a_{i}-1\right)+b_{j}$ for $0 \leq i \leq \ell-1$, $0 \leq j \leq \ell^{\prime}-1$, as required.

Example 4 Let $\boldsymbol{a}=\{1,3\}$. We have $\boldsymbol{a} \in \mathcal{G}_{2,2}$, since there exists a matrix $P=$ $P_{0} \left\lvert\, P_{1}=\left(\begin{array}{ll|ll}1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0\end{array}\right)\right.$, which corresponds to a well-dispersed partition with a gap sequence \boldsymbol{a}. Let $\boldsymbol{b}=\{1,2,3\}$. We have $\boldsymbol{b} \in \mathcal{G}_{2,3}$, since there exists a matrix $Q=$ $Q_{0}\left|Q_{1}\right| Q_{2}=\left(\begin{array}{ll|ll|ll}1 & 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 & 0\end{array}\right)$, which corresponds to a well-dispersed partition with a gap sequence \boldsymbol{b}.

By Lemma 6, we have $\boldsymbol{c}=2(\boldsymbol{a}-1)+\boldsymbol{b}=\{1,2,3,5,6,7\} \in \mathcal{G}_{4,6}$. By the construction in the proof of Lemma 6, the corresponding matrix is $M=P_{0} \otimes Q_{0}\left|P_{1} \otimes Q_{1}\right| P_{0} \otimes Q_{2}\left|P_{1} \otimes Q_{0}\right| P_{0} \otimes Q_{1} \mid P_{1} \otimes Q_{2}$

$$
=\left(\begin{array}{llll|llll|llll|llll|llll|llll}
1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0
\end{array}\right) .
$$

Proposition 7 Let $m \geq 2$. If $[1,2 m-1] \in \mathcal{G}_{m}$, then $[1,4 m-1] \in \mathcal{G}_{2 m}$.
Proof of Proposition 7. Note that $\{1,3\} \in \mathcal{G}_{2,2}$. We apply Lemma 6 with $k=2$, $\ell=2, \boldsymbol{a}=\{1,3\}, k^{\prime}=m, \ell^{\prime}=2 m-1$ and $\boldsymbol{b}=[1,2 m-1]$. Then we have $\boldsymbol{c}=k^{\prime}(\boldsymbol{a}-1)+\boldsymbol{b}=[1,2 m-1] \cup[2 m+1,4 m-1] \in \mathcal{G}_{2 m}$. Since $\{2 m\} \in \mathcal{G}_{2 m}$, by Observation 2, we have $\boldsymbol{c} \uplus\{2 m\}=[1,4 m-1] \in \mathcal{G}_{2 m}$.

By Proposition 7, in order to complete the proof of Theorem 5, it suffices to show that $[1,2 k-1] \in \mathcal{G}_{k}$ for $k=2,5,6,7$. Note that for $k=5,6,7$, the following constructions were found by using computer.

Let $k=2$. We have a partition $\mathbb{Z}_{6}=\{0,2,5\} \cup\{1,3,4\}$. Then the partition is a well-dispersed partition with a gap sequence $[1,3]$.

Let $k=5$. We have a partition

$$
\begin{aligned}
\mathbb{Z}_{45} & =\{0,5,13,17,23,26,33,35,44\} \\
& \cup\{1,7,12,16,24,25,34,36,43\} \\
& \cup\{2,8,11,18,20,29,30,38,42\} \\
& \cup\{3,9,10,19,22,27,31,39,41\} \\
& \cup\{4,6,14,15,21,28,32,37,40\} .
\end{aligned}
$$

Then the partition is a well-dispersed partition with a gap sequence $[1,9]$.

Let $k=6$. We have a partition

$$
\begin{aligned}
\mathbb{Z}_{54} & =\{0,10,16,20,27,32,40,42,53\} \\
& \cup\{1,11,12,23,25,31,39,44,51\} \\
& \cup\{2,9,14,22,24,35,36,46,52\} \\
& \cup\{3,8,15,19,29,30,41,43,49\} \\
& \cup\{4,6,17,18,28,34,38,45,50\} \\
& \cup\{5,7,13,21,26,33,37,47,48\} .
\end{aligned}
$$

Then the partition is a well-dispersed partition with a gap sequence
$\{1,2,4,5,6,7,8,10,11\}$. On the other hand, we have a partition $\mathbb{Z}_{12}=\{0,9\} \cup$ $\{1,10\} \cup\{2,11\} \cup\{3,6\} \cup\{4,7\} \cup\{5,8\}$. Then the partition is a well-dispersed partition with a gap sequence $\{3,9\}$. By Observation 2, we have $\{1,2,4,5,6,7,8,10,11\} \uplus$ $\{3,9\}=[1,11] \in \mathcal{G}_{6}$.

Let $k=7$. We have a partition

$$
\begin{aligned}
\mathbb{Z}_{91} & =\{0,10,16,21,33,36,47,51,60,67,75,77,90\} \\
& \cup\{1,11,19,25,30,39,46,50,62,63,76,78,89\} \\
& \cup\{2,12,14,27,28,40,43,54,58,66,73,79,88\} \\
& \cup\{3,13,15,26,31,35,48,49,61,64,72,81,87\} \\
& \cup\{4,9,20,22,34,37,44,52,56,69,70,80,86\} \\
& \cup\{5,7,17,24,29,41,42,55,59,65,74,82,85\} \\
& \cup\{6,8,18,23,32,38,45,53,57,68,71,83,84\} .
\end{aligned}
$$

Then the partition is a well-dispersed partition with a gap sequence [1, 13].

Acknowledgments

I thank anonymous referees for their helpful suggestions, which have improved the presentation of the paper.

References

[1] A. Adler and F. C. Holroyd, Some results on one-dimensional tilings, Geometriae Dedicata 10 (1981), 49-58.
[2] R. Honsberger, Mathematical Gems II, the Dolciani Mathematical Expositions, Mathematical Association of America (1976), 84-87.
[3] T. Nakamigawa, One-dimensional tilings with congruent copies of a 3-point set, Discrete and Computational Geometry, Japanese Conference JCDCG '98, (J. Akiyama, M. Kano and M. Urabe, Eds.), Lec. Notes Comp. Sci. 1763 (2000), 220-234.
[4] T. Nakamigawa, One-dimensional tilings using tiles with two gap lengths, Graphs Combin. 21 (2005), 97-105.

