A note on the cyclic matching sequencibility of graphs

Donald L. Kreher Adrián Pastine Leah Tollefson

Michigan Technological University
Houghton, MI 49931-1295
U.S.A.
kreher@mtu.edu agpastin@mtu.edu lctollef@mtu.edu

Abstract

In this note we present answers to the open problems posed by Brualdi, Kiernan, Meyer and Schroeder in [Cyclic matching sequencibility of graphs, Australas. J. Combin. 53 (2012), 245-256].

1 Discussion and response

Let $G \subseteq K_{n}$ be a graph of order n with m edges. The matching number of G is the maximum number of edges in a matching. The matching number of a linear ordering $e_{1}, e_{2}, \ldots, e_{m}$ of the edges of G is the largest number d such that every d consecutive edges in the ordering form a d-matching of G. The matching sequencibility of G, denoted $\operatorname{MS}(G)$, is the maximum matching number of a linear ordering of the edges of G. The cyclic matching sequencibility of G, denoted $\operatorname{CmS}(G)$, is the largest integer d such that there exists a cyclic ordering of the edges so that every d consecutive edges in the ordering form a matching of G. In [1] Brualdi, Kiernan, Meyer, and Schroeder pose three questions concerning the relationship between $\operatorname{MS}(G)$ and $\operatorname{CMS}(G)$. In this note we use the graph Y_{n} in Figure 1 to provide answers to each of these questions. If G is any simple graph, $k G$ denotes the multi-graph in which every edge of G is replicated k times.

If we consider the linear ordering α as a function

$$
\alpha: E(G) \mapsto\{1, \ldots, m\}
$$

we can define the linear distance in α between two edges e_{i}, e_{j} as:

$$
d_{\alpha}\left(e_{i}, e_{j}\right)=\left|\alpha\left(e_{i}\right)-\alpha\left(e_{j}\right)\right|
$$

Similarly if we consider the cyclic ordering β as a function:

$$
\beta: E(G) \mapsto\{1, \ldots, m\}
$$

Figure 1: The graph Y_{n}
we can define the cyclic distance in β between two edges e_{i}, e_{j} as:

$$
d_{\beta}\left(e_{i}, e_{j}\right)=\min \left\{\left|\beta\left(e_{i}\right)-\beta\left(e_{j}\right)\right|, m-\left|\beta\left(e_{i}\right)-\beta\left(e_{j}\right)\right|\right\}
$$

Question 1: Given a graph G with matching number p, is there a positive integer k such that $\operatorname{MS}(k G)=p \quad(\operatorname{CMS}(k G)=p)$?

The graph Y_{n} has diameter n and hence because no two of the edges

$$
\left\{v_{1}, v_{2}\right\},\left\{v_{1}, v_{n+1}\right\},\left\{v_{1} v_{n+2}\right\}
$$

are in a matching it is easy to see the matching number of Y_{n} is $n / 2$ if n is even; $(n+1) / 2$ if n is odd. However when n is odd the largest matching containing $v_{1} v_{2}$ is $(n-1) / 2$. Hence, $\operatorname{Ms}\left(Y_{n}\right) \leq(n-1) / 2$. Now consider $k G=k Y_{n}, n$ odd. Any of the k edges between the vertices $\left\{v_{1}\right\},\left\{v_{2}\right\}$ can be in a matching of size at most $(n-1) / 2$. Thus, $\operatorname{MS}\left(k Y_{n}\right) \leq(n-1) / 2$ for any k.

The answer to Question 1 is no.
Question 2: For a graph G, we have $\operatorname{ms}(G) \geq \operatorname{cms}(G)$. How large can $\operatorname{ms}(G)-$ $\operatorname{CMS}(G)$ be? Is $\operatorname{CMS}(G) \geq \operatorname{MS}(G)-1$?

Consider the graph Y_{n}, when n is even. Label the edges according to the following table:

Edge	Label		
$\left\{v_{2 i}, v_{2 i+1}\right\}$	\mapsto	$i+1$,	$1 \leq i<\frac{n}{2}$
$\left\{v_{2 i+1}, v_{2 i+2}\right\}$	\mapsto	$\frac{n}{2}+1+i$,	$1 \leq i<\frac{n}{2}$
$\left\{v_{n+2}, v_{1}\right\}$	\mapsto	$\frac{n}{2}+1$	
$\left\{v_{1}, v_{2}\right\}$	\mapsto	$n+1$	
$\left\{v_{n+1}, v_{1}\right\}$	\mapsto	1	

This labelling gives us $\operatorname{MS}\left(Y_{n}\right) \geq \frac{n}{2}-1$.
Let β be a cyclic ordering of Y_{n} and let e_{0}, e_{1}, e_{2} be the three edges incident to the vertex v_{1} ordered such that

$$
1 \leq \beta\left(e_{0}\right)<\beta\left(e_{1}\right)<\beta\left(e_{2}\right) .
$$

For any $i \in \mathbb{Z}_{3}$ consider the set $\left\{e \in E(G): \beta\left(e_{i}\right) \leq \beta(e) \leq \beta\left(e_{i+1}\right)\right\}$. This is a set of size $d_{\beta}\left(e_{i}, e_{i+1}\right)+1$ which is not a matching. Therefore the β-distance between
edges e_{i} and e_{i+1} is an upper bound to the matching number of β. The sum of these distances is:

$$
d_{\beta}\left(e_{0}, e_{1}\right)+d_{\beta}\left(e_{1}, e_{2}\right)+d_{\beta}\left(e_{2}, e_{0}\right)=n+1 .
$$

Taking the average we obtain:

$$
\frac{d_{\beta}\left(e_{0}, e_{1}\right)+d_{\beta}\left(e_{1}, e_{2}\right)+d_{\beta}\left(e_{2}, e_{0}\right)}{3}=\frac{n+1}{3} .
$$

Hence for some i we have $d_{\beta}\left(e_{i}, e_{i+1}\right) \leq \frac{n+1}{3}$ and the matching number of β is at most $\frac{n+1}{3}$. Therefore $\operatorname{CMS}\left(Y_{n}\right) \leq \frac{n+1}{3}$.

Thus,

$$
\operatorname{MS}\left(Y_{n}\right)-\operatorname{CMS}\left(Y_{n}\right) \geq \frac{n}{2}-1-\frac{n+1}{3}=\frac{n-4}{6} .
$$

Thus, we see that

$$
\lim _{n \rightarrow \infty} \frac{\operatorname{MS}\left(Y_{n}\right)-\operatorname{CMS}\left(Y_{n}\right)}{n} \geq \frac{1}{6}
$$

Consequently our answer to Question 2 is that the difference $\operatorname{ms}(G)-\operatorname{CMS}(G)$ can be made as large as desired.

Question 3: Given a graph G, is $\operatorname{CMS}(2 G)=\operatorname{MS}(G)$?
From our answer to Question 2 we know that $\operatorname{MS}\left(Y_{2 k}\right) \geq k-1$, where $n=2 k$. Now consider $2 Y_{2 k}$. Let β be a cyclic ordering of $2 Y_{2 k}$ and let $e_{0}, e_{1}, e_{2} \ldots, e_{5}$ be the six edges incident to the vertex v_{1} ordered such that

$$
1 \leq \beta\left(e_{0}\right)<\beta\left(e_{1}\right)<\cdots<\beta\left(e_{5}\right) .
$$

For any $i \in \mathbb{Z}_{6}$ consider the set $\left\{e \in E(G): \beta\left(e_{i}\right) \leq \beta(e) \leq \beta\left(e_{i+1}\right)\right\}$. This is a set of size $d_{\beta}\left(e_{i}, e_{i+1}\right)+1$ which is not a matching. Therefore the β-distance between edges e_{i} and e_{i+1} is an upper bound to the matching number of β. The sum of these distances is:

$$
d_{\beta}\left(e_{0}, e_{1}\right)+d_{\beta}\left(e_{1}, e_{2}\right)+\cdots+d_{\beta}\left(e_{5}, e_{0}\right)=4 k+2
$$

Taking the average we obtain:

$$
\frac{d_{\beta}\left(e_{0}, e_{1}\right)+d_{\beta}\left(e_{1}, e_{2}\right)+\cdots+d_{\beta}\left(e_{5}, e_{0}\right)}{6}=\frac{4 k+2}{6}
$$

Hence for some i we have $d_{\beta}\left(e_{i}, e_{i+1}\right) \leq \frac{4 k+2}{6}$ and the matching number of β is at most $\frac{4 k+2}{6}$. Therefore $\operatorname{CMS}\left(2 Y_{2 k}\right) \leq \frac{4 k+2}{6} \leq k-1 \leq \operatorname{MS}\left(2 Y_{2 k}\right)$, and the answer to the Question 3 is no.

2 Further results

Given the answer to Question 2 one might ask how small can $\operatorname{Cms}(G)$ be? We now provide an answer.

Lower Bound for $\mathrm{cms}(G)$

Theorem $2.1\lfloor\operatorname{MS}(G) / 2\rfloor \leq \operatorname{CMS}(G)$.
Proof: Let $\operatorname{Ms}(G)=n$ and write $|E(G)|=k n+r$ for some $k \geq 1$ and $r<n$. Choose an ordering $\alpha: E(G) \mapsto\{1, \ldots, k n+r\}$ of the edges of G with matching number n. For $1 \leq i \leq k$, let:

$$
A_{i, 1}=\left\{n(i-1)+1, \ldots,\left\lfloor\frac{n(2 i-1)}{2}\right\rfloor\right\} \quad \text { and } \quad A_{i,-1}=\left\{\left\lfloor\frac{n(2 i-1)}{2}\right\rfloor+1, \ldots, n i\right\}
$$

Also let

$$
A_{k+1,1}=\left\{k n+1, \ldots, k n+\left\lfloor\frac{n}{2}\right\rfloor\right\} \cap\{1, \ldots, k n+r\}
$$

and

$$
A_{k+1,-1}=\left\{k n+\left\lfloor\frac{n}{2}\right\rfloor+1, \ldots,(k+1) n\right\} \cap\{1, \ldots, k n+r\} .
$$

Define the ordering $\beta: E(G) \mapsto\{1, \ldots, k n+r\}$ by

$$
\beta(x)= \begin{cases}\alpha(x)-(i-1)\left\lceil\frac{n}{2}\right\rceil & \text { if } \alpha(x) \in A_{i, 1} \\ n k+r-\alpha(x)+i\left\lfloor\frac{n}{2}\right\rfloor+1 & \text { if } \alpha(x) \in A_{i,-1} .\end{cases}
$$

We chose to define β in this way so that β will satisfy the following three conditions:
(i) If $\alpha(x), \alpha(y) \in \bigcup_{i=1}^{k+1} A_{i, 1}$, then $\beta(x)<\beta(y)$ if and only if $\alpha(x)<\alpha(y)$.
(ii) If $\alpha(x) \in \bigcup_{i=1}^{k+1} A_{i, 1}, \alpha(y) \in \bigcup_{i=1}^{k+1} A_{i,-1}$, then $\beta(x)<\beta(y)$ always.
(iii) If $\alpha(x), \alpha(y) \in \bigcup_{i=1}^{k+1} A_{i,-1}$, then $\beta(x)<\beta(y)$ if and only if $\alpha(x)>\alpha(y)$.

For any set B of cyclically consecutive edges with respect to the ordering β with $|B|=\left\lfloor\frac{n}{2}\right\rfloor$, we want to show that B is a matching. If $\alpha(B) \subset A_{i, \epsilon}$ the result is trivial. Otherwise we have three cases:

Case 1: $\alpha(B) \subset A_{i, \epsilon} \cup \boldsymbol{A}_{i+1, \boldsymbol{\epsilon}}$
If $\alpha(B) \subset A_{i, \epsilon} \cup A_{i+1, \epsilon}$, consider $A=B \cup \alpha^{-1}\left(A_{i-\frac{-1+\epsilon}{2},-\epsilon}\right)$. As A is a set of n or fewer consecutive edges with respect to the ordering α, A is a matching. Hence B is a matching.
Case 2: $\alpha(B) \subset A_{k+1,1} \cup \boldsymbol{A}_{\boldsymbol{k + 1},-1} \cup \boldsymbol{A}_{\boldsymbol{k},-1}$
If $\alpha(B) \subset A_{k+1,1} \cup A_{k+1,-1} \cup A_{k,-1}$, consider $A=B \cup \alpha^{-1}\left(A_{k+1,1}\right)$. As A is a set of n or fewer consecutive edges with respect to the ordering α, A is a matching. Hence B is a matching.

Case 3: $\boldsymbol{\alpha}(B) \subset \boldsymbol{A}_{1,-1} \cup \boldsymbol{A}_{1,1}$

If $\alpha(B) \subset A_{1,-1} \cup A_{1,1}$, consider $A=\alpha^{-1}\left(A_{1,-1} \cup A_{1,1}\right)$. As A is a set of n or fewer consecutive edges with respect to the ordering α, A is a matching and so is B because $B \subset A$.

We will now provide an example that shows that this bound is sharp when $\operatorname{ms}(G)=$ $2 k$ and almost sharp when $\operatorname{MS}(G)=2 k+1$.

Let L_{n} be the disjoint union of P_{2}, the path of length two, with $n-1$ copies of K_{2}, i.e.:

If the edges of P_{2} are x_{1}, x_{2}, then any ordering α such that $\alpha\left(x_{1}\right)=1$ and $\alpha\left(x_{2}\right)=n+1$ has matching number n. This is clearly an upper bound to $\operatorname{MS}\left(L_{n}\right)$, as it has $n+1$ edges. Therefore $\operatorname{Ms}\left(L_{n}\right)=n$.

The determination of $\operatorname{CMS}\left(L_{n}\right)$ is similar to the way $\operatorname{CMS}\left(Y_{n}\right)$ was determined. Here any ordering β will have $d_{\beta}\left(x_{1}, x_{2}\right) \leq\left\lfloor\frac{n}{2}\right\rfloor+1=\left\lceil\frac{n}{2}\right\rceil$. But this number is achieved by any ordering β that satisfies $\beta\left(x_{1}\right)=1, \beta\left(x_{2}\right)=\left\lceil\frac{n}{2}\right\rceil+1$. Hence $\operatorname{CmS}\left(L_{n}\right)=\left\lceil\frac{n}{2}\right\rceil=$ $\left\lceil\frac{\mathrm{MS}\left(L_{n}\right)}{2}\right\rceil$.

Notice that for $n=2 k,\left\lceil\frac{n}{2}\right\rceil=\left\lfloor\frac{n}{2}\right\rfloor=\frac{n}{2}$, thus the bound given in Theorem 2.1 is sharp for even n. When $n=2 k+1,\left\lceil\frac{n}{2}\right\rceil=\left\lfloor\frac{n}{2}\right\rfloor+1$ and so if the bound is not sharp it is only off by 1 .

References

[1] R.A. Brualdi, K.P. Kiernan, S.A. Meyer and M.W. Schroeder, Cyclic matching sequencibility of graphs, Australas. J. Combin. 53 (2012), 245-256.

