A note on the cyclic matching sequencibility of graphs

DONALD L. KREHER ADRIÁN PASTINE LEAH TOLLEFSON

Michigan Technological University Houghton, MI 49931-1295 U.S.A.

kreher@mtu.edu agpastin@mtu.edu lctollef@mtu.edu

Abstract

In this note we present answers to the open problems posed by Brualdi, Kiernan, Meyer and Schroeder in [Cyclic matching sequencibility of graphs, *Australas. J. Combin.* **53** (2012), 245–256].

1 Discussion and response

Let $G \subseteq K_n$ be a graph of order n with m edges. The matching number of G is the maximum number of edges in a matching. The matching number of a linear ordering e_1, e_2, \ldots, e_m of the edges of G is the largest number d such that every d consecutive edges in the ordering form a d-matching of G. The matching sequencibility of G, denoted MS(G), is the maximum matching number of a linear ordering of the edges of G. The cyclic matching sequencibility of G, denoted CMS(G), is the largest integer d such that there exists a cyclic ordering of the edges so that every d consecutive edges in the ordering form a matching of G. In [1] Brualdi, Kiernan, Meyer, and Schroeder pose three questions concerning the relationship between MS(G) and CMS(G). In this note we use the graph Y_n in Figure 1 to provide answers to each of these questions. If G is any simple graph, kG denotes the multi-graph in which every edge of G is replicated k times.

If we consider the linear ordering α as a function

$$\alpha: E(G) \mapsto \{1, \dots, m\}$$

we can define the linear distance in α between two edges e_i, e_j as:

$$d_{\alpha}(e_i, e_j) = |\alpha(e_i) - \alpha(e_j)|$$

Similarly if we consider the cyclic ordering β as a function:

$$\beta: E(G) \mapsto \{1, ..., m\}$$

Figure 1: The graph Y_n

we can define the cyclic distance in β between two edges e_i, e_j as:

$$d_{\beta}(e_i, e_j) = \min\{|\beta(e_i) - \beta(e_j)|, m - |\beta(e_i) - \beta(e_j)|\}$$

Question 1: Given a graph G with matching number p, is there a positive integer k such that MS(kG) = p (CMS(kG) = p)?

The graph Y_n has diameter n and hence because no two of the edges

$$\{v_1, v_2\}, \{v_1, v_{n+1}\}, \{v_1v_{n+2}\}$$

are in a matching it is easy to see the matching number of Y_n is n/2 if n is even; (n+1)/2 if n is odd. However when n is odd the largest matching containing v_1v_2 is (n-1)/2. Hence, $MS(Y_n) \leq (n-1)/2$. Now consider $kG = kY_n$, n odd. Any of the kedges between the vertices $\{v_1\}, \{v_2\}$ can be in a matching of size at most (n-1)/2. Thus, $MS(kY_n) \leq (n-1)/2$ for any k.

The answer to Question 1 is no.

Question 2: For a graph G, we have $MS(G) \ge CMS(G)$. How large can MS(G) - CMS(G) be? Is $CMS(G) \ge MS(G) - 1$?

Consider the graph Y_n , when *n* is even. Label the edges according to the following table:

Edge		Label	
$\{v_{2i}, v_{2i+1}\}$	\mapsto	i+1,	$1 \le i < \frac{n}{2}$
$\{v_{2i+1}, v_{2i+2}\}$	\mapsto	$\frac{n}{2} + 1 + i,$	$1 \le i < \frac{\bar{n}}{2}$
$\{v_{n+2}, v_1\}$	\mapsto	$\frac{n}{2} + 1$	
$\{v_1, v_2\}$	\mapsto	$\overline{n} + 1$	
$\{v_{n+1}, v_1\}$	\mapsto	1	

This labelling gives us $MS(Y_n) \ge \frac{n}{2} - 1$.

Let β be a cyclic ordering of Y_n and let e_0, e_1, e_2 be the three edges incident to the vertex v_1 ordered such that

$$1 \le \beta(e_0) < \beta(e_1) < \beta(e_2)$$

For any $i \in \mathbb{Z}_3$ consider the set $\{e \in E(G) : \beta(e_i) \leq \beta(e) \leq \beta(e_{i+1})\}$. This is a set of size $d_{\beta}(e_i, e_{i+1}) + 1$ which is not a matching. Therefore the β -distance between

edges e_i and e_{i+1} is an upper bound to the matching number of β . The sum of these distances is:

$$d_{\beta}(e_0, e_1) + d_{\beta}(e_1, e_2) + d_{\beta}(e_2, e_0) = n + 1.$$

Taking the average we obtain:

$$\frac{d_{\beta}(e_0, e_1) + d_{\beta}(e_1, e_2) + d_{\beta}(e_2, e_0)}{3} = \frac{n+1}{3}$$

Hence for some *i* we have $d_{\beta}(e_i, e_{i+1}) \leq \frac{n+1}{3}$ and the matching number of β is at most $\frac{n+1}{3}$. Therefore $\text{CMS}(Y_n) \leq \frac{n+1}{3}$.

Thus,

$$MS(Y_n) - CMS(Y_n) \ge \frac{n}{2} - 1 - \frac{n+1}{3} = \frac{n-4}{6}$$

Thus, we see that

$$\lim_{n \to \infty} \frac{\operatorname{MS}(Y_n) - \operatorname{CMS}(Y_n)}{n} \ge \frac{1}{6}.$$

Consequently our answer to Question 2 is that the difference MS(G) - CMS(G) can be made as large as desired.

Question 3: Given a graph G, is CMS(2G) = MS(G)?

From our answer to Question 2 we know that $MS(Y_{2k}) \ge k - 1$, where n = 2k. Now consider $2Y_{2k}$. Let β be a cyclic ordering of $2Y_{2k}$ and let $e_0, e_1, e_2 \dots, e_5$ be the six edges incident to the vertex v_1 ordered such that

$$1 \le \beta(e_0) < \beta(e_1) < \dots < \beta(e_5).$$

For any $i \in \mathbb{Z}_6$ consider the set $\{e \in E(G) : \beta(e_i) \leq \beta(e) \leq \beta(e_{i+1})\}$. This is a set of size $d_{\beta}(e_i, e_{i+1}) + 1$ which is not a matching. Therefore the β -distance between edges e_i and e_{i+1} is an upper bound to the matching number of β . The sum of these distances is:

$$d_{\beta}(e_0, e_1) + d_{\beta}(e_1, e_2) + \dots + d_{\beta}(e_5, e_0) = 4k + 2.$$

Taking the average we obtain:

$$\frac{d_{\beta}(e_0, e_1) + d_{\beta}(e_1, e_2) + \dots + d_{\beta}(e_5, e_0)}{6} = \frac{4k+2}{6}.$$

Hence for some *i* we have $d_{\beta}(e_i, e_{i+1}) \leq \frac{4k+2}{6}$ and the matching number of β is at most $\frac{4k+2}{6}$. Therefore $\text{CMS}(2Y_{2k}) \leq \frac{4k+2}{6} \leq k-1 \leq \text{MS}(2Y_{2k})$, and the answer to the Question 3 is no.

2 Further results

Given the answer to Question 2 one might ask how small can CMS(G) be? We now provide an answer.

Lower Bound for cms(G)

Theorem 2.1 $|MS(G)/2| \leq CMS(G)$.

PROOF: Let MS(G) = n and write |E(G)| = kn + r for some $k \ge 1$ and r < n. Choose an ordering $\alpha : E(G) \mapsto \{1, ..., kn + r\}$ of the edges of G with matching number n. For $1 \le i \le k$, let:

$$A_{i,1} = \left\{ n(i-1) + 1, ..., \left\lfloor \frac{n(2i-1)}{2} \right\rfloor \right\} \text{ and } A_{i,-1} = \left\{ \left\lfloor \frac{n(2i-1)}{2} \right\rfloor + 1, ..., ni \right\}.$$

Also let

$$A_{k+1,1} = \left\{kn+1, \dots, kn+\left\lfloor\frac{n}{2}\right\rfloor\right\} \cap \{1, \dots, kn+r\}$$

and

$$A_{k+1,-1} = \left\{ kn + \left\lfloor \frac{n}{2} \right\rfloor + 1, ..., (k+1)n \right\} \cap \{1, ..., kn+r\}.$$

Define the ordering $\beta : E(G) \mapsto \{1, ..., kn + r\}$ by

$$\beta(x) = \begin{cases} \alpha(x) - (i-1) \left\lceil \frac{n}{2} \right\rceil & \text{if } \alpha(x) \in A_{i,1} \\ nk + r - \alpha(x) + i \left\lfloor \frac{n}{2} \right\rfloor + 1 & \text{if } \alpha(x) \in A_{i,-1}. \end{cases}$$

We chose to define β in this way so that β will satisfy the following three conditions:

- (i) If $\alpha(x), \alpha(y) \in \bigcup_{i=1}^{k+1} A_{i,1}$, then $\beta(x) < \beta(y)$ if and only if $\alpha(x) < \alpha(y)$.
- (ii) If $\alpha(x) \in \bigcup_{i=1}^{k+1} A_{i,1}$, $\alpha(y) \in \bigcup_{i=1}^{k+1} A_{i,-1}$, then $\beta(x) < \beta(y)$ always.
- (iii) If $\alpha(x), \alpha(y) \in \bigcup_{i=1}^{k+1} A_{i,-1}$, then $\beta(x) < \beta(y)$ if and only if $\alpha(x) > \alpha(y)$.

For any set B of cyclically consecutive edges with respect to the ordering β with $|B| = \lfloor \frac{n}{2} \rfloor$, we want to show that B is a matching. If $\alpha(B) \subset A_{i,\epsilon}$ the result is trivial. Otherwise we have three cases:

Case 1: $\alpha(B) \subset A_{i,\epsilon} \cup A_{i+1,\epsilon}$

If $\alpha(B) \subset A_{i,\epsilon} \cup A_{i+1,\epsilon}$, consider $A = B \cup \alpha^{-1} \left(A_{i-\frac{-1+\epsilon}{2},-\epsilon} \right)$. As A is a set of n or fewer consecutive edges with respect to the ordering α , A is a matching. Hence B is a matching.

Case 2: $\alpha(B) \subset A_{k+1,1} \cup A_{k+1,-1} \cup A_{k,-1}$

If $\alpha(B) \subset A_{k+1,1} \cup A_{k+1,-1} \cup A_{k,-1}$, consider $A = B \cup \alpha^{-1}(A_{k+1,1})$. As A is a set of n or fewer consecutive edges with respect to the ordering α , A is a matching. Hence B is a matching.

Case 3: $\alpha(B) \subset A_{1,-1} \cup A_{1,1}$

If $\alpha(B) \subset A_{1,-1} \cup A_{1,1}$, consider $A = \alpha^{-1} (A_{1,-1} \cup A_{1,1})$. As A is a set of n or fewer consecutive edges with respect to the ordering α , A is a matching and so is B because $B \subset A$.

We will now provide an example that shows that this bound is sharp when MS(G) = 2k and almost sharp when MS(G) = 2k + 1.

Let L_n be the disjoint union of P_2 , the path of length two, with n-1 copies of K_2 , i.e.:

$$L_n = \underbrace{\begin{array}{c} x_1 \\ x_2 \end{array}}_{n-1 \text{ copies of } K_2}$$

If the edges of P_2 are x_1, x_2 , then any ordering α such that $\alpha(x_1) = 1$ and $\alpha(x_2) = n+1$ has matching number n. This is clearly an upper bound to $MS(L_n)$, as it has n+1 edges. Therefore $MS(L_n) = n$.

The determination of $\text{CMS}(L_n)$ is similar to the way $\text{CMS}(Y_n)$ was determined. Here any ordering β will have $d_{\beta}(x_1, x_2) \leq \lfloor \frac{n}{2} \rfloor + 1 = \lceil \frac{n}{2} \rceil$. But this number is achieved by any ordering β that satisfies $\beta(x_1) = 1$, $\beta(x_2) = \lceil \frac{n}{2} \rceil + 1$. Hence $\text{CMS}(L_n) = \lceil \frac{n}{2} \rceil = \lceil \frac{\text{MS}(L_n)}{2} \rceil$.

Notice that for n = 2k, $\left\lceil \frac{n}{2} \right\rceil = \left\lfloor \frac{n}{2} \right\rfloor = \frac{n}{2}$, thus the bound given in Theorem 2.1 is sharp for even n. When n = 2k + 1, $\left\lceil \frac{n}{2} \right\rceil = \left\lfloor \frac{n}{2} \right\rfloor + 1$ and so if the bound is not sharp it is only off by 1.

References

 R.A. Brualdi, K.P. Kiernan, S.A. Meyer and M.W. Schroeder, Cyclic matching sequencibility of graphs, Australas. J. Combin. 53 (2012), 245–256.

(Received 22 Nov 2013; revised 23 July 2014)