
AUSTRALASIAN JOURNAL OF COMBINATORICS
Volume 61(2) (2015), Pages 138–141

Some strongly regular graphs with the parameters

of Paley graphs

Liz Lane-Harvard

Department of Mathematics and Statistics
University of Central Oklahoma

Edmond, OK 73034
U.S.A.

elaneharvard@uco.edu

Tim Penttila

Department of Mathematics
Colorado State University
Fort Collins, CO 80523

U.S.A.
penttila@math.colostate.edu

Abstract

We construct two-intersection sets in PG(5, q), q odd, admitting PSL(2, q2), whose
associated strongly regular graphs have the same parameters as, but are not isomorphic
to, Paley graphs.

1 Introduction

A k-set K of type (m,n) in PG(d, q) is a set K of k points such that every hyperplane of the
projective space contains either m or n points of K, m < n. These sets are also called two-
intersection sets, as they have two intersection numbers (with respect to hyperplanes), m and n.
A hyperplane is called i-secant to K if |H ∩K| = i.

A graph Γ that is simple, undirected, and loopless of order v is a strongly regular graph with
parameters v, k, λ, µ whenever Γ is not complete or edgeless and (i) each vertex is adjacent to k
vertices, (ii) for each pair of adjacent vertices, there are λ vertices adjacent to both, and (iii) for
each pair of non-adjacent vertices, there are µ vertices adjacent to both.

Let X be a t-set of type (m,n) in PG(d− 1, q) that spans PG(d− 1, q). Embed PG(d− 1, q) in
PG(d, q) as a hyperplane H, and define Γ(X) to be the graph with vertices the points of PG(d, q)
not in H and two vertices P and Q adjacent if and only if PQ∩H ∈ X. Then by [2, Theorem 3.2],
Γ(X) is a strongly regular graph with parameters v = qd, k = t(q− 1), λ = t2 + tq− 3t+ qm+ qn−
tqm− tqn+mnq2, and µ = q2

qd
(t−m)(t−n), which motivates the study of two-intersection sets. If

two-intersection sets are equivalent (under PΓL(d, q)), then the associated strongly regular graphs
are isomorphic.

The history of two-intersection sets in finite projective spaces stretches back to at least two
1966 papers by Tallini Scafati [9, 10]. Calderbank and Kantor surveyed these sets in 1986 [2] in
what has become the standard reference. Postdating their survey, a number of two-intersection sets
have been constructed, and in turn, strongly regular graphs (as well as projective two-weight linear
codes). However, the main motivation for this paper came from [4] which was surveyed in [2].
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2 Parameters of sets of type (m,n)

Let tm and tn denote the number of m-secants and n-secants to a k-set K of type (m,n) in PG(d, q).
Then elementary counting leads to the fundamental equations

tm + tn =
qd+1 − 1

q − 1
, (1)

mtm + ntn = t
qd − 1

q − 1
, (2)

m(m− 1)tm + n(n− 1)tn = t(t− 1)
qd−1 − 1

q − 1
. (3)

By taking the linear combination mn(1) + (1−m− n)(2) + (3), we obtain a quadratic in k:

k2
qd−1 − 1

q − 1
+ k(1−m− n)

qd − 1

q − 1
− k q

d−1 − 1

q − 1
+mn

qd+1 − 1

q − 1
= 0 (4)

Now, let rn and rm denote the number of n-secants and m-secants, respectively, through a point
P ∈ K. Let sn and sm be the number of n-secants and m-secants through a point Q 6∈ K. Then
simple counting yields

sn + sm = qd−1
q−1 ,

nsn +msm = k qd−1−1
q−1 ,

rn + rm = qd−1
q−1 ,

(n− 1)rn + (m− 1)rm = (k − 1) qd−1−1
q−1 .

We can then solve for rm, rn, sm, sn, obtaining

rm =
(n−1) qd−1

q−1 −(k−1) qd−1−1
q−1

n−m , rn =
(k−1) qd−1−1

q−1 −(m−1) qd−1
q−1

n−m ,

sm =
n qd−1

q−1 −k qd−1−1
q−1

n−m , sn =
k qd−1−1

q−1 −m qd−1
q−1

n−m .

An important consequence of these equations is that n−m is a divisor of qd−1 (as rm − sm ∈ Z).
From each set of type (m,n), we can form three related sets [5].

Lemma 1. Let K be a k-set of type (m,n) in PG(d, q). Then

a.) The complement of K is a ( qd+1−1
q−1 − k)-set of type ( qd−1

q−1 − n,
qd−1
q−1 −m) in PG(d, q).

b.) The m-secants of K form a tm-set of type (rm, sm) in the dual of PG(d, q).

c.) The n-secants of K form a tn-set of type (sn, rn) in the dual of PG(d, q).

These equations allow having a solution corresponding to a possible
q(d+1)/2+1
q(d−1)/2+1

(m + q
d−1
2 )-set of type (m,m + q

d−1
2 ) in PG(d, q) (where q is a square if d is even). We

investigate such sets below.

Theorem 2. cf.[4] The union of a q(d+1)/2+1
q(d−1)/2+1

(m1 + q(d−1)/2)-set K1 of type

(m1,m1 + q(d−1)/2) in PG(d, q) and a q(d+1)/2+1
q(d−1)/2+1

(m2 + q(d−1)/2)-set K2 of type (m2,m2 + q(d−1)/2)

in PG(d, q), disjoint from K1, is a q(d+1)/2+1
q(d−1)/2+1

(m1 + m2 + 2q(d−1)/2)-set K of type (m1 + m2 +

q(d−1)/2,m1 +m2 + 2q(d−1)/2) in PG(d, q) for q odd.
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Proof. Any hyperplane intersects K in either m1 +m2, m1 +m2 + q(d−1)/2, or m1 +m2 + 2q(d−1)/2

points. We must show that there are no hyperplanes in the first class. Consider the fundamental
equations (1), (2), and (3) for the set K. These are three linear equations in the unknowns tm1+m2 ,
tm1+m2+q(d−1)/2 , and tm1+m2+2q(d−1)/2 . It is easy to see that the coefficient matrix has determinant

2q(3/2)(q−1). Thus, it is non-singular, and hence these equations have a unique solution. As an
q(d+1)/2+1
q(d−1)/2+1

(m1 +m2 + 2q(d−1)/2)-set of type

(m1 +m2 + q(d−1)/2,m1 +m2 + 2q(d−1)/2) is arithmetically feasible, we can find a solution to these
equations with tm1+m2

= 0. Hence, this must be the unique solution.

More specifically, we will consider two infinite families of two-intersection sets in PG(5, q). In
[2, Example FE1, page 112], Calderbank and Kantor constructed the following family.

Theorem 3. There exists a (q5+q2)/2-set K1 of type ((q4−q2)/2, (q4+q2)/2) in PG(5, q) admitting
PΩ−(5, q) for q odd. Namely, if Q is a nondegenerate quadratic form on GF(q)6 of minus type,
then K1 = {〈v〉 : Q(v) is a non-square }.

In [3, Remark 3.3(4)], Cossidente and Penttila constructed another infinite family of two-
intersection sets in PG(5, q).

Theorem 4. There exists a (q4 + q3 + q + 1)/2-set K2 of type
((q3−q2 +q+1)/2, (q3 +q2 +q+1)/2) in PG(5, q) admitting PSL(2, q2), for q odd. Moreover, there
is a nondegenerate quadratic form Q on GF(q)6 of minus type, with Q(v) = 0 for all 〈v〉 ∈ K1.

It should be noted that K1 is disjoint from K2, if we fix the quadratic form Q on GF(q)6 of
minus type. Thus

Theorem 5. There exists a (q5 + q4 + q3 + q2 + q + 1)/2-set K of type
((q4 + q3 + q+ 1)/2, (q4 + q3 + 2q2 + q+ 1)/2) in PG(5, q) admitting the group PSL(2, q2) for q odd.

Proof. This follows from the observation immediately before this theorem and from Theorem 2,
with K = K1 ∪K2.

This set has the same parameters as some previously constructed sets. First we consider the
Paley set [8], which is an orbit of the group generated by the square of a Singer cycle.

Theorem 6. The sets K from Theorem 5 are inequivalent to Paley sets.

Proof. Let K be a set from Theorem 5, and let P be a Paley set in PG(5, q) for q odd. If K and P
are equivalent under an element of PΓL(6, q), then Γ(K) and Γ(P ) are isomorphic, and thus have
isomorphic automorphism groups. By [6, Corollary 8.2] or [7], the automorphism group of Γ(P )
(the Paley graph) is a subgroup of AΓL(1, q6), and so is solvable. But PSL(2, q2) is a subgroup of
Aut(Γ(K)), so Aut(Γ(K)) is not solvable. Therefore, K and P are not equivalent.

Corollary 7. The strongly regular graphs arising from the sets of Theorem 5 have the same parame-

ters as, but are not isomorphic to, Paley graphs. Namely, the parameters are (q6, q
6−1
2 , q

6−5
4 , q

6−1
4 ).

Remark The same proof shows that Γ(K) is not isomorphic to the strongly regular graphs con-
structed from commutative semifields of order q6 in Theorem 1.3 of Chen and Polhill (2011)[1],
by [1, Theorem 1.4]. Also, K contains no plane, so cannot be equivalent to the union of a partial

2-spread of size q3+1
2 .
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