An f-chromatic spanning forest of edge-colored complete bipartite graphs*

Kazuhiro Suzuki
Department of Information Science
Kochi University
Japan
kazuhiro@tutetuti.jp

Abstract

A heterochromatic spanning tree is a spanning tree whose edges have distinct colors, where any color appears at most once. In 2001, Brualdi and Hollingsworth proved that a ($2 n-1$)-edge-colored balanced complete bipartite graph $K_{n, n}$ with color set \mathbb{C} has a heterochromatic spanning tree, if for any non-empty subset $R \subseteq C$, the number of edges having a color in R is more than $|R|^{2} / 4$. In 2013, Suzuki generalized heterochromatic graphs to f-chromatic graphs, where any color c appears at most $f(c)$ times, and he presented a necessary and sufficient condition for graphs to have an f-chromatic spanning forest with exactly w components. In this paper, using this necessary and sufficient condition, we generalize the Brualdi-Hollingsworth theorem above.

1 Introduction

We consider finite undirected graphs without loops or multiple edges. For a graph G, we denote by $V(G)$ and $E(G)$ its vertex and edge sets, respectively. An edgecoloring of a graph G is a mapping color : $E(G) \rightarrow \mathbb{C}$, where \mathbb{C} is a set of colors. An edge-colored graph $(G, \mathbb{C}$, color $)$ is a graph G with an edge-coloring color on a color set \mathbb{C}. We often abbreviate an edge-colored graph $(G, \mathbb{C}$, color $)$ as G.

1.1 Heterochromatic spanning trees

An edge-colored graph G is said to be heterochromatic if no two edges of G have the same color, that is, color $\left(e_{i}\right) \neq \operatorname{color}\left(e_{j}\right)$ for any two distinct edges e_{i} and e_{j} of G. A heterochromatic graph is also said to be rainbow, multicolored, totally multicolored, polychromatic, or colorful. Heterochromatic subgraphs of edge-colored graphs have been studied in many papers, as in the survey by Kano and Li [4].

[^0]Akbari \& Alipour [1], and Suzuki [5] independently presented a necessary and sufficient condition for edge-colored graphs to have a heterochromatic spanning tree, and they proved some results by using the condition. Here, we denote by $\omega(G)$ the number of components of a graph G. Given an edge-colored graph G and a color set R, we define $E_{R}(G)=\{e \in E(G) \mid \operatorname{color}(e) \in R\}$. Similarly, for a color c, we define $E_{c}(G)=E_{\{c\}}(G)$. We denote the graph $\left(V(G), E(G) \backslash E_{R}(G)\right)$ by $G-E_{R}(G)$.

Theorem 1.1 (Akbari and Alipour [1], Suzuki [5]). An edge-colored graph G has a heterochromatic spanning tree if and only if

$$
\omega\left(G-E_{R}(G)\right) \leq|R|+1 \quad \text { for any } R \subseteq \mathbb{C}
$$

Note that if $R=\emptyset$ then the condition is $\omega(G) \leq 1$. Thus, the condition of this theorem includes a condition for graphs to have a spanning tree, namely, to be connected. Suzuki [5] proved the following theorem by using Theorem 1.1.

Theorem 1.2 (Suzuki [5]). An edge-colored complete graph K_{n} has a heterochromatic spanning tree if $\left|E_{c}(G)\right| \leq n / 2$ for any color $c \in \mathbb{C}$.

Jin and $\mathrm{Li}[3]$ generalized Theorem 1.1 to the following theorem, from which we can obtain Theorem 1.1 by taking $k=n-1$.

Theorem 1.3 (Jin and Li [3]). An edge-colored connected graph G of order n has a spanning tree with at least $k(1 \leq k \leq n-1)$ colors if and only if

$$
\omega\left(G-E_{R}(G)\right) \leq n-k+|R| \quad \text { for any } R \subseteq \mathbb{C}
$$

If an edge-colored connected graph G of order n has a spanning tree with at least k colors, then G has a heterochromatic spanning forest with k edges, that is, G has a heterochromatic spanning forest with exactly $n-k$ components. On the other hand, if an edge-colored connected graph G of order n has a heterochromatic spanning forest with exactly $n-k$ components, then we can construct a spanning tree with at least k colors by adding some $n-k-1$ edges to the forest. Hence, we can rephrase Theorem 1.3 as the following.

Theorem 1.4 (Jin and Li [3]). An edge-colored connected graph G of order n has a heterochromatic spanning forest with exactly $n-k$ components $(1 \leq k \leq n-1)$ if and only if

$$
\omega\left(G-E_{R}(G)\right) \leq n-k+|R| \quad \text { for any } R \subseteq \mathbb{C}
$$

Brualdi and Hollingsworth [2] presented a sufficient condition for complete bipartite graphs to have a heterochromatic spanning tree.

$$
\begin{aligned}
e_{1} & =1>1^{2} / 4 \\
e_{1}+e_{2} & =2>2^{2} / 4 \\
e_{1}+e_{2}+e_{3} & =4>3^{2} / 4 \\
e_{1}+e_{2}+e_{3}+e_{4} & =6>4^{2} / 4 \\
e_{1}+e_{2}+e_{3}+e_{4}+e_{5} & =9>5^{2} / 4
\end{aligned}
$$

Fig. 1: An example of Theorem 1.5.

Theorem 1.5 (Brualdi and Hollingsworth [2]). Let G be an edge-colored balanced complete bipartite graph $K_{n, n}$ with a color set $\mathbb{C}=\{1,2,3, \ldots, 2 n-1\}$. Let e_{c} be the number of edges having a color c, namely, $e_{c}=\left|E_{c}(G)\right|$, and assume that $1 \leq e_{1} \leq e_{2} \leq \cdots \leq e_{2 n-1}$. If $\sum_{i=1}^{r} e_{i}>r^{2} / 4$ for any color $r \in \mathbb{C}$, then G has a heterochromatic spanning tree.

Fig. 1 shows an example of Theorem 1.5. The sum of numbers of edges having $1,2, \ldots$, or r is more than $r^{2} / 4$ for any color r, thus, this graph has a heterochromatic spanning tree.

$1.2 \quad f$-Chromatic spanning trees

Heterochromatic means that any color appears at most once. Suzuki [6] generalized once to a mapping f from a given color set \mathbb{C} to the set of non-negative integers, and introduced the following definition as a generalization of heterochromatic graphs.

Definition 1.6. Let f be a mapping from a given color set \mathbb{C} to the set of nonnegative integers. An edge-colored graph $(G, \mathbb{C}$, color $)$ is said to be f-chromatic if $\left|E_{c}(G)\right| \leq f(c)$ for any color $c \in \mathbb{C}$.

Fig. 2 shows an example of an f-chromatic spanning tree of an edge-colored graph. Let $\mathbb{C}=\{1,2,3,4,5,6,7\}$ be a given color set of 7 colors, and a mapping f is given as follows: $f(1)=3, f(2)=1, f(3)=3, f(4)=0, f(5)=0, f(6)=1, f(7)=2$. Then, the left edge-colored graph in Fig. 2 has the right graph as a subgraph. It is a spanning tree where each color c appears at most $f(c)$ times. Thus, it is an f-chromatic spanning tree.

If $f(c)=1$ for any color c, then all f-chromatic graphs are heterochromatic and also all heterochromatic graphs are f-chromatic. It is expected many previous studies and results for heterochromatic subgraphs will be generalized.

Suzuki [6] presented the following necessary and sufficient condition for graphs to have an f-chromatic spanning forest with exactly w components. This is a generalization of Theorem 1.1 and Theorem 1.4.

Theorem 1.7 (Suzuki [6]). Let f be a mapping from a given color set \mathbb{C} to the set of non-negative integers. An edge-colored graph (G, \mathbb{C}, color $)$ of order at least w has

Fig. 2: An f-chromatic spanning tree of an edge-colored graph.
an f-chromatic spanning forest with exactly w components if and only if

$$
\omega\left(G-E_{R}(G)\right) \leq w+\sum_{c \in R} f(c) \quad \text { for any } R \subseteq \mathbb{C}
$$

By using Theorem 1.7, he generalized Theorem 1.2, as follows.
Theorem 1.8 (Suzuki [6]). A g-chromatic graph G of order n with $|E(G)|>\binom{n-w}{2}$ has an f-chromatic spanning forest with exactly $w(1 \leq w \leq n-1)$ components if $g(c) \leq \frac{|E(G)|}{n-w} f(c)$ for any color c.

In this paper, by using Theorem 1.7, we will generalize the Brualdi-Hollingsworth theorem (Theorem 1.5).

1.3 A generalization of Brualdi-Hollingsworth Theorem

Under the conditions of Theorem 1.5, if $\sum_{i=1}^{r} e_{i}>r^{2} / 4$ for any color $r \in \mathbb{C}$, then for any non-empty subset $R \subseteq \mathbb{C}$ we have $\left|E_{R}(G)\right| \geq \sum_{i=1}^{|R|} e_{i}>|R|^{2} / 4$. On the other hand, if $\left|E_{R}(G)\right|>|R|^{2} / 4$ for any non-empty subset $R \subseteq \mathbb{C}$, then for any color r and color subset $Q=\{1,2,3, \ldots, r\} \subseteq \mathbb{C}$, we have

$$
\sum_{i=1}^{r} e_{i}=\sum_{i=1}^{r}\left|E_{i}(G)\right|=\left|E_{Q}(G)\right|>|Q|^{2} / 4=r^{2} / 4
$$

Thus, $\sum_{i=1}^{r} e_{i}>r^{2} / 4$ for any color $r \in \mathbb{C}$ if and only if $\left|E_{R}(G)\right|>|R|^{2} / 4$ for any non-empty subset $R \subseteq \mathbb{C}$. Hence, we can rephrase Theorem 1.5 as the following.

Theorem 1.9 (Brualdi and Hollingsworth [2]). Let G be an edge-colored balanced complete bipartite graph $K_{n, n}$ with a color set $\mathbb{C}=\{1,2,3, \ldots, 2 n-1\}$. If $\left|E_{R}(G)\right|>$ $|R|^{2} / 4$ for any non-empty subset $R \subseteq \mathbb{C}$, then G has a heterochromatic spanning tree.

In this paper, we generalize this theorem to the following, which is our main theorem.

Theorem 1.10. Let G be an edge-colored complete bipartite graph $K_{n, m}$ with a color set \mathbb{C}. Let w be a positive integer with $1 \leq w \leq n+m$, and f be a function from \mathbb{C} to the set of non-negative integers such that $\sum_{c \in \mathbb{C}} f(c) \geq n+m-w$. If $\left|E_{R}(G)\right|>\left(n+m-w-\sum_{c \in \mathbb{C} \backslash R} f(c)\right)^{2} / 4$ for any non-empty subset $R \subseteq \mathbb{C}$, then G has an f-chromatic spanning forest with w components.

Theorem 1.9 is a special case of Theorem 1.10 with $m=n, w=1, f(c)=$ 1 for any color c, and $|\mathbb{C}|=2 n-1$. The number of edges of a spanning forest with w components of $K_{n, m}$ is $n+m-w$. Thus, in Theorem 1.10, the condition $\sum_{c \in \mathbb{C}} f(c) \geq n+m-w$ is necessary for existence of an f-chromatic spanning forest with w components.

The lower bound of $\left|E_{R}(G)\right|$ in Theorem 1.10 is sharp in the following sense: Let $R \subseteq \mathbb{C}$ be a color subset and $p=n+m-w-\sum_{c \in \mathbb{C} \backslash R} f(c)$. Let G be a complete bipartite graph $K_{n, m}$, and H be a complete bipartite subgraph $K_{\frac{p}{2}, \frac{p}{2}}$ of G. Color the edges in $E(H)$ with colors in R, and the edges in $E(G) \backslash E(H)$ with colors in $\mathbb{C} \backslash R$ (Fig. 3). Then, $\left|E_{R}(G)\right|=p^{2} / 4=\left(n+m-w-\sum_{c \in \mathbb{C} \backslash R} f(c)\right)^{2} / 4$.

Fig. 3: A graph G and $R \subseteq \mathbb{C}$ with $\left|E_{R}(G)\right|=\left(n+m-w-\sum_{c \in \mathbb{C} \backslash R} f(c)\right)^{2} / 4$.
Recall that $n+m-w$ is the number of edges of a spanning forest with w components of G, and $\sum_{c \in \mathbb{C} \backslash R} f(c)$ is the maximum number of edges having colors in $\mathbb{C} \backslash R$ of a desired forest. Thus, p is the number of edges having colors in R needed in a desired forest. However, any p edges of H make a cycle because $|V(H)|=p$. Hence, G has no f-chromatic spanning forests with w components, which implies the lower bound of $\left|E_{R}(G)\right|$ is sharp.

In the next section, we will prove Theorem 1.10 by using Theorem 1.7.

2 Proof of Theorem 1.10

In order to prove Theorem 1.10, we need the following lemma.
Lemma 2.1. Let G be a bipartite graph of order N that consists of s components. Then $|E(G)| \leq(N-(s-1))^{2} / 4$.

Proof. Take a bipartite graph G^{*} of order N that consists of s components so that
(1) $\left|E\left(G^{*}\right)\right|$ is maximum, and
(2) subject to (1), for the maximum component D_{s} of $G^{*},\left|V\left(D_{s}\right)\right|$ is maximum.

By the maximality (1) of G^{*}, each component of G^{*} is a complete bipartite graph. Let A_{s} and B_{s} be the partite sets of D_{s}. We assume $\left|A_{s}\right| \leq\left|B_{s}\right|$.

Suppose that some component D except D_{s} has at least two vertices. Let A and B be the partite sets of D. We assume $|A| \leq|B|$. If $|A|>\left|B_{s}\right|$ then $\left|A_{s}\right| \leq\left|B_{s}\right|<$ $|A| \leq|B|$, which contradicts that D_{s} is a maximum component of G^{*}. Thus, we have $|A| \leq\left|B_{s}\right|$. Let x be a vertex of B, where $\operatorname{deg}_{G}(x)=|A|$. Let $D^{\prime}=D-\{x\}, A^{\prime}=A$, $B^{\prime}=B-x, A_{s}^{\prime}=A_{s} \cup\{x\}, B_{s}^{\prime}=B_{s}$, and $D_{s}^{\prime}=\left(A_{s}^{\prime} \cup B_{s}^{\prime}, E\left(D_{s}\right) \cup\left\{x z \mid z \in B_{s}^{\prime}\right\}\right)$. Let $G^{* *}$ be the resulted graph. Then, we have

$$
\begin{aligned}
\left|E\left(D^{\prime}\right)\right|+\left|E\left(D_{s}^{\prime}\right)\right| & =|E(D)|-\operatorname{deg}_{G}(x)+\left|E\left(D_{s}\right)\right|+\left|B_{s}^{\prime}\right| \\
& =|E(D)|+\left|E\left(D_{s}\right)\right|+\left|B_{s}\right|-|A| \\
& \geq|E(D)|+\left|E\left(D_{s}\right)\right|
\end{aligned}
$$

which implies $\left|E\left(G^{\prime *}\right)\right|=\left|E\left(G^{*}\right)\right|$ by the condition (1). However, that contradicts the maximality (2) because $\left|V\left(D_{s}^{\prime}\right)\right| \geq\left|V\left(D_{s}\right)\right|+1$. Hence, every component except D_{s} has exactly one vertex, which implies that $\left|V\left(D_{s}\right)\right|=N-(s-1)$.

Suppose that $\left|B_{s}\right|-\left|A_{s}\right| \geq 2$. Let x be a vertex of B_{s}, where $\operatorname{deg}_{G}(x)=\left|A_{s}\right|$. Let $D_{s}^{\prime}=\left(V\left(D_{s}\right), E\left(D_{s}-x\right) \cup\left\{x z \mid z \in B_{s}-x\right\}\right)$. Then, D_{s}^{\prime} is a complete bipartite graph, and we have

$$
\begin{aligned}
\left|E\left(D_{s}^{\prime}\right)\right| & =\left|E\left(D_{s}\right)\right|-\operatorname{deg}_{G}(x)+\left|B_{s}-x\right| \\
& =\left|E\left(D_{s}\right)\right|-\left|A_{s}\right|+\left|B_{s}\right|-1 \\
& \geq\left|E\left(D_{s}\right)\right|+1
\end{aligned}
$$

which contradicts the maximality (1). Hence, $\left|B_{s}\right|-\left|A_{s}\right| \leq 1$.
Therefore,

$$
\begin{aligned}
|E(G)| & \leq\left|E\left(G^{*}\right)\right|=\left|E\left(D_{s}\right)\right|=\left|A_{s}\right|\left|B_{s}\right| \\
& =\lfloor(N-(s-1)) / 2\rfloor\lceil(N-(s-1)) / 2\rceil \\
& \leq(N-(s-1))^{2} / 4 .
\end{aligned}
$$

Then, we shall prove Theorem 1.10 by using Theorem 1.7 and Lemma 2.1. Suppose that G has no f-chromatic spanning forests with w components. By Theorem 1.7 , there exists a color set $R \subseteq \mathbb{C}$ such that

$$
\begin{equation*}
\omega\left(G-E_{R}(G)\right)>w+\sum_{c \in R} f(c) . \tag{1}
\end{equation*}
$$

Let $s=\omega\left(G-E_{R}(G)\right)$. Let $D_{1}, D_{2}, \ldots, D_{s}$ be the components of $G-E_{R}(G)$, and q be the number of edges of G between these distinct components. Note that, the colors of these q edges are only in R, that is, $q \leq\left|E_{R}(G)\right|$.

If $R=\mathbb{C}$ then

$$
s=\omega\left(G-E_{\mathbb{C}}(G)\right)>w+\sum_{c \in \mathbb{C}} f(c) \geq w+n+m-w=n+m=|V(G)|,
$$

by the assumption of Theorem 1.10. This contradicts that $s \leq|V(G)|$. Thus, we can assume $R \neq \mathbb{C}$, namely, $\mathbb{C} \backslash R \neq \emptyset$. Hence, by the assumption of Theorem 1.10,

$$
\left|E_{\mathbb{C} \backslash R}(G)\right|>\left(n+m-w-\sum_{c \in \mathbb{C} \backslash(\mathbb{C} \backslash R)} f(c)\right)^{2} / 4=\left(n+m-w-\sum_{c \in R} f(c)\right)^{2} / 4 .
$$

Therefore, we have

$$
\begin{equation*}
q \leq\left|E_{R}(G)\right|=|E(G)|-\left|E_{\mathbb{C} \backslash R}(G)\right|<|E(G)|-\left(n+m-w-\sum_{c \in R} f(c)\right)^{2} / 4 \tag{2}
\end{equation*}
$$

On the other hand,

$$
q=|E(G)|-\left|E\left(D_{1}\right) \cup E\left(D_{2}\right) \cup \cdots \cup E\left(D_{s}\right)\right| .
$$

By Lemma 2.1, $\left|E\left(D_{1}\right) \cup E\left(D_{2}\right) \cup \cdots \cup E\left(D_{s}\right)\right| \leq(n+m-(s-1))^{2} / 4$. Thus, since $s=\omega\left(G-E_{R}(G)\right) \geq w+1+\sum_{c \in R} f(c)$ by (1), we have

$$
\begin{aligned}
q & =|E(G)|-\left|E\left(D_{1}\right) \cup E\left(D_{2}\right) \cup \cdots \cup E\left(D_{s}\right)\right| \\
& \geq|E(G)|-(n+m-(s-1))^{2} / 4 \\
& \geq|E(G)|-\left(n+m-\left(w+1+\sum_{c \in R} f(c)-1\right)\right)^{2} / 4 \\
& =|E(G)|-\left(n+m-w-\sum_{c \in R} f(c)\right)^{2} / 4,
\end{aligned}
$$

which contradicts (2). Consequently, the graph G has an f-chromatic spanning forest with w components.

References

[1] S. Akbari and A. Alipour, Multicolored trees in complete graphs. J. Graph Theory 54 (2006), 221-232.
[2] R.A. Brualdii and S. Hollingsworth, Multicolored forests in complete bipartite graphs. Discrete Math. 240 (2001), 239-245.
[3] Z. Jin and X. Li, Spanning trees with many colors in edge-colored graphs. J. Xinjiang University 23 (Supp.) (2006), 12-14.
[4] M. Kano and X. Li, Monochromatic and heterochromatic subgraphs in edgecolored graphs - a survey. Graphs Combin. 24 (2008), 237-263.
[5] K. Suzuki, A necessary and sufficient condition for the existence of a heterochromatic spanning tree in a graph. Graphs Combin. 22 (2006), 261-269.
[6] K. Suzuki, A Generalization of Heterochromatic Graphs and f-Chromatic Spanning Forests. Graphs Combin. 29 (3) (2013), 715-727.

[^0]: * This work was supported by MEXT. KAKENHI 21740085.

